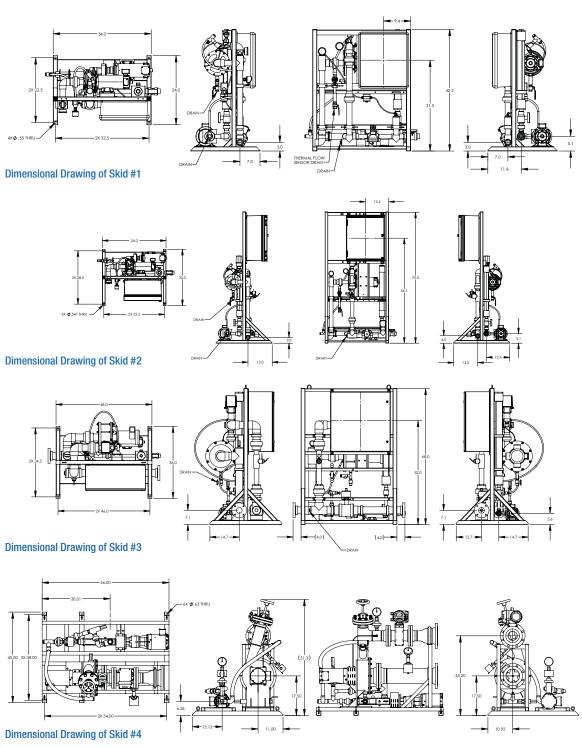
Advanced Liquid Polymer Activation Technologies

The result of over 30 years pursuing optimum polymer performance and system reliability.

AS IT TURNS OUT, IT IS POSSIBLE TO PATENT "AND"

While the rest of the polymer equipment industry was engaged in a mechanical versus non-mechanical system debate, VeloDyne developed the next generation of advanced polymer activation technologies, a hybrid of the two approaches.



A company driven to deliver the very best Polymer Blending, Chemical Feed, and Bulk Solids Handling Systems, fueled by constantly asking, "What If?"

Advanced Liquid Polymer Activation Technologies

VELOBLEND SYSTEM DIMENSIONS

Advanced Liquid Polymer Activation Technologies

EXCLUSIVE HYBRID ACTIVATION TECHNOLOGY

We started by perfecting hydro-dynamic, non-mechanical mixing energy. Born from thirty years of experience, the VeloBlend VH series optimizes the use of non-mechanical mixing energy, exceeding the performance and reliability over existing technologies.

U.S. Patent No. 7,267,477

polymer activation technology combines the reliability of hydroand reliability over existing technologies. dynamic, non-mechanical mixing energy with controllable, variable speed hydro-mechanical mixing energy. This process allows for precise control of mixing conditions, allowing optimal performance of any polymer available. WATER CONTROL VALVE (Auto Actuation Optional) **POLYMER INLET** Quick Access, Reliable, **Neat Polymer Check Valve** WATER INLET Integral Seal Flush STAGE 1 Non-Mechanical **Mixing Energy** High Energy > 30 psid STAGE 2 Non-Mechanical **Mixing Energy Zone** (independent of water pressure) **SOLUTION OUTLET** STAGE 3 **Exclusive Variable** Speed Hydro-Mechanical Impeller

We then eliminated the biggest drawback to non-mechanical

blending—its reliance on water pressure. The VeloBlend™ hybrid

Blendir	Blending Technology:
ΝM	Hydro-Mechanical
ΛH	Hydro-Dynamic
NMN	Hydro-Mechanical Mannich

	Progressive Cavity	1.0P 0.05 to 1 GPH	2.5P 0.12 to 2.5 GPH	5.0P 0.25 to 5 GPH	H 10P 0.5 to 10 GPH	4 15P 0.75 to 15 GPH	20P 1.0 to 20 GPH	30P 1.5 to 30 GPH	
Pump Flow Range:	agm	0.4D 0.004 to 0.4 GPH	0.01 to 1 GPH	0.02 to 2 GPH	0.025 to 2.5 GPH	0.045 to 4.5 GPH	0.08 to 8 GPH	0.1 to 10 GPH	
Pump	Diaphragm	0.4D	1.0D	2.0D	2.5D	4.5D	8D	10D	

Skid Size Power Option	PLC/HMI Option	Control Level

X = Modification from standard options

Control

Skid Size

Color Touchscreen HMI Options

10″ ŋ

″_ ш

12"

10″

<u>"</u>

10″ Θ

‰

ш

Δ

O

⋖

Magelis

Allen Bradley

C-More

	PLC/HMI Option:				PIC Ontions)		VeloDyne Controller	Allen Bradley MicroLogix	
	1.0P 0.05 to 1 GPH	2.5P 0.12 to 2.5 GPH	5.0P 0.25 to 5 GPH	0.5 to 10 GPH	15P 0.75 to 15 GPH	1 0 to 20 GPH	1.0.02.03	1.5 to 30 GPH	50P 2.5 to 50 GPH	
,	1.0P	2.5P	5.0P	10P	15P	20P	2	30P	50P	
•	0.004 to 0.4 GPH	0.01 to 1 GPH	0.02 to 2 GPH	0.025 to 2.5 GPH	0.045 to 4.5 GPH	0 08 to 8 GPH	- 5000000000000000000000000000000000000	0.1 to 10 GPH		
				_	_					

		50P	2.5 to 50 GPI
Pum	Pump Style:		
D	Diaphragm		
Ь	Progressive Cavity		
S	Peristaltic		

Water Rate:	ate:
20	2 to 20 GPH
09	6 to 60 GPH
120	12 to 120 GPH
300	0.5 to 5 GPM
900	1 to 10 GPM
1200	2 to 20 GPM
1800	3 to 30 GPM
2400	4 to 40 GPM
3600	6 to 60 GPM
4800	8 to 80 GPM
0009	10 to 100 GPM
12000	20 to 200 GPM
21000	35 to 350 GPM

CONTROL OPTIONS CONTROL OPTIONS Local & Remote Start/Stop Discrete Input 4-20mA Pump Pacing Analog Input System Running Discrete Input System In Remote Discrete Input Solution Rate Analog Output Common Alarm Discrete Input Manual Water Ratio Control Auto Water Ratio Control					
		E	Rw	Кр	RpSB
	Oï	O)	Oi	0	0
	0	O)	O i	0	0}
ut iput rt					0
put 1t	O	O)	0	0}	0
, t	0	o,	⊘ i	0	0
T,	0,	o,	⊘ i	0 }	0
				0	0
	0	0	0	0	0
		· ,	O		
				0 }	0
Smartblend " Ratio Control					0
Ethernet Communication		<u> </u>	Oi	0}	O }

	-		GPM WATER &		-
Power Option:	120V/1PH/60HZ	240V/1PH/60HZ	C 240V/3PH/60HZ	480V/3PH/60HZ	600V/3PH/50HZ
Pow	⋖	В	ပ	Δ	ш

D, E, Rw, Rp, RpSB D, E, Rw, Rp, RpSB D, E, Rw, Rp, RpSB

≥ 150P

0

0

0

0

0

Allen Bradley CompactLogix

Modicon Momentum No PLC/HMI Option

D, E

≥ 15P ≥ 30P ≥ 60P

Integral 6" Color TFT Touchscreen

 \vdash

0

0 0

0 0 0

0 0

7 3 4

Skic	Skid Size:			
		Width	Depth	Height
П	Compact	34"	24"	42"
2	Tall	34"	30″	72"
3	Full	48″	36"	72"

See PLC/HMI Options **VELODYNE**

Advanced Liquid Polymer Activation Technologies

THE VERSATILE VELOBLEND SYSTEM

ACTIVATION CHAMBER VeloBlend Advanced Liquit

VeloBlend Advanced Liquid Polymer Activation Technology delivers unsurpassed performance and reliability.

2. DILUTION WATER SYSTEM

Up to 600 GPM to meet your application requirements.

3. NEMA 4X CONTROLS

Five standard control systems are available to meet your specific control requirements.

4. NEAT POLYMER PUMP

Progressive cavity pumps standard. Other pump types optional.

5. RUGGED STAINLESS STEEL SKID

Available in 304 or 316 stainless steel. Open design for ease of maintenance. Designed to provide ideal pump suction conditions.

SERIES 6000

- Skid Configuration #2
- Progressive Cavity Pump
- 0.2 to 100 GPM Solution
- Control Levels D thru RpSB

SERIES 2400

- Skid Configuration #1
- Progressive Cavity Pump
- 0.2 to 50 GPM Solution
- Control Levels D & E

SERIES 12000

- Skid Configuration #3
- Progressive Cavity Pump
- 0.2 to 200 GPM Solution
- . Control Levels D thru RpSB

SERIES 36000

- Skid Configuration #4
- Progressive Cavity Pump
- 40 to 600 GPM Solution
- Control Levels D thru Rw

Advanced Liquid Polymer Activation Technologies

OPTIMIZING LIQUID POLYMER PERFORMANCE

There have been numerous technologies introduced over the last thirty years designed to activate liquid polymer. The advanced hybrid VeloBlend™ technology has proven to more efficiently induce ultra-high, non-damaging mixing energy, delivering the highest polymer performance over any other technology in the industry.

The VeloBlend is simply the best polymer activation technology ever developed.

---polymer consultant with over 30 years of industry experience

NEAT "AS-SUPPLIED" POLYMER

Neat polymer, as supplied, is primarily comprised of coiled-up polymer, oil, water, and inverting surfactant.

UNACTIVATED POLYMER MOLECULE— CAPABLE OF WITHSTANDING HIGH MIXING ENERGY

In its "neat" (as-supplied) state, the polymer is coiled up like a spring and is capable of withstanding ultra-high mixing energy without damage to its molecular structure.

DAMAGED POLYMER—CAUSED BY EXCESSIVE SHEAR

Once the polymer uncoils, the elongated polymer is now susceptible to damage caused by excessive shear. The result is increased polymer usage, increased polymer cost and reduced process performance.

PARTIALLY UNCOILED POLYMER-INSUFFICIENT MIXING ENERGY

If polymer is exposed to insufficient mixing energy, the polymer fails to fully activate with the same negative results in polymer cost and process performance as is seen with damaged polymer.

FULLY ACTIVATED, UNDAMAGED POLYMER—DELIVERING OPTIMAL PERFORMANCE

When neat, coiled-up polymer is properly exposed to ultra-high mixing energy, the oil is effectively "scrubbed" from the polymer, allowing it to become highly activated without damage.

The VeloBlend's hybrid technology more effectively induces ultra-high, non-damaging mixing energy over the system's full flow range than any other technology on the market.