

Reconciling Mobile App Privacy and Usability on Smartphones:
Could User Privacy Profiles Help?

Bin Liu Jialiu Lin Norman Sadeh

December 2013

CMU-CS-13-128 CMU-ISR-13-114

Mobile Commerce Laboratory
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This paper has been accepted for publication in the proceedings of the 23rd International World Wide Web Conference
(WWW2014).

This research was supported in part by the National Science Foundation under grants CNS-1012763 and CNS-1330596 and
by Google in the form of an unrestricted grant to the Mobile Commerce Laboratory. The authors would like to thank LBE
Privacy Guard for sharing with them the data analyzed as part of this study.

Reconciling Mobile App Privacy and Usability on
Smartphones: Could User Privacy Profiles Help?

Bin Liu Jialiu Lin
Mobile Commerce Lab.

School of Computer Science
Carnegie Mellon University

{bliu1, jialiul, sadeh}@cs.cmu.edu

Norman Sadeh

ABSTRACT
As they compete for developers, mobile app ecosystems have
been exposing a growing number of APIs through their software
development kits. Many of these APIs involve accessing sensitive
functionality and/or user data and require approval by users.
Android for instance allows developers to select from over 130
possible permissions. Expecting users to review and possibly
adjust settings related to these permissions has proven unrealistic.

In this paper, we report on the results of a study analyzing
people’s privacy preferences when it comes to granting
permissions to different mobile apps. Our results suggest that,
while people’s mobile app privacy preferences are diverse, a
relatively small number of profiles can be identified that offer the
promise of significantly simplifying the decisions mobile users
have to make.

Specifically, our results are based on the analysis of settings of 4.8
million smartphone users of a mobile security and privacy
platform. The platform relies on a rooted version of Android
where users are allowed to choose between “granting”, “denying”
or “requesting to be dynamically prompted” when it comes to
granting 12 different Android permissions to mobile apps they
have downloaded.

Keywords
Mobile Security & Privacy, Android Permissions, Personalization

1. INTRODUCTION
The past five years have seen an explosion in the number of
smartphone users. At the time of writing, nearly 80% of
cellphones sold in the US are smartphones. An important driver
behind the adoption of smartphones is the emergence of app
stores, where third party developers publish mobile apps users can
download on their devices. Two competing ecosystems have
emerged: the Apple iTunes store and a number of app stores based
on the Android platform. Both ecosystems have competed in part
based on the number of APIs they expose to developers. As more
APIs are made available, developers are able to add new
functionality and develop more sophisticated, and hopefully more
appealing apps. Along with the explosion in APIs, both Apple’s
iOS and Google’s Android platforms have found it necessary to
also expose a greater number of settings to users. This is because
not all users may necessarily feel comfortable allowing different
apps to access potentially sensitive information or functionality on
their smartphones such as their location, contacts lists, photos,
calendar, and more. Historically, Android has relied on an
approach where, as users download new apps on their
smartphones, they are presented with a screen listing the data and
functionality requested by the app, in the form of “permissions”
they need to agree to grant to the app. The user is expected to be

able to evaluate the permissions requested by an app and
determine whether he or she feels comfortable granting them.
Research by Kelley et al. [19] as well as by others [14], has
shown that this approach leaves a lot to be desired, as most users
generally do not understand the implications of their decisions and
are not given a chance to revisit them later on. Apple’s iOS
environment initially focused on informing users about
applications requesting their location, enabling them to selectively
decide which app they were willing to grant access to their
location and also giving them some real-time visibility into
whether their location was being accessed or had been accessed
over the past 24 hours. With the introduction of iOS6, this
approach was extended to encompass the ability to dynamically
review and revise permissions to access one’s location, calendar,
reminders, photos, contacts list and more. While this approach
provides more control to users, it overwhelms them with options
they cannot realistically be expected to manage. This situation
reflects a fundamental tension between usability and privacy, with
greater privacy arguing for users being given a greater number of
controls or settings, and usability arguing for keeping a tractable
number of decisions for users to make. Most recently, with the
introduction of Android 4.3 (Jelly Bean), Android has introduced
a permission manager somewhat similar to that used in iOS,
enabling users to toggle permissions on and off for individual
apps, effectively creating a situation where the two dominant
mobile app platforms, Android and iOS, both give rise to similar
tensions between usability and privacy. The fact that both
platforms are moving towards making a greater number of
settings available to users reflects the increasing breadth of
sensitive functionality and data mobile apps can access and the
difficulty of identifying default privacy settings likely to satisfy
everyone. But no one so far has really tried to understand how
diverse people’s mobile app privacy preferences really are. Are
there app permissions where a single default setting could do the
trick? If a single default cannot be identified, is it possible to
define a relatively small number of profiles that would enable us
to capture and simplify many of the privacy decisions both
Android and iOS users are expected to make today?

In this article, we look at LBE, a rooted version of the Android
platform that has been in use by several million people and that
has allowed its users to manually configure 12 particularly
sensitive Android permissions well before the introduction of
Android Jelly Bean 4.3. Specifically, we analyze a corpus of data
capturing the settings selected by 4.8 million LBE users, looking
at how they configured these 12 settings. Our analysis
differentiates between users who have passively accepted default
settings selected by LBE on their behalf and those more active
users that went through the trouble of modifying these settings.
While our results confirm our intuition that people’s mobile
privacy settings can be fairly diverse, they also strongly suggest
that a relatively small number of privacy profiles could probably

capture the vast majority of people’s privacy preferences. These
results offer the prospect of significantly simplifying the decisions
users have to make without reducing the level of control they have
over their privacy.

The remainder of this article is organized as follows. In Section 2,
we briefly review related work in this area. In Section 3, we
provide some background information about the LBE platform,
the corpus of data used in this study and how this corpus was pre-
processed for the purpose of our study. In Section 4, we present
results of our analysis, looking at both diversity and commonality
in people’s mobile app privacy preferences as captured through
user settings. These results are further discussed in Section 5
along with their likely implications and future possible work.

2. RELATED WORK
Mobile app privacy is getting more and more attention. A
significant body of work has focused on the type of sensitive data
and functionality (or “resources”) accessed by mobile apps [30,
10, 12, 15, 17, 18, 7] and how users respond to existing practices
[8, 14, 13, 22]. Below we provide a summary of the most relevant
research.

2.1 Permission Interfaces
By default, Android apps can only access sensitive resources if
they declare the corresponding permissions in their manifest files
and obtain authorization from users to use them at installation
time. For instance, on the Google Play store, before installing an
app, a user is shown a permission screen that lists the resources
the app wants to access. In order to proceed with the installation,
the user needs to grant the app all the requested permissions.
Studies have shown that this permission granting process is
confusing and that most users do not fully appreciate the
implications of their decisions. For instance, Kelley et al.
conducted semi-structured interviews of Android users and found
that they paid limited attention to permission screens and had poor
understanding of what the permissions implied [19]. Permission
screens were shown to lack adequate explanations. Felt et al. [14]
reached similar conclusions based on results from Internet surveys
and lab studies..

In Android, in the absence of a permission manager such as App
Ops, once permissions are granted to an app at installation time,
users have no opportunity to change their minds, short of
uninstalling the app. When dealing with apps accessing sensitive
resources, users face a dilemma, as they can only choose between
two extreme options: foregoing to use an app altogether, or
allowing the app to unconditionally access sensitive data or
functionality. With the introduction of App Ops in Android 4.3,
this situation changes [31, 3]. While by default App Ops is a
hidden permission manager, users can make it visible by
downloading a corresponding app. When they do, they are given
the ability to selectively toggle individual app permissions on and
off. Users of the latest versions of iOS (iOS 6 and above) are by
default given similar settings, which enable them to selectively
toggle access to sensitive data and functionality such as location,
contacts, calendar, photos and etc.

Besides the default permission interfaces offered by iOS and
Android, several security and privacy extensions have been
proposed, including extensions offering users finer-grained
controls. For example, MockDroid [6] and TISSA [33], both
designed for Android, and ProtectMyPrivacy [2], which runs on
jail-broken iPhones give users the option to obfuscate responses to
API calls made by mobile apps. AppFence [17], a successor to

TaintDroid[10] allows users to specify resources that can only be
used locally. In Apex, Nauman et al. [26] provide fine-grained
control over resource usage based on context and runtime
constraints such as the current location of the device or the
number of times a resource has been used.

The challenge with all these solutions is that they continue to
impose an unrealistic burden on users. The number of settings a
user would have to configure remains unrealistically high. The
work presented is intended to address this.

2.2 Privacy Policy Learning and Pattern
Discovery
Frank et al. presented results obtained using data mining to
analyze Android app permission requests [15]. Using matrix
factorization techniques, they identified over 30 common patterns
of permission requests. In contrast, our work does not focus on
permission patterns as such but rather on the identification of
patterns in settings selected by users when it comes to granting
permissions to mobile apps. In other words, while Frank et al.
focused on identifying common combinations of permissions
requested by apps, we focus on (1) identifying clusters of users
with similar preferences when it comes to granting permissions to
apps, and more generally on (2) evaluating techniques to predict
the permissions a user is likely willing to grant to an app. .

Our work is in part motivated by similar uses of machine learning
to predict people’s location sharing privacy preferences. This
includes work by Lin et al., which demonstrated the feasibility of
using machine learning techniques to predict the way people
modulate the data they disclose in response to requests for their
location under different situations [23] as well as earlier work by
Sadeh et al. on predicting people’s location sharing privacy
preferences [29] . While this research showed that people’s
privacy preferences are complicated and often reflect tradeoffs
between utility and privacy, it also showed that these preferences
lent themselves to the development of quantitative models that
can help predict people’s decisions. Cranshaw et al. [9] described
the use of multivariate Gaussian mixtures to develop classifiers
capable of incrementally learning users’ location sharing privacy
preferences. Kelley et al [20] and later Mugan et al. also explored
the development and performance of user-understandable machine
learning techniques to incrementally refine models of people’s
location sharing privacy preferences [25]. Work by Ravichandran
et al. and later Mugan et al. further showed that even user location
sharing privacy preferences are diverse, an important part of their
complexity could be captured with a limited number of privacy
profiles [25, 28]. Wilson et al. [32] studied the impact of privacy
profiles on people’s location sharing decisions in the context of a
3-week pilot. They observed in particular that location sharing
privacy profiles seem to have a long-term impact on the privacy
settings people converge towards over time. Our work is inspired
by this earlier research in the sense that we are also aiming to
learn models that can help predict the permission settings a user is
likely to chose for a given app and also aim to develop privacy
profiles. However rather than looking at the sharing of a single
piece of sensitive information, namely a user’s location, we
explore the more complex problem of predicting a total of 12
permission settings for thousands of different mobile apps. In this
regard, our work also relates to that of Fang and LeFevre on
learning a user’s sharing preferences in the context of a social
network [11]. The mobile app permission domain we study is
however more complex, given the number of mobile apps and
permissions we need to consider..

In short, to the best of our best knowledge, the work reported
herein is the first attempt to predict individual users’ mobile app
permission settings and also the first to study actual permission
settings on such a large scale. We believe that our results, while
preliminary, are particularly promising and offer the prospect of
significantly reducing user burden while empowering users to
effectively control a large number of mobile app permission
settings.

3. THE LBE PRIVACY GUARD DATASET
3.1 LBE Privacy Guard
LBE Privacy Guard is a privacy and security app that requires a
rooted Android phone and allows users to selectively control the
permissions they are willing to grant to apps running on their
phones. LBE Privacy Guard relies on API interception
technology to give its users the ability to review up to 12 different
permissions that can possibly be requested by an app. For each
app on his or her phone and each permission requested by the app,
the user can select between (always) “granting” it, (always)
“denying” it, or “requesting to be dynamically prompted” each
time the app attempts to access the resource associated with the
permission – the resource being sensitive data or functionality. A
user can at anytime revisit these permissions and elect to modify
his or her selection for a given app. LBE Privacy Guard is
available in the Google Play app store [21] as well as several third
party app markets for rooted devices. It is also pre-shipped with a
customized Android ROM called MIUI1, which is fairly popular
in mainland China. In the present study we analyze a dataset that
captures the permissions of a total of 4.8 million LBE Privacy
Guard users mainly based in mainland China.

The LBE app organizes all API calls by “permissions’. Our
dataset covers a period of 10 days and includes user settings for
the following 12 API permissions: “Send SMS”, “Phone Call”,
“Phone State”, “Call Monitoring”, “SMS DB”, “Contact”, “Call
Logs”, “Positioning”, “Phone ID”, “3G Network”, “Wi-Fi
Network” and “ROOT”. As the reader will notice, the nature of
these permissions is very similar to that found in canonical
versions of Android. For this reason, in the remainder of this
article, we will simply refer to them as “permissions”.

For each app-permission pair, the LBE app has 4 different
possible settings:

(1) “Allow”: The user grants the app access to the permission.

(2) “Deny”: The user denies the app access to the permission.

(3) “Ask”: Each time the app actually calls the corresponding
API the system pops up a window prompting the user for a
one-off decision. The window follows a 20-second
countdown. In the absence of a decision within 20 seconds,
the system assumes a “Deny” response. Users can also
check a “Remember my choice” box to indicate that they
would like their decision to become permanent (until they
possibly change their mind). In this case, the settings
remembered by the system change from “Ask” to either
“Allow” or “Deny” depending on the user’s election. (See
Figure 1)

(4) “Default”: This indicates that the user has never manually
modified the settings. Default settings are interpreted
according to the following logic:

1 http://en.miui.com/features.php

a. “Allow” when the permission is for access to “Wi-Fi
Network”, “3G Network” or “Phone ID”.

b. “Allow” for the app is in a list of “trusted” apps,
whatever the requested permission. Trusted apps are a
collection of system apps or apps from LBE “trusted
partners”.

c. “Ask” in all other cases

3.2 Data Collection
Our dataset comprises the permission settings of 4.8 million LBE
users in the form of permission logs collected over a 10-day time
period - from May 1, 2013 to May 10, 2013. Each log record
contains permission settings for all the apps (identified by
package name) installed on a given device. For each app, the log
records the list of permissions the app requests and the most
recent settings for these permissions (namely “Allow”, “Deny”,
“Ask” or “Default. Each user is represented by the hash of a
unique user id. The term “user” here refers to a unique Android
device running the LBE app. For the purpose of our analysis, we
simply assume that each Android device corresponds to a distinct
user. Apps are packages and are also represented by unique IDs..

Figure 1. UI of LBE Privacy Guard on a MIUI 2S phone

Our dataset does not include app information such as installation
files, versions, or app store from which an app was downloaded.
The LBE app is always running on the phone either in the front
view or in the background. It periodically detects if a Wi-Fi
network is available. If so, the app tries to upload its log. At most
one log is uploaded each day. The logs are sent regardless of the
operational status of the app. If the app is not running in ROOT
mode or not functioning properly, the log will simply include
“Default” for all the app permissions. Below we discuss how we
sanitized our dataset to deal with these types of issues.

Over the 10-day period, the dataset collected information about
4,807,884 unique users and 501,387 unique apps. The dataset
comprises a total of 159,726,054 records, with a total of
118,321,621 unique triples of the form [user, app, permission]. It
is worthwhile noting that, among the 4.8 million users in the
dataset, 159,011 (or 3.4%) modified their settings for at least one
app-permission pair over the 10-day interval. Among them 2,978
(0.06% of the users) went back and forth for at least one setting.
In our analysis we focus on the final settings collected for each
user over the 10-day interval. In other words, we do not limit
ourselves to those users who modified their settings during the
course of the ten days. This is further discussed below.

3.3 Preprocessing
Because our objective is to study people’s privacy preferences as
they pertain to the 12 permissions captured in the dataset, we
proceeded to remove entries that might bias our analysis. In
particular, we decided to focus on users who had actively engaged
with the permission settings. This is in contrast to users that
passively accepted them, or downloaded the app on a phone that
was not rooted (in which case the user cannot control the settings),
or perhaps did not even realize they had the ability to manipulate
the settings. In addition, we also decided to focus on mainstream
apps and removed entries that may correspond to more esoteric
ones such as apps found only on secondary app markets. This is
further detailed below.

 (1) Our analysis focuses on what we refer to as “representative
users”, namely users who (i) have installed at least 20 apps
requesting at least one permission, and (ii) have manually selected
at least one “Deny” or “Ask” setting for a permission request.
These restrictions are intended to eliminate users who have a
particularly low number of apps on their phones – US smartphone
users have been reported to have an average of 41 apps on their
phones [24], and users who for one reason or another did not
engage with the permission settings.

(2) Our analysis also focuses on what we refer to as
“representative apps”, namely apps that have at least one
permission request, have at least 10 users in our dataset and were
available on the Google Play store over the 10 day interval of this
study. This latter requirement is intended to limit our analysis to
mainstream apps, in contrast to apps from less reputable stores,
which might prompt users to adopt more cautious settings and
possibly distort our analysis.

(3) Finally, as part of our sanitization process, we also removed
app-permissions that were only recorded for 5 or fewer users.
These app-permissions are assumed to correspond to exotic
versions of some apps, possibly malware.

Following this screening process, our resulting dataset still had a
total of 239,402 “representative users” (5.0% of the initial
population) and 12,119 “representative apps” (2.4% of the initial
count). The number of decision records for these users and apps

totaled 28,630,179 (or 24.2% of all records we started with). On
average each user had 22.66 apps on his or her smartphone. This
sanitized dataset was deemed sufficiently large and diverse to
warrant meaningful analysis, without being subject to the possible
biases discussed above. Below we simply use the term “users”
and “apps” to refer to the “representative users” and
“representative apps” resulting from our screening process.

4. DATA ANALYSIS
4.1 Predicting App Permission Settings for
Individual Users
4.1.1 Diversity of Users’ Preferences
As already indicated, each user in our dataset had an average of
22.66 apps. On average a random pair of users had 3.19 apps in
common, and each app requests an average of 3.03 permissions. A
high-level analysis of user settings for different app-permission
pairs shows that while there are some app-permission pairs on
which the majority of users agree, there are also many such pairs
for which users have diverging preferences. For instance, if one
considers permissions for the top 100 apps, users agree on settings
for only 63.9% of the app-permission pairs associated with these
apps, if agreement is defined as 80% or more of the users
selecting the same settings for a given app-permission pair (e.g.
granting Angry Bird access to one’s location). If one considers all
the app-permission pairs for which we have at least 5 users, 80%
agreement drops to 51.4%.

Figure 2 plots the density of app-permission pairs with at least 10
user decisions based on the mix of decisions recorded for each of
these pairs. Specifically, the top corner corresponds to a mix
where 100% of users “allow” an app-permission, the bottom left
corresponds to the case where 100% of users “ask” to be
prompted for an app-permission, and the bottom right a mix
where 100% of users select “deny”. While many dots, each
representing an app-permission pair, are concentrated around the
top and bottom right corners, many are not (e.g. dots concentrated
along the right side of the triangle). The plot also shows an overall
bias towards either granting permissions or denying, with few
users requesting to be prompted.

Figure 2. Distribution of users’ decisions (“Allow”,
“Deny” and “Ask”) for each app-permission pair.

4.1.2 Modeling and Predicting Users’ Decisions
With users having an average of over 20 apps each and each app
requesting nearly 3 permissions, users are theoretically
responsible for manually making around 60 privacy decisions. An
obvious question is whether this number of privacy decisions
could possibly be reduced by automatically predicting the settings
a user would want to select – recognizing that not all users feel the
same way and that therefore a one-size-fits-all model is unlikely
to work. Given that our main motivation is to alleviate user
burden, we limit ourselves to a model where the set of decisions is
restricted to “Allow” or “Deny,” i.e. we exclude the “ask” option.

Specifically, we look at whether it might be possible to build a
classifier that could be used to predict a user’s app-permission
setting in the form of a function

𝑓: 𝑢𝑠𝑒𝑟, 𝑎𝑝𝑝, 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 → 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛

The prediction model is trained using a collection of decision
records in the form of {user, app, permission, decision}
quadruples. As we further trim our dataset to limit ourselves to
decisions that are either “Allow” or “Deny”, we are left with a
corpus of 14.5 million records corresponding to a total of about
239,000 users and 12,000 apps.

Through experimentation, we have found that good results can be
obtained by simply using a linear kernel SVM as our model. This
model also has the advantage of being quite efficient
computationally [16]. The results reported below were obtained
using a state-of-the-art toolbox called LibLinear [1] with both L2-
loss dual support vector classification with linear kernel and L2-
loss dual logistic regression to train the classifier with highest
prediction power under linear kernel complexity.

Below, we report results obtained using ten-fold cross validation,
where:

• We randomly split all users into ten groups of equal size.

• For each fold, one of the 10 groups is used for testing and the
other 9 groups for training. For each user in the training set,
all the decision records (Allow and Deny) for this user are
used to train the classifier.

• For each user in the test group, we randomly choose 20% of
the apps installed by the user and the corresponding
permission decisions made by the user (Allow or Deny) for
training as well. This data could be obtained by looking at
apps already installed by the user or by simply asking the
user to make some decisions for a small group of randomly
selected apps – equivalent to asking the user a few questions.

• The remaining 80% of the apps downloaded by users in the
test group are used to evaluate the accuracy of the classifier.

4.1.3 High Dimensionality and Sparsity Challenge
One challenge with using our dataset has to do with its high
dimensionality coupled with the sparsity of data: a typical user has
a little over 20 apps, but the dataset contains over 12,000 apps. A
standard technique for overcoming this challenge involves the use
of Singular Value Decomposition (SVD) to produce a more
compact, yet essentially similar dataset by effectively projecting
the data along a limited number of eigenvectors that collectively
capture most of the information contained in the original dataset.

To this end, we define a preference matrix
#𝑈𝑠𝑒𝑟 × #𝑎𝑝𝑝_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 matrix of preferences 𝑃 , where

each entry in the matrix corresponds to a user’s decision for a
given app-permission. Specifically:

𝑃 𝑢 𝑚 =
+1, if user 𝑢 chose "Accept" for app_permission 𝑚
−1, if user 𝑢 chose "Reject" for app_permission 𝑚
0, if no selection has been recorded

To the extent that many users share similar preferences, one can
expect the rank of this matrix P to be much smaller than either the
number of users or the number of app-permissions. In our analysis
we used the “irlba” toolbox [4] in R and its implementation of the
SVD algorithm [27] to produce a more compact dataset. The SVD
method transforms the matrix P as:

𝑃 = 𝑈 ∙ 𝛴 ∙ 𝑡 𝑉 ,

where 𝑈 ∙ 𝑡 𝑈 = 𝑉 ∙ 𝑡 𝑉 = 𝐼. Σ is a 𝑢×𝑚 diagonal matrix of
eigenvalues, which are sorted in descending order. The “irlba”
directly calculates an N-dimensional approximation of matrix P as:

𝑃
!"#

𝑈′ ∙ Σ′ ∙ 𝑡(𝑉!),

where Σ’ is the top left N×N sub-matrix of Σ. We generate the
feature vectors of users and items as follows:

𝐹! = 𝑈! ∙ 𝑠𝑞𝑟𝑡 Σ!

𝐹! = 𝑉′ ∙ 𝑠𝑞𝑟𝑡(Σ!), 𝑃
!"#

𝐹! ∙ 𝑡(𝐹!)

sqrt(Σ') is a diagonal matrix whose values are the square roots of
the corresponding diagonal values in Σ'. For each user u and entry
m, we then have:

𝑃 𝑢 𝑚
!"#

𝐹![𝑢] ∙ 𝑡(𝐹![𝑚])

Below we report results obtained by limiting dimensionality to the
100 most significant eignvectors (N=100), which provides for a
compact, yet expressive summary of the original dataset.

An alternative to using SVD involves simply aggregating all user
information along the 12 permissions available in the data set.
This can be done using #𝑈𝑠𝑒𝑟×#𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 matrix of
preferences 𝑃 , where each entry in the matrix aggregates
decisions made by a given user for the corresponding permission,
as:

𝑃 𝑢 𝑚

=

+1, if user 𝑢 always chose "Accept" for permission 𝑚
−1, if user 𝑢 always chose "Reject" for permision 𝑚
𝑎 − 𝑟
𝑎 + 𝑟

,

0,

if among all decisions for permission 𝑚, user 𝑢 chose
"Accept" 𝑎 times and "Reject" 𝑟 times

if no record available of user 𝑢 for item 𝑚

Below we report results obtained by enriching the dataset with
either of these two models, namely a model where preferences are
aggregated around each the 12 permissions (Model 1) and one
obtained using SVD (Model 2).

4.1.4 Performance of the Default Settings Prediction
Preliminary analysis discussed in subsection 4.1.1 suggests that
people’s privacy preferences when it comes to granting
permissions are diverse. In this subsection, we take a closer look
at the importance of different features in building classifiers that
can be used to predict a user’s permission decisions. As discussed
in Subsection 4.1.2, we use 10-fold cross validation. We also
include in the training set permission decisions for 20% of the
apps installed by users in the testing group. This is intended to
capture scenarios where we use privacy preferences for apps a
user has already installed to predict permission decisions for new
apps he or she downloads on his/her phone.

Table 1 summarizes the 10 feature sets considered in this
particular part of our study. They include a feature set where we
aggregate decisions across all users and all apps (FS-1), a feature
set where we aggregate decisions across all users and all
permissions (FS-2), one where we aggregate decisions across all
users for each app-permission (FS3), one where we aggregate
decisions for each user across all apps and all permissions (FS-4),
one where data is organized by user ID and permission ID (i.e.
aggregated across all apps for each user-permission pair) (FS-5),
one where data is aggregated across all permissions for each app-
user pair (FS-6), and one where data is broken down for each user
by app-permission pair (i.e. user-app-permission triples) (FS-7).
We also consider three feature sets where FS-7 is enriched with:

• The 12-permission user profiles introduced in 4.1.3 as
“Model 1: - referred to as Feature Set 8 (or FS-8) in Table 1

• An SVD model (Model 2 introduced in 4.1.3) of user-
permissions obtained by focusing on the 200 most popular
apps in the dataset

• An SVD model (Model 2 introduced in 4.1.3) of user-
permissions obtained by focusing on the 1,000 most popular
apps in the dataset

As can be seen in Figure 3, looking at the prediction accuracy
obtained with each of these feature sets, users, apps and
permissions all contribute to enriching the model and increasing
its predictive power, with FS-7 (accuracy of 85.03% and Std Err =
0.08%) outperforming the other six feature sets FS-1 through FS-6.
Supplementing these features with SVD models based on the top
200 or 1000 most popular apps does not help and in fact results in
lower predictive accuracy. On the hand adding user profiles based
on the 12 permissions (“model 2”/FS-8) does enhance accuracy,
bringing it from 85.03% to 87.8% (Std Err = 0.06%). The lack of
improvement with the SVD model could be due to the fact that we
took too many apps into account (200 and 1000 most popular
apps). A model based on a smaller number of apps (which would

increase the likelihood that a bigger fraction of the apps are shared
by many users) could possibly yield better results. The
improvement based on the 12-permission model suggests that
simple profiles based on aggregating user decisions along each of
the 12 permissions provide additional discriminative power.
Intuitively, this amounts to differentiating between different
groups of users who may be more or less comfortable granting
different combinations of permissions across many apps. (e.g.
people who have a problem disclosing their location versus people
who do not mind).

4.1.5 Evaluating Interactive Scenarios
While 87.8% accuracy is promising, it is easy to imagine that
even higher accuracy could possibly be achieved if one could
single out predictions that have a relatively low level of
confidence and just ask users to manually make those decisions.
This observation opens the door to the evaluation of more
interactive scenarios and the exploration of tradeoffs between
accuracy and the number of decisions where we might want to
query the user – in other words tradeoffs between accuracy and
user burden. While it is unrealistic to expect users to want to
manually specify decisions on over 60 permissions (average of
over 20 apps per user and over 3 permissions per app), it is not
unreasonable to think that users might be willing to enter 5 to 10
decisions. In theory, if users were ready to manually enter all 60
decisions, one could theoretically reach 100% accuracy. The
question is how much accuracy do we lose by requesting users to
only provide a fraction of these decisions.

Results presented in this subsection were obtained using the
LibLinear tool for large-scale classification already mentioned in
subsection 4.1.3. We use L-2 loss logistic regression from
LibLinear and compute labeling confidence measures for each test
data point. The classifier provides the same accuracy as that
reported for FS-8 in Figure 4 (87.8%) while also estimating the
probability of each class label.

Accordingly, we can compute the confidence of a given labeling
decision as

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = |𝑃𝑟𝑜𝑏 𝐿𝑎𝑏𝑒𝑙 = +1 − 𝑃𝑟𝑜𝑏 𝐿𝑎𝑏𝑒𝑙 = −1 |
where the predicted label is the one that has the higher probability,
either +1 (“Allow”) or -1 (“Deny”) A threshold can then be
selected, where if the confidence of a labeling decision falls below
that threshold, the user is queried. A lower threshold simply
results in lower user burden but also lower accuracy, whereas a

Table 1: Feature Compositions
Feature
Set

Features Description

FS-1 Permission IDs Preference
statistics of all
users on apps
& permissions

FS-2 App IDs

FS-3 App ids & Permission IDs

FS-4 User IDs + Users’
overall
preferences FS-5 User ids & Permission IDs

FS-6 User ids & App IDs

FS-7
User ids, App IDs & Permission
IDs

FS-8

FS-7 appended with aggregated
P[u][m] for corresponding user
and permission

+ Numerical
estimation of
users’
preferences
from
aggregation of
permission or
SVD on user
and app-
permission
pairs.

FS-9

FS-7 appended with estimated
P[u][m] for corresponding user
and app-permission pairs from
top-200 apps

FS-10

FS-7 appended with estimated
P[u][m] for corresponding user
and app-permission pairs from
top-1000 apps

Figure 3. Accuracy of Predictions

higher threshold results in more user queries but also a higher
level of accuracy.

Results obtained by varying the threshold level and adjusting the
percentage of decisions (or “data points”) where the user is
queried (horizontal axis) are presented in Figure 4. Again, these
results are obtained using 10-fold cross validation. Figure 5 plots
precision on “unlabeled data”, namely on those decisions where
we do not query the user, as well as overall precision, namely
combining both predictions made by the classifier when
confidence is above the threshold and predictions made by the
user when confidence is below the threshold. We assume that, by
definition, querying the user has 100% accuracy.

As can be seen, when asking users to make just 10% of the
permission decisions, overall accuracy climbs from 87.8% to
91.8%. Given that users have already installed 4 applications out
of an average of about 20 and that an app requires an average of 3
permissions, this simply amounts to asking users to provide 5
permission decisions (10% of 48 app-permission pairs). If users
were willing to answer 10 permission decisions, overall accuracy
would jump over 94%.

4.2 Simplifying Privacy Decisions Using
Privacy Profiles
In our prior work in the context of location privacy we found that,
while people’s privacy preferences are often complex and diverse
[5], a relatively small number of privacy profiles can be identified,
which collectively do a good job at capturing these preferences
[19, 18b, 22]. Each profile effectively corresponds to a different
group or cluster of like-minded users and captures their privacy
preferences. By asking users a few questions or presenting them
with easy-to-understand descriptions of available profiles, it is
possible to match individual users with profiles, In turn, these
profiles can help predict with a high level of accuracy many of the
users’ location privacy preferences. A major motivation for our
study of the LBE dataset is to determine to what extent mobile
app privacy preferences, as captured in this dataset, exhibit similar
patterns, namely to what extent a relatively small number of
privacy profiles could be identified to simplify app permission
decisions.

4.2.1 Generating Privacy Profiles by Clustering
Like-Minded Users
Each user can be modeled as vector of app-permission decisions.
As already discussed in subsection 4.1.4 such vectors are very
sparse and did not yield the best predictive performance in our
tests (see Fig. 3). Instead, aggregation of user preferences along
each of the 12 permissions in the LBE dataset was shown to yield
greater performance (FS-8). Accordingly, we represent each user
as a 12-dimensional vector similar to the one used for Model 1 in
subsection 4.1.3.

Using a K-means algorithm with Euclidean distance, we proceed
to identify clusters of users. This is done using the standard
“cluster” toolbox in R for our implementation.

4.2.2 Interpreting the Resulting Privacy Profiles
Before discussing the results of our analysis, we need to briefly
introduce a few metrics. We start with a “discriminative” metric
intended to help capture those most salient permissions or pairs of
permissions characterizing a given cluster. We then proceed to
also introduce three metrics intended to help us evaluate the
benefits of using different numbers of privacy profiles (or user
clusters).

We represent a user’s decision on whether or not to grant a
permission to a given app as a variable d ∈ {−1,+1}, where “+1
denotes “Allow” and -1 “Deny”. For each permission p, user u
and decision d, we define 𝑆(𝑢, 𝑝,𝑑) as the number of instances
that the user u has assigned decision d to permission p. We also
define 𝑆 𝑢, 𝑝 = 𝑆 𝑢, 𝑝,+1 + 𝑆 𝑢, 𝑝,−1 , namely the total
number of decisions on permission p made by user u. For each
permission p, decision d and privacy profile C, we
define 𝐴 𝐶, 𝑝,𝑑 (in range [0,1]) as the average users’ agreement
in privacy profile C on assigning decision d to permission p:

𝐴 𝐶, 𝑝,𝑑 =
𝑆 𝑢, 𝑝,𝑑 /𝑆 𝑢, 𝑝 !∈!

1!∈!

We can now introduce a discriminative score for permission p in
privacy profile C as:

𝐷𝑖𝑠𝑐 𝑝,𝐶 = 𝑚𝑎𝑥!(
𝐴 𝐶, 𝑝,𝑑 − 𝐴 𝐶!, 𝑝,𝑑!!!𝐶

𝐾 − 1
)

For example, if we have 3 privacy profiles, and 99% of users in
one of the profiles agree to deny access to the phone’s location
(across all apps), while 5% and 3% of the users in the other two
profiles respectively agree to deny it, then we claim that the
“Denying access to location” permission has a discriminative
score of 95%2.

Similar discriminative metrics can be computed for permission
pairs. Below, when characterizing privacy profiles, we rely on
single permissions and permission pairs with the highest
discriminative scores, showing those five permissions and/or
permission pairs with the highest score. Sample descriptions of K
privacy profiles (for K=3 and K= 6) are shown in Figure 6 and
Figure 7.

4.2.3 How Many Privacy Profiles Do We Need?
We now turn our attention to determining a good value of K,
namely the number of clusters or privacy profiles to rely on. In
comparing different values of K, we consider three distinct
metrics.

2 Max {½ [(1-95)+(1-97)], ½ [(99-5)+(99-3)]}=95

Figure 4. Classification with uncertainty

 (1) Precision of predicting default settings for users

As stated earlier, an important objective of our work is to
determine to what extent a small collection of profiles can
collectively help achieve a high level of accuracy.

To this end, we re-run the classification task while replacing
the identities of users with their cluster membership. The
resulting loss in accuracy will tell us to what extent the
profiles are collectively capturing the complexity and diversity
of privacy preferences of our user population. We use the
same 10-fold cross validation procedure discussed in section
4.1.2. We denote the average precision as 𝑷𝒓𝒆𝒄 𝑲 .

(2) Interpretability & understandability

This is a more subjective metric. Here as we vary the number
of clusters (K), we want to know to what extent we can still
identify a small number of features that can be used to
characterize each cluster. The idea is that these compact
descriptions could possibly be presented to users who would
then identify which profile best matches their preferences –
based on a relatively small (and hence understandable)
number of features. An alternative approach might be to
simply ask each user discriminative questions to determine
which cluster best captures their privacy preferences.

While this measure is more subjective, for the sake of
providing a comprehensive analysis, we define an
interpretability score 𝑰𝒏𝒕𝒆𝒓𝒑(𝑲) as:

𝐼𝑛𝑡𝑒𝑟𝑝 𝐾 =
𝑚𝑎𝑥!{𝐷𝑖𝑠𝑐 𝑝,𝐶 }!

1!

In short highly discriminative features contribute to the
interpretability of clusters. As indicated earlier, the thinking is
that clusters that are easy to interpret would also make it easier
for users to identify which cluster best matches their
preferences.. An alternative scenario might involve asking
users discriminative questions to identify clusters that best
match their preferences.

(3) Stability of privacy profiles

Stability is yet another desirable attribute of clusters. We do
not want our privacy profiles to change in response to small
perturbation in the data. We compute a stability metric based
on the following algorithm. Given a collection of privacy
profiles obtained for a given value of K, we randomly split all
the users into 10 folds of equal size. We then use each
possible combination of 9 folds (of users) as training data for
our K-means algorithm (the same algorithm already
introduced in Section 4.2.1). For each combination of 9 folds,
we use the resulting cluster centers to re-label all the users.
This gives us two sets of cluster labels for the same group of
users: the original labels and the ones obtained from the
relabeling. We use maximum-weight matching of bipartite
graphs to find the mapping between the two sets of clusters. A
stability score can then be computed as the percentage of users
who remain in the same cluster. The stability score of the
original privacy profiles obtained for a given value of K,
denoted 𝑺𝒕𝒂𝒃 𝑲 , can in turn be defined as the average
stability score taken across all combinations of 9 folds.

Accordingly, we can also define the adjusted precision of
privacy profiles 𝐴𝑃𝑟𝑒𝑐 𝐾 as:

𝐴𝑃𝑟𝑒𝑐 𝐾 = 𝑃𝑟𝑒𝑐 𝐾 ∙ 𝑆𝑡𝑎𝑏 𝐾 + 𝑃𝑟𝑒𝑐 ∙ (1 − 𝑆𝑡𝑎𝑏 𝐾) ,

where 𝑃𝑟𝑒𝑐 is the average precision of the classifier regardless
of cluster membership information of users. In other words, it
means the adjusted accuracy would be the combined
measurement of accuracy among users who remain in same
cluster and average accuracy regardless of privacy profiles
among users who fail to have a stable cluster membership.

Finally, in an attempt to summarize all three of these metrics as a
single one, we also compute an overall score of for each value of
K, as:

𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝑆𝑐𝑜𝑟𝑒 𝐾 =
2 ∙ 𝐴𝑃𝑟𝑒𝑐(𝐾) ∙ 𝐼𝑛𝑡𝑒𝑟𝑝(𝐾)
𝐴𝑃𝑟𝑒𝑐 𝐾 + 𝐼𝑛𝑡𝑒𝑟𝑝(𝐾)

While imperfect, this final metric can help us compare the
benefits associated with different numbers of clusters (namely
different values of K). Results obtained using the LBE Data set,
including all four metrics are shown in Figure 5.

From the results in Figure 5, we can see that:

• As the number of clusters increases, classification accuracy
gradually increases too, especially for 𝐾 ≥ 3. The increased
complexity of the privacy profiles helps better distinguish
between users with different preferences. However, the
accuracy of this form of light-weight personalization
theoretically converges to that of the fully personalized
method captured with feature set FS-10 in section 4.1.4.
Results shown in Figure 5 indicate that somewhat similar
performance can be achieved with values of K as low as 3.

• As one would expect, the stability of our clusters moves in
the opposite direction, decreasing as the number of clusters
increases.

• The interpretability scores of privacy profiles fluctuate as K
changes, with a rapid drop beyond K=3, as the clusters
become finer and more difficult to articulate. At the same
time, we believe that this metric should be taken “with a
grain of salt”. User studies would be needed to better
evaluate this issue. In addition, it is likely that a simple
wizard could easily be built to sort people among a set of
available clusters/profiles by asking them a small number of
questions. A user who has already installed a number of
applications and configured permissions for these

Figure 5. Effectiveness of Privacy Profiles

applications could possibly be classified as falling in a given
cluster without even having to answer a single question.

If one is to naively follow these scores, one would conclude that a
solution with just 3 clusters might be optimal. For reasons just
explained above, we are inclined to believe that the
interpretability metric used above is somewhat simplistic and that
usable solutions could be developed for somewhat higher values
of K,, which in turn could yield higher accuracy levels.

Fig 6 and 7 provide discriminative descriptions of profiles/clusters
for K=3 and K=6. These discriminative features could provide a
basis for asking a few questions to users and determine in which
cluster they fall.

Beyond the discriminative features depicted in Fig. 6 and 7, it is
possible to also visualize and compare different privacy profiles
using different color schemes. Figure 8 shows such a
representation for scenarios where K=3, K=4, K=5, and K=6.
Each cluster is represented by a 12-dimensional vector, with each
cell colored according the cluster’s propensity to allow or deny
the corresponding permission. Dark blue denotes a strong
propensity to grant the permission, dark red one to deny, while
white denotes a split population – or at least a population whose
decisions range about evenly between “allow” and “deny” across
all mobile apps. Judging solely from the color schemes, one
would conclude that clusters for K=3, 4 and 5 are very distinct,

whereas the value of adding a 6th cluster (K=6) is starting to
become less obvious. All scenarios seem to have one cluster that
is particularly conservative when it comes to granting permissions
(C3 for K=3, C4 for K=4, C5 for K=5, and C3 for K=6). Starting
with K=6, a second conservative cluster (C4) is starting to emerge,
though its population is not quite as reticent as that in C3., In
general, we see that some clusters of users appear rather lenient,
while others are more conservative. As the number of clusters
increases, the nuances become finer. Some permissions also seem
to yield more diverging preferences than others. For instance,
looking at Figure 7, it can be seen that “Positioning” elicits very
different reactions in clusters C3/Profile3 and C4/Profile 4, for
K=6.

Figure 9 shows the variances of user privacy preferences for each
permission in each profile for different values of K. As can be
expected, variance tends to decrease as the number of clusters or
profiles increases. For K=1, namely a single one-size-fits-all
profile, the average variance of all permissions is 0.511. In
contrast, for K=5 (namely 5 profiles), the average variance drops l
to 0.216.

Figure 6. Discriminative Descriptions of Privacy Profiles

(K=3)

Figure 7. Discriminative Descriptions of Privacy Profiles

(K=6)

Figure 8. Colored Matrix Map of Average Preferences in

Each Privacy Profile
(Top: K=5; Bottom (From left to right): K=3, K=4, K=5
and K=6. The color represents the average preferences of
users in the corresponding cluster on the permission. For
example, if a cell in the matrix has a value close to -1,
then most of the users in the cluster can be expected to
deny access to the corresponding permission)

5. CONCLUDING REMARKS
Results from this study suggest that it is possible to significantly
reduce user burden while allowing users to better control their
mobile app permissions. In particular, we have shown that simple
personalized classifiers could be built to predict a user’s app
permission decisions. In the scenario we considered, we assumed
that a user would install and configure a first small number of
apps and showed that, using permission decisions made by the
user for these apps along with app-permission decisions from a
representative population of users, it is possible to predict other
permission decisions with a high level of accuracy (over 87%).
We proceeded to show that by selectively asking users to
manually make decisions on permissions where confidence in our
prediction is below a certain threshold, accuracy could climb
above 90% - as high as 94% if one is willing to ask for user input
on 20% of permission decisions (92% if we limit ourselves to
10% of these decisions). We view these results as particularly
encouraging as they offer the prospect of significantly alleviating
user burden.

A closely related approach to reducing user burden involves the
identification of privacy profiles. Just as our research in location
privacy had shown [18, 19b, 22], a relatively small number of
privacy profiles can go a long way in organizing people into
groups of like-minded users and help predict their permission
preferences. While it is too early to claim victory, we believe that
this research opens the door to the design of significantly simpler

mobile app privacy interfaces, where users do not need to give up
control in return for usability. Further research in this area will
require refining the techniques and scenarios introduced in this
paper as well as exploring ways of combining these techniques.
Ultimately human subject experiments will be required to evaluate
how users respond to these interfaces in the wild.

There are always potential limitations associated with the type of
analysis presented here. In particular, the dataset we obtained is
from LBE users with rooted Android devices. While this user
population is large, it is likely that it is not identical to the overall
smartphone population at large. This could mean that a more
representative segment of the population might potentially lead to
slightly different clusters and slightly different preferences. We
are inclined to believe however that, given the large LBE user
base used in this study, we would see fairly similar types of
profiles and, in particular, we would continue to see that a
relatively small number of privacy profiles could go a long way in
capturing the permissions of a user population with rather diverse
preferences. As pointed out earlier, we also understand the
limitations of the machine learning techniques used in this
analysis and suspect that even stronger results could be obtained
by refining and combining some of the techniques we introduced.

6. ACKNOWLEDGEMENTS
This research was supported in part by the National Science
Foundation under grants CNS-1012763 and CNS-1330596 and by
Google in the form of an unrestricted grant to the Mobile
Commerce Laboratory. The authors would like to thank LBE
Privacy Guard for sharing with them the data analyzed as part of
this study.

7. REFERENCES

[1] LIBLINEAR -- A Library for Large Linear
Classification, 2013.

[2] Y. AGARWAL and M. HALL, ProtectMyPrivacy:
detecting and mitigating privacy leaks on iOS devices
using crowdsourcing, MobiSys, ACM, Taipei, Taiwan,
2013, pp. 97-110.

[3] R. AMADEO, App Ops: Android 4.3's Hidden App
Permission Manager, Control Permissions for
Individual Apps! , 2013.

[4] J. BAGLAMA and L. REICHEL, Augmented Implicitly
Restarted Lanczos Bidiagonalization Methods, SIAM
Journal on Scientific Computing, 27 (2005), pp. 19-42.

[5] M. BENISCH, P. KELLEY, N. SADEH and L.
CRANOR, Capturing location-privacy preferences:
quantifying accuracy and user-burden tradeoffs,
Personal and Ubiquitous Computing (2010).

[6] A. BERESFORD, A. RICE and N. SOHAN,
MockDroid: trading privacy for application
functionality on smartphones, HotMobile, Phoenix, AZ,
USA, 2011.

[7] T. BOOK, A. PRIDGEN and D. S. WALLACH,
Longitudinal Analysis of Android Ad Library
Permissions, CoRR, abs/1303.0857 (2013).

[8] E. CHIN, A. P. FELT, V. SEKAR and D. WAGNER,
Measuring User Confidence in Smartphone Security
and Privacy, Soups, 2012.

[9] J. CRANSHAW, J. MUGAN and N. SADEH, User-
Controllable Learning of Location Privacy Policies with
Gaussian Mixture Models, AAAI, 2011.

Figure 9. Variances of preferences in each privacy profile

in Figure 8
(Top: K=5; Bottom (From left to right): K=1(which
indicates the condition that no profiles are available for
users), K=3, K=4 and K=6.)

[10] W. ENCK, P. GILBERT, B.-G. CHUN, L. COX, J.
JUNG, P. MCDANIEL and A. SHETH, TaintDroid: An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones, OSDI Vancouver, BC,
USA, 2010.

[11] L. FANG and K. LEFEVRE, Privacy wizards for social
networking sites, www, ACM, Raleigh, North Carolina,
USA, 2010, pp. 351-360.

[12] A. P. FELT, E. CHIN, S. HANNA, D. SONG and D.
WAGNER, Android permissions demystified, CCS,
ACM, Chicago, Illinois, USA, 2011, pp. 627-638.

[13] A. P. FELT, S. EGELMAN and D. WAGNER, I've Got
99 Problems, But Vibration Ain't One: A Survey of
Smartphone Users' Concerns, SPSM, 2012.

[14] A. P. FELT, E. HA, S. EGELMAN, A. HANEY, E.
CHIN and D. WAGNER, Android Permissions: User
Attention, Comprehension, and Behavior, Soups, 2012.

[15] M. FRANK, D. BEN, A. P. FELT and D. SONG,
Mining Permission Request Patterns from Android and
Facebook Applications, ICDM, 2012, pp. 870-875.

[16] Y. GUO-XUN, C. H. HO and L. CHIH-JEN, Recent
Advances of Large-Scale Linear Classification,
Proceedings of the IEEE, 100 (2012), pp. 2584-2603.

[17] P. HORNYACK, S. HAN, J. JUNG, S. SCHECHTER
and D. WETHERALL, These aren't the droids you're
looking for: retrofitting android to protect data from
imperious applications, CCS, ACM, Chicago, Illinois,
USA, 2011, pp. 639-652.

[18] J. JUNG, S. HAN and D. WETHERALL, Short paper:
enhancing mobile application permissions with runtime
feedback and constraints, SPSM, ACM, Raleigh, North
Carolina, USA, 2012, pp. 45-50.

[19] P. G. KELLEY, S. CONSOLVO, L. F. CRANOR, J.
JUNG, N. SADEH and D. WETHERALL, A
Conundrum of permissions: Installing Applications on
an Android Smartphone, USEC, 2012.

[20] P. G. KELLEY, P. H. DRIELSMA, N. SADEH and L.
F. CRANOR, User-controllable learning of security
and privacy policies, Proceedings of the 1st ACM
workshop on Workshop on AISec, ACM, Alexandria,
Virginia, USA, 2008, pp. 11-18.

[21] LBE, LBE Privacy Guard, 2013.
[22] J. LIN, S. AMINI, J. HONG, N. SADEH, J.

LINDQVIST and JOY ZHANG, Expectation and
Purpose: Understanding Users' Mental Models of

Mobile App Privacy through Crowdsourcing,
Ubicomp'12, Pittsburgh, U.S., 2012.

[23] J. LIN, G. XIANG, J. I. HONG and N. SADEH,
Modeling people's place naming preferences in location
sharing, UbiComp, ACM, Copenhagen, Denmark,
2010, pp. 75-84.

[24] I. LUNDEN, U.S. Consumers Avg App Downloads Up
28% To 41; 4 Of 5 Most Popular Belong To Google,
2012.

[25] J. MUGAN, T. SHARMA and N. SADEH,
Understandable Learning of Privacy Preferences
Through Default Personas and Suggestions, under
review (2012).

[26] M. NAUMAN, S. KHAN and X. ZHANG, Apex:
extending Android permission model and enforcement
with user-defined runtime constraints, ASIACCS, ACM,
Beijing, China, 2010, pp. 328-332.

[27] R, irlba: Fast partial SVD by implicitly-restarted
Lanczos bidiagonalization, 2012.

[28] R. RAVICHANDRAN, M. BENISCH, P. G. KELLEY
and N. M. SADEH, Capturing Social Networking
Privacy Preferences, Proceedings of the 9th
International Symposium on Privacy Enhancing
Technologies, Springer-Verlag, Seattle, WA, 2009, pp.
1-18.

[29] N. SADEH, J. HONG, L. CRANOR, I. FETTE, P.
KELLEY, M. PRABAKER and J. RAO, Understanding
and Capturing People's Privacy Policies in a Mobile
Social Networking Application, The Journal of Personal
and Ubiquitous Computing (2009).

[30] S. THURM and Y. I. KANE, Your Apps are Watching
You, WSJ (2011).

[31] W. VERDUZCO, App Ops Brings Granular
Permissions Control to Android 4.3, 2013.

[32] S. WILSON, J. CRANSHAW, N. SADEH, A.
ACQUISTI, L. F. CRANOR, J. SPRINGFIELD, S. Y.
JEONG and A. BALASUBRAMANIAN, Privacy
Manipulation and Acclimation in a Location Sharing
Application, Ubicomp, 2013.

[33] Y. ZHOU, X. ZHANG, X. JIANG and V. W. FREECH,
Taming Information-Stealing Smartphone Applications
(on Android), TRUST, 2011.

