
SRLabs Template v12

Next-Gen Mirai

Balthasar Martin <balthasar@srlabs.de>
Fabian Bräunlein <fabian@srlabs.de>

Regions affected by attack on Dyn Not actively used yet

363
620

0

500

DDoS against Akamai (Gbps)

Mirai and IoT Reaper botnets exploited open Telnet and other known vulnerabilities

2

Mirai botnet

Reaper▪ Open Telnet with default credentials
▪ 24k devices[1] against Krebs on Security
▪ Up to 100k[2] devices in attack on Dyn

▪ Known vulnerabilities in web interfaces
▪ 20k devices[3], but way more vulnerable

Reaper botnet

Probing random IP
addresses for

exposed devices

[1] https://krebsonsecurity.com/2016/11/akamai-on-the-record-krebsonsecurity-attack/
[2] https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
[3] https://www.arbornetworks.com/blog/asert/reaper-madness/

Mirai attack
in 09/2016

Biggest attack
before Mirai

Most users thankfully do not expose their home devices to the Internet

3

Video and bidirectional sound

Remote access from everywhere

Easy firmware updates

Open telnet

(Easy) command injection

Web interface

▪ We got an IP camera that can be controlled via App

▪ Sricam is one of many brands based on Gwell firmwares

▪ Various vendors sell these devices under their own brands

▪ Available apps include: Sricam, APcam, Yoosee, 2CU, …

▪ Most users will not expose their devices to the internet anyways

We are able to send packets to millions of devices in private networks and
control 800,000 of them remotely – How this was done is the topic of this talk

Penetrating private networks is sold as a feature

4

Vendor marketing video:

https://www.youtube.com/watch?v=ydeBVbQDvGo
https://www.youtube.com/watch?v=ydeBVbQDvGo

Proprietary cloud protocols bypass firewalls and allow for remote connections into private
networks

5

Lan1 Lan2

Problem: Router firewalls do not allow incoming connections

Let‘s take a look at:

▪ videoipcamera.com / videoipcamera.cn

▪ cloud-links.net / cloudlinks.cn

Proprietary cloud protocols bypass firewalls and allow for remote connections into private
networks

6

Backend

Lan1 Lan2

IP camera sends UDP packets to keep the NAT-
table entry alive
Backend server can reach the device when
needed
Control packets from app are forwarded by the
backend*

3

2

1

1

2

3

*for transmitting video feeds, the backend negotiates a direct connection to the device

For building a botnet, we need connection, authentication and remote code execution

7

Connection

Authentication (-bypass)

Remote code execution

The backend acts as a contact storage

8

Logging in

App Backend

GET LoginCheck.ashx
[user, md5(pw)]

GET GetFriendList.ashx

SessionID

[name1, device_id1, e(pw1)]
[name2, device_id2, e(pw2)]

…

Adding a device to an account

App Backend

POST AddFriend.ashx
[name, device_id, e(pw)]

OK

HTTP requests containing contact details

In a secure world…
… this would be the only way to check device
credentials
… requests would be monitored and rate limited

In reality, all valid device IDs can be easily retrieved from the backend

9

UDP packet to check which devices are online

No. devicesHeader Device IDs Online status

RequestRequest

28 00 04 00 00 00 00 00 b8 65 6d b7 66 d4 a1 ae
57 cd 73 ca 03 00 00 00 06 00 00 00 00 00 00 00
0f 00 00 00 00 00 00 00 XX XX 0a 00 XX XX 0c 00
XX XX 09 00

Response

▪ Does not require authentication
▪ 62 device IDs in one UDP packet
▪ No rate limiting
▪ Check all possible IDs in 1 hour

Backend Dev. ID length Collected IDs

videoipcam 6 digits 140,741

cloudlinks 7 digits 3,277,280

29 00 00 00 03 00 00 00 06 00 00 00 00 00 00 00
0f 00 00 00 00 00 00 00 XX XX 0a 00 00 00 00 00
01 00 00 00 00 00 00 07 XX XX 0c 00 00 00 00 00
00 00 00 00 00 00 00 07 XX XX 09 00 00 00 00 00
01 00 00 00 00 00 00 07

The backend forwards command packets based on the device ID

10

App Server

CMD

RES

Device

CMD

RES

Set network settings command

IP (192.168.1.102) Subnet mask Gateway DNS server

Cloud part

Local part

Account ID Command IDHeader Device ID Auth. values

▪ Some types of commands are forwarded to the device just based on device ID

▪ Potential for pre-auth RCE  exploiting all devices in just hours

10 03 60 00 54 b1 07 80 XX XX 0c 00 19 41 15 a4 74 8e 86 3d 45 97 54 59
60 01 00 00 78 e6 00 00 1c 00 00 00 37 35 04 f0 cc 63 0c c1 68 01 00 00
66 01 a8 c0 00 ff ff ff 01 01 a8 c0 01 01 a8 c0

We have found a large number of devices – now we need to authenticate

11

Connection

Authentication (-bypass)

Remote code execution

▪ Low entropy device IDs allow for efficient enumeration

▪ Packets are forwarded to devices just based on device ID

Device passwords can be efficiently enumerated

12

Request

▪ When accessing device settings via app, a check-password UDP packet is sent

▪ It can be captured and replayed with a different device ID to check it for the same password

▪ The device does not have to be added to the account and no rate limiting is employed

Response

10 07 61 00 XX XX 0c 00 54 b1 07 80 5d db 83 98
f5 3a 00 00 00 00 00 00 61 00 00 00 3d 4a 00 00
00 00 00 00 00 00 00 00

Account ID Command ID Password correctDevice ID Auth. values

10 03 60 64 54 b1 07 80 XX XX 0c 00 4e 05 5b f4
1f 89 f2 92 2e 90 20 f6 60 01 00 00 3d 4a 00 00
0c 00 00 00 f8 97 56 1b c5 23 8c cc 00 00 00 00

forwardsend replay respond …
CANCEL_DEVICE_UPDATE: 0x6d60 - 0x7148
CHECK_DEVICE_PASSWORD: 0x4a38 - 0x4e20
CHECK_DEVICE_UPDATE: 0x6978 - 0x6d60
…

0x4a38 - 0x4e20

Enumerating weak and default passwords yields access to large numbers of devices

▪ Devices are using different default passwords: 888888, 123, ...

▪ Users will choose bad passwords anyway: 123456, ABCDEF, …

▪ On videoipcamera, we encountered no rate limiting

▪ For cloudlinks, the app presented us a client side CAPTCHA

▪ We did not test the limits and checked 140,000 devices in 6 hours

13

Incredibly tempting button

Backend Password No. devices

Videoipcam 888888 63,029

Videoipcam 123456 1,454

Cloudlinks 123 703,000

Cloudlinks 123456 46,600

Total 814,083

*estimates based on a random 1,000 devices sample

▪ View camera feeds, turn devices, hear and send audio

▪ Get WiFi credentials, near network names, mail credentials

▪ Access and change device settings

*

*

*

Demo: Enumerating device IDs and passwords

14

We can access a large number of devices – now we need to execute commands on them

15

Connection

Authentication (-bypass)

Remote code execution

▪ Low entropy device IDs allow for efficient enumeration

▪ Packets are forwarded to devices just based on device ID

▪ Passwords can be enumerated without rate limiting

▪ Default passwords yield high numbers of devices

The filesystem in the firmware can be manipulated to add a backdoor

16

$ binwalk npcupg_14.00.00.52.bin

DECIMAL HEXADECIMAL DESCRIPTION
--
32 0x20 JFFS2 filesystem, little endian
2943372 0x2CE98C ELF, 32-bit LSB executable, ARM, version 1 (SYSV)0x2CE98C

$ xxd -l 64 npcupg_14.00.00.52.bin

00000000: 0000 0000 6ce9 2c00 211b 0000 397c abbfl.,.!...9|..
00000010: 372a 856a a618 2c6b 0cbc f1a8 3400 000e 7*.j..,k....4...
00000020: 8519 01e0 3300 0000 9611 8be8 0100 00003...........
00000030: 0000 0000 0200 0000 3e6d 0644 0b08 0000>m.D....

6ce9 2c00 211b 0000
3400 000e
397c abbf

372a 856a a618 2c6b 0cbc f1a8

FW header

JFFS2 filesystem
├── dhcp.script
├── gwellipc
├── minihttpd.conf
├── npc
├── upgfile_ok
├── version.txt
└── [...]

32-bit ELF binary

On boot, dhcp.script is executed  add malware or open telnet

When installing a modified firmware, “MD5 err!” is printed on serial output

_14.00.00.52.

0000 0000 0200 0000 3e6d 0644 0b08 0000
8519 01e0 3300 0000 9611 8be8 0100 0000

Patching the main camera binary allows for printing the expected firmware checksum

17

▪ Modified file system
Start Seq = 00000d4b
Md5 err!

▪ Original file system
Start Seq = 00000a99
57 124 171 191 55 42 133 106 166
24 44 107 12 188 241 168
Newst version !
fgCheckUpgFile over!

Serial output when installing a firmware Byte-wise comparison of expected and given hash

Patching the main camera binary allows for printing the expected firmware checksum

18

▪ Modified file system
Start Seq = 00000d4b
Md5 err!

▪ Original file system
Start Seq = 00000a99
57 124 171 191 55 42 133 106 166
24 44 107 12 188 241 168
Newst version !
fgCheckUpgFile over!

Serial output when installing a firmware Byte-wise comparison of expected and given hash

kill -9 [process_number]

printf '\x50' | dd bs=1 seek=172469 of=/npc/npc …
printf '\x02' | dd bs=1 seek=172488 of=/npc/npc …
printf '\x05' | dd bs=1 seek=172536 of=/npc/npc …

Patch main binary to print expected hash

Mass-scale remote installation of malicious firmwares possible by redirecting camera to
attacker‘s update server

19

Initiate firmware update and deliver malware

Attacker Camera

CMD set DNS to Attacker IP

3CMD do firmware update

GET Version, GET update

DNS upg.videoipcamera.cn

Attacker IP

Newer version, malicious update

CMD get network settings

network settings

▪ Two different kinds of firmwares:

– 14.00.00.XX

– 21.00.00.XX

▪ Current version in update request

▪ Fully automatable procedure

Remember the network settings packet?

Demo: Installing a malicious firmware remotely via terminal

20

Infrastructure and protocol design entail a high abuse potential

21

Connection

Authentication (-bypass)

Remote code execution

▪ Low entropy device IDs allow for efficient enumeration

▪ Packets are forwarded to devices just based on device ID

▪ Passwords can be enumerated without rate limiting

▪ Default passwords yield high numbers of devices

▪ Malicious firmware updates can be installed remotely

▪ The process can be automated for botnet creation

Many vendors employ similar cloud solutions

22

Cloud technology

▪ videoipcamera.com
▪ videoipcamera.cn
▪ cloud-links.net
▪ cloudlinks.cn

▪ Sricam
▪ HKVstar / Unifore
▪ HiKam
▪ Digoo
▪ All with npc FW[1]

▪ hik-connect.com
▪ ezvizlife.com

▪ Hikvision
▪ EZVIZ

▪ easy4ip.com
▪ ?

▪ Dahua
▪ Various grey-

market rebrands

Backends Camera vendors

Cloudlinks

Apps

▪ Sricam
▪ YooSee
▪ 2CU
▪ APcam
▪ All with p2p-core[2]

[1] http://www.gwell.cc/e/action/ListInfo/?classid=102
[2] http://cloudlinks.cn/sdk/android/docs/index.html

▪ Hikconnect
▪ iVMS-4500
▪ EZVIZ

▪ Easy4ip
▪ gDMSS / iDMSS

All other vendors we looked at had cloud solutions for remote access as well:
▪ Axis  Axis companion / MyAxis
▪ D-Link  mydlink cloud
▪ …

Premium vendors make similar mistakes

[1] https://ipvm.com/reports/video-surveillance-companies-top10-market-share
[2] http://seclists.org/fulldisclosure/2017/Sep/23
[3] https://depthsecurity.com/blog/unauthorized-flir-cloud-access
[4] http://seclists.org/fulldisclosure/2017/Mar/7

23

▪ There are 2,760,000* valid device IDs

▪ 50,000* have the password ABCDEF

*estimate based on 100.000 random samples

Hikvision

Dahua

Market position Cloud service problems

▪ Biggest video
surveillance
company by
market share [1]

▪ Firmware update enabled Hikconnect
with password ABCDEF

▪ Device IDs and passwords can be
checked per POST without rate limiting

▪ March 2017[2]

▪ CGI checks only for the
username portion of “auth”
parameter

▪ Access the camera as admin
user

Latest authentication bypass

▪ Second biggest
video surveillance
company by
market share [1]

▪ Lorex sells Dahua devices with FLIR cloud
▪ FLIR establishes tunnel to camera just

based on device ID[3]

▪ March 2017[4]

▪ Directly download list of
users and passwords

▪ Exploitable via cloud tunnel

Other interesting research:
▪ Zoltan Balazs: The real risks of the IoT security-nightmare
▪ Amit Serper: Zero-day exploits in IP cameras

Users can only avoid cloud and p2p functionalities

▪ Deactivate p2p if possible  There may be no option for this – or the option has no effect[1]

▪ Seperate the camera from the internet and access via VPN  Only for technical users

▪ Contact your vendor We tried that and it was not very productive

24

Users depend on the vendors to build secure systems

[1] https://krebsonsecurity.com/2016/02/this-is-why-people-fear-the-internet-of-things/

Vendors need to apply well known security principles to their proprietary solutions

25

In summary What we need

Missing/
weak
authentication

▪ Low-entropy device IDs

▪ Widely shared default passwords with
skippable change prompt

▪ Packets forwarded just based on device ID

▪ High-entropy device IDs

▪ Unique, strong default passwords,
unskippable security prompts

▪ Authentication check before
forwarding packets to camera

Insufficient
rate limiting

▪ Multiple authentication endpoints (UDP and
HTTP) without any rate limiting or
monitoring

▪ Basic rate limiting and monitoring
for all endpoints

Missing/
improper use
of crypto

▪ No transport layer security

▪ Firmware “signature” with MD5 and DES

▪ Symmetric encryption of secrets with keys
hardcoded in the app

▪ Proper encryption of all traffic

▪ Asymmetric firmware signatures

Coarse access
control

▪ Successful authentication allows for vast
reconfiguration, from anywhere

▪ Limit info leakage and
reconfiguration possibilities,
especially from the Internet

Thank you!

26

Questions?

Balthasar Martin <balthasar@srlabs.de>
Fabian Bräunlein <fabian@srlabs.de>

Many thanks to Marvin Bornstein and our friends at SRLabs
– Karsten Nohl, Luca Melette, Mark Carney, and Stephan Zeisberg –
for making this research possible!

Cloud services make it possible to reach large numbers of IP cameras in
private networks. As there will always be vendors with insecure protocols
and devices, we need to be prepared for DDoS attacks.

