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ABSTRACT 
As they compete for developers, mobile app ecosystems have 
been exposing a growing number of APIs through their software 
development kits.  Many of these APIs involve accessing sensitive 
functionality and/or user data and require approval by users. 
Android for instance allows developers to select from over 130 
possible permissions. Expecting users to review and possibly 
adjust settings related to these permissions has proven unrealistic.  

In this paper, we report on the results of a study analyzing 
people’s privacy preferences when it comes to granting 
permissions to different mobile apps. Our results suggest that, 
while people’s mobile app privacy preferences are diverse, a 
relatively small number of profiles can be identified that offer the 
promise of significantly simplifying the decisions mobile users 
have to make.  

Specifically, our results are based on the analysis of settings of 4.8 
million smartphone users of a mobile security and privacy 
platform. The platform relies on a rooted version of Android 
where users are allowed to choose between “granting”, “denying” 
or  “requesting to be dynamically prompted” when it comes to 
granting 12 different Android permissions to mobile apps they 
have downloaded. 
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1. INTRODUCTION 
The past five years have seen an explosion in the number of 
smartphone users. At the time of writing, nearly 80% of 
cellphones sold in the US are smartphones. An important driver 
behind the adoption of smartphones is the emergence of app 
stores, where third party developers publish mobile apps users can 
download on their devices. Two competing ecosystems have 
emerged: the Apple iTunes store and a number of app stores based 
on the Android platform. Both ecosystems have competed in part 
based on the number of APIs they expose to developers. As more 
APIs are made available, developers are able to add new 
functionality and develop more sophisticated, and hopefully more 
appealing apps. Along with the explosion in APIs, both Apple’s 
iOS and Google’s Android platforms have found it necessary to 
also expose a greater number of settings to users. This is because 
not all users may necessarily feel comfortable allowing different 
apps to access potentially sensitive information or functionality on 
their smartphones such as their location, contacts lists, photos, 
calendar, and more. Historically, Android has relied on an 
approach where, as users download new apps on their 
smartphones, they are presented with a screen listing the data and 
functionality requested by the app, in the form of  “permissions” 
they need to agree to grant to the app. The user is expected to be 

able to evaluate the permissions requested by an app and 
determine whether he or she feels comfortable granting them. 
Research by Kelley et al. [19] as well as by others [14],  has 
shown that this approach leaves a lot to be desired, as most users 
generally do not understand the implications of their decisions and 
are not given a chance to revisit them later on. Apple’s iOS 
environment initially focused on informing users about 
applications requesting their location, enabling them to selectively 
decide which app they were willing to grant access to their 
location and also giving them some real-time visibility into 
whether their location was being accessed or had been accessed 
over the past 24 hours. With the introduction of iOS6, this 
approach was extended to encompass the ability to dynamically 
review and revise permissions to access one’s location, calendar, 
reminders, photos, contacts list and more. While this approach 
provides more control to users, it overwhelms them with options 
they cannot realistically be expected to manage. This situation 
reflects a fundamental tension between usability and privacy, with 
greater privacy arguing for users being given a greater number of 
controls or settings, and usability arguing for keeping a tractable 
number of decisions for users to make. Most recently, with the 
introduction of Android 4.3 (Jelly Bean), Android has introduced 
a permission manager somewhat similar to that used in iOS, 
enabling users to toggle permissions on and off for individual 
apps, effectively creating a situation where the two dominant 
mobile app platforms, Android and iOS, both give rise to similar 
tensions between usability and privacy. The fact that both 
platforms are moving towards making a greater number of 
settings available to users reflects the increasing breadth of 
sensitive functionality and data mobile apps can access and the 
difficulty of identifying default privacy settings likely to satisfy 
everyone. But no one so far has really tried to understand how 
diverse people’s mobile app privacy preferences really are. Are 
there app permissions where a single default setting could do the 
trick? If a single default cannot be identified, is it possible to 
define a relatively small number of profiles that would enable us 
to capture and simplify many of the privacy decisions both 
Android and iOS users are expected to make today? 

In this article, we look at LBE, a rooted version of the Android 
platform that has been in use by several million people and that 
has allowed its users to manually configure 12 particularly 
sensitive Android permissions well before the introduction  of 
Android Jelly Bean 4.3. Specifically, we analyze a corpus of data 
capturing the settings selected by 4.8 million LBE users, looking 
at how they configured these 12 settings. Our analysis 
differentiates between users who have passively accepted default 
settings selected by LBE on their behalf and those more active 
users that went through the trouble of modifying these settings. 
While our results confirm our intuition that people’s mobile 
privacy settings can be fairly diverse, they also strongly suggest 
that a relatively small number of privacy profiles could probably 



capture the vast majority of people’s privacy preferences. These 
results offer the prospect of significantly simplifying the decisions 
users have to make without reducing the level of control they have 
over their privacy. 

The remainder of this article is organized as follows. In Section 2, 
we briefly review related work in this area. In Section 3, we 
provide some background information about the LBE platform, 
the corpus of data used in this study and how this corpus was pre-
processed for the purpose of our study. In Section 4, we present 
results of our analysis, looking at both diversity and commonality 
in people’s mobile app privacy preferences as captured through 
user settings. These results are further discussed in Section 5 
along with their likely implications and future possible work. 

2. RELATED WORK 
Mobile app privacy is getting more and more attention. A 
significant body of work has focused on the type of sensitive data 
and functionality (or “resources”) accessed by mobile apps [30, 
10, 12, 15, 17, 18, 7] and how users respond to existing practices 
[8, 14, 13, 22].  Below we provide a summary of the most relevant 
research.  

2.1  Permission Interfaces 
By default, Android apps can only access sensitive resources if 
they declare the corresponding permissions in their manifest files 
and obtain authorization from users to use them at installation 
time. For instance, on the Google Play store, before installing an 
app, a user is shown a permission screen that lists the resources 
the app wants to access. In order to proceed with the installation, 
the user needs to grant the app all the requested permissions.  
Studies have shown that this permission granting process is 
confusing and that most users do not fully appreciate the 
implications of their decisions. For instance, Kelley et al. 
conducted semi-structured interviews of Android users and found 
that they paid limited attention to permission screens and had poor 
understanding of what the permissions implied [19]. Permission 
screens were shown to lack adequate explanations. Felt et al. [14] 
reached similar conclusions based on results from Internet surveys 
and lab studies.. 

In Android, in the absence of a permission manager such as App 
Ops, once permissions are granted to an app at installation time, 
users have no opportunity to change their minds, short of 
uninstalling the app. When dealing with apps accessing sensitive 
resources, users face a dilemma, as they can only choose between 
two extreme options: foregoing to use an app altogether, or 
allowing the app to unconditionally access sensitive data or 
functionality. With the introduction of App Ops in Android 4.3, 
this situation changes [31, 3]. While by default App Ops is a 
hidden permission manager, users can make it visible by 
downloading a corresponding app. When they do, they are given 
the ability to selectively toggle individual app permissions on and 
off. Users of the latest versions of  iOS (iOS 6 and above) are by 
default given similar settings, which enable them to selectively 
toggle access to sensitive data and functionality such as  location, 
contacts, calendar, photos and etc. 

Besides the default permission interfaces offered by iOS and 
Android, several security and privacy extensions have been 
proposed, including extensions offering users finer-grained 
controls. For example, MockDroid [6] and TISSA [33], both 
designed for Android, and ProtectMyPrivacy [2], which runs on 
jail-broken iPhones give users the option to obfuscate responses to 
API calls made by mobile apps. AppFence [17], a successor to 

TaintDroid[10] allows users to specify resources that can only be 
used locally. In Apex, Nauman et al. [26] provide fine-grained 
control over resource usage based on context and runtime 
constraints such as the current location of the device or the 
number of times a resource has been used.  

The challenge with all these solutions is that they continue to 
impose an unrealistic burden on users. The number of settings a 
user would have to configure remains unrealistically high. The 
work presented is intended to address this.  

2.2 Privacy Policy Learning and Pattern 
Discovery 
Frank et al. presented results obtained using data mining to 
analyze Android app permission requests [15]. Using matrix 
factorization techniques, they identified over 30 common patterns 
of permission requests. In contrast, our work does not focus on 
permission patterns as such but rather on the identification of 
patterns in settings selected by users when it comes to granting 
permissions to mobile apps. In other words, while Frank et al. 
focused on identifying common combinations of permissions 
requested by apps, we focus on (1) identifying clusters of users 
with similar preferences when it comes to granting permissions to 
apps, and more generally on (2) evaluating techniques to predict 
the permissions a user is likely willing to grant to an app. .  

Our work is in part motivated by similar uses of machine learning 
to predict people’s location sharing privacy preferences. This 
includes work by Lin et al., which demonstrated the feasibility of 
using machine learning techniques to predict the way people 
modulate the data they disclose in response to requests for their 
location under different situations [23] as well as earlier work by 
Sadeh et al. on predicting people’s location sharing privacy 
preferences [29] . While this research showed that people’s 
privacy preferences are complicated and often reflect tradeoffs 
between utility and privacy, it also showed that these preferences 
lent themselves to the development of quantitative models that 
can help predict people’s decisions. Cranshaw et al. [9] described 
the use of multivariate Gaussian mixtures to develop classifiers 
capable of incrementally learning users’ location sharing privacy 
preferences. Kelley et al [20] and later Mugan et al. also explored 
the development and performance of user-understandable machine 
learning techniques to incrementally refine models of people’s 
location sharing privacy preferences [25]. Work by Ravichandran 
et al. and later Mugan et al. further showed that even user location 
sharing privacy preferences are diverse, an important part of their 
complexity could be captured with a limited number of privacy 
profiles [25, 28]. Wilson et al. [32] studied the impact of privacy 
profiles on people’s location sharing decisions in the context of a 
3-week pilot. They observed in particular that location sharing 
privacy profiles seem to have a long-term impact on the privacy 
settings people converge towards over time. Our work is inspired 
by this earlier research in the sense that we are also aiming to 
learn models that can help predict the permission settings a user is 
likely to chose for a given app and also aim to develop privacy 
profiles. However rather than looking at the sharing of a single 
piece of sensitive information, namely a user’s location, we 
explore the more complex problem of predicting a total of 12 
permission settings for thousands of different mobile apps. In this 
regard, our work also relates to that of Fang and LeFevre on 
learning a user’s sharing preferences in the context of a social 
network [11]. The mobile app permission domain we study is 
however more complex, given the number of mobile apps and 
permissions we need to consider..   



In short, to the best of our best knowledge, the work reported 
herein is the first attempt to predict individual users’ mobile app 
permission settings and also the first to study actual permission 
settings on such a large scale.   We believe that our results, while 
preliminary, are particularly promising and offer the prospect of 
significantly reducing user burden while empowering users to 
effectively control a large number of mobile app permission 
settings.   

3. THE LBE PRIVACY GUARD DATASET 
3.1 LBE Privacy Guard 
LBE Privacy Guard is a privacy and security app that requires a 
rooted Android phone and allows users to selectively control the 
permissions they are willing to grant to apps running on their 
phones.  LBE Privacy Guard relies on API interception 
technology to give its users the ability to review up to 12 different 
permissions that can possibly be requested by an app. For each 
app on his or her phone and each permission requested by the app, 
the user can select between (always) “granting” it, (always) 
“denying” it, or “requesting to be dynamically prompted” each 
time the app attempts to access the resource associated with the 
permission – the resource being sensitive data or functionality. A 
user can at anytime revisit these permissions and elect to modify 
his or her selection for a given app. LBE Privacy Guard is 
available in the Google Play app store [21] as well as several third 
party app markets for rooted devices. It is also pre-shipped with a 
customized Android ROM called MIUI1, which is fairly popular 
in mainland China.  In the present study we analyze a dataset that 
captures the permissions of a total of 4.8 million LBE Privacy 
Guard users mainly based in mainland China.  

The LBE app organizes all API calls by “permissions’. Our 
dataset covers a period of 10 days and includes user settings for 
the following 12 API permissions: “Send SMS”, “Phone Call”, 
“Phone State”, “Call Monitoring”, “SMS DB”, “Contact”, “Call 
Logs”, “Positioning”, “Phone ID”, “3G Network”, “Wi-Fi 
Network” and “ROOT”. As the reader will notice, the nature of 
these permissions is very similar to that found in canonical 
versions of Android. For this reason, in the remainder of this 
article, we will simply refer to them as “permissions”. 

For each app-permission pair, the LBE app has 4 different 
possible settings:  

(1) “Allow”: The user grants the app access to the permission. 

(2) “Deny”: The user denies the app access to the permission. 

(3) “Ask”: Each time the app actually calls the corresponding 
API the system pops up a window prompting the user for a 
one-off decision. The window follows a 20-second 
countdown. In the absence of a decision within 20 seconds, 
the system assumes a “Deny” response. Users can also 
check a “Remember my choice” box to indicate that they 
would like their decision to become permanent (until they 
possibly change their mind). In this case, the settings 
remembered by the system change from “Ask” to either 
“Allow” or “Deny” depending on the user’s election. (See 
Figure 1) 

(4) “Default”: This indicates that the user has never manually 
modified the settings. Default settings are interpreted 
according to the following logic:  

                                                                    
1 http://en.miui.com/features.php 

a. “Allow” when the permission is for access to “Wi-Fi 
Network”, “3G Network” or “Phone ID”.  

b. “Allow” for the app is in a list of “trusted” apps, 
whatever the requested permission.  Trusted apps are a 
collection of system apps or apps from LBE “trusted 
partners”.  

c. “Ask” in all other cases 

3.2 Data Collection  
Our dataset comprises the permission settings of 4.8 million LBE 
users in the form of permission logs collected over a 10-day time 
period - from May 1, 2013 to May 10, 2013. Each log record 
contains permission settings for all the apps (identified by 
package name) installed on a given device. For each app, the log 
records the list of permissions the app requests and the most 
recent settings for these permissions (namely “Allow”, “Deny”, 
“Ask” or “Default. Each user is represented by the hash of a 
unique user id. The term “user” here refers to a unique Android 
device running the LBE app. For the purpose of our analysis, we 
simply assume that each Android device corresponds to a distinct 
user.  Apps are packages and are also represented by unique IDs.. 

  

  

Figure 1. UI of LBE Privacy Guard on a MIUI 2S phone 



Our dataset does not include app information such as installation 
files, versions, or app store from which an app was downloaded. 
The LBE app is always running on the phone either in the front 
view or in the background.  It periodically detects if a Wi-Fi 
network is available. If so, the app tries to upload its log. At most 
one log is uploaded each day. The logs are sent regardless of the 
operational status of the app. If the app is not running in ROOT 
mode or not functioning properly, the log will simply include 
“Default” for all the app permissions. Below we discuss how we 
sanitized our dataset to deal with these types of issues. 

Over the 10-day period, the dataset collected information about 
4,807,884 unique users and 501,387 unique apps. The dataset 
comprises a total of 159,726,054 records, with a total of 
118,321,621 unique triples of the form [user, app, permission]. It 
is worthwhile noting that, among the 4.8 million users in the 
dataset, 159,011 (or 3.4%) modified their settings for at least one 
app-permission pair over the 10-day interval. Among them 2,978 
(0.06% of the users) went back and forth for at least one setting. 
In our analysis we focus on the final settings collected for each 
user over the 10-day interval. In other words, we do not limit 
ourselves to those users who modified their settings during the 
course of the ten days. This is further discussed below. 

3.3 Preprocessing 
Because our objective is to study people’s privacy preferences as 
they pertain to the 12 permissions captured in the dataset, we 
proceeded to remove entries that might bias our analysis. In 
particular, we decided to focus on users who had actively engaged 
with the permission settings. This is in contrast to users that 
passively accepted them, or downloaded the app on a phone that 
was not rooted (in which case the user cannot control the settings), 
or perhaps did not even realize they had the ability to manipulate 
the settings. In addition, we also decided to focus on mainstream 
apps and removed entries that may correspond to more esoteric 
ones such as apps found only on secondary app markets. This is 
further detailed below. 

 (1) Our analysis focuses on what we refer to as “representative 
users”, namely users who (i) have installed at least 20 apps 
requesting at least one permission, and (ii) have manually selected 
at least one “Deny” or “Ask” setting for a permission request.  
These restrictions are intended to eliminate users who have a 
particularly low number of apps on their phones – US smartphone 
users have been reported to have an average of 41 apps on their 
phones [24], and users who for one reason or another did not 
engage with the permission settings. 

(2) Our analysis also focuses on what we refer to as 
“representative apps”, namely apps that have at least one 
permission request, have at least 10 users in our dataset and were 
available on the Google Play store over the 10 day interval of this 
study. This latter requirement is intended to limit our analysis to 
mainstream apps, in contrast to apps from less reputable stores, 
which might prompt users to adopt more cautious settings and 
possibly distort our analysis.  

(3) Finally, as part of our sanitization process, we also removed 
app-permissions that were only recorded for 5 or fewer users. 
These app-permissions are assumed to correspond to exotic 
versions of some apps, possibly malware.  

Following this screening process, our resulting dataset still had a 
total of 239,402 “representative users” (5.0% of the initial 
population) and 12,119 “representative apps” (2.4% of the initial 
count). The number of decision records for these users and apps 

totaled 28,630,179 (or 24.2% of all records we started with). On 
average each user had 22.66 apps on his or her smartphone. This 
sanitized dataset was deemed sufficiently large and diverse to 
warrant meaningful analysis, without being subject to the possible 
biases discussed above. Below we simply use the term “users” 
and “apps” to refer to the “representative users” and 
“representative apps” resulting from our screening process. 

4. DATA ANALYSIS 
4.1 Predicting App Permission Settings for 
Individual Users 
4.1.1 Diversity of Users’ Preferences 
As already indicated, each user in our dataset had an average of 
22.66 apps.  On average a random pair of users had 3.19 apps in 
common, and each app requests an average of 3.03 permissions. A 
high-level analysis of user settings for different app-permission 
pairs shows that while there are some app-permission pairs on 
which the majority of users agree, there are also many such pairs 
for which users have diverging preferences. For instance, if one 
considers permissions for the top 100 apps, users agree on settings 
for only 63.9% of the app-permission pairs associated with these 
apps, if agreement is defined as 80% or more of the users 
selecting the same settings for  a given app-permission pair (e.g. 
granting Angry Bird access to one’s location). If one considers all 
the app-permission pairs for which we have at least 5 users, 80% 
agreement drops to 51.4%. 

 
Figure 2 plots the density of app-permission pairs with at least 10 
user decisions based on the mix of decisions recorded for each of 
these pairs. Specifically, the top corner corresponds to a mix 
where 100% of users “allow” an app-permission, the bottom left 
corresponds to the case where 100% of users “ask” to be 
prompted for an app-permission, and the bottom right a mix 
where 100% of users select “deny”. While many dots, each 
representing an app-permission pair, are concentrated around the 
top and bottom right corners, many are not (e.g. dots concentrated 
along the right side of the triangle). The plot also shows an overall 
bias towards either granting permissions or denying, with few 
users requesting to be prompted. 

 
Figure 2. Distribution of users’ decisions (“Allow”, 
“Deny” and “Ask”) for each app-permission pair. 



4.1.2 Modeling and Predicting Users’ Decisions 
With users having an average of over 20 apps each and each app 
requesting nearly 3 permissions, users are theoretically 
responsible for manually making around 60 privacy decisions. An 
obvious question is whether this number of privacy decisions 
could possibly be reduced by automatically predicting the settings 
a user would want to select – recognizing that not all users feel the 
same way and that therefore a one-size-fits-all model is unlikely 
to work. Given that our main motivation is to alleviate user 
burden, we limit ourselves to a model where the set of decisions is 
restricted to “Allow” or “Deny,” i.e. we exclude the “ask” option. 

Specifically, we look at whether it might be possible to build a 
classifier that could be used to predict a user’s app-permission 
setting in the form of a function 

𝑓: 𝑢𝑠𝑒𝑟, 𝑎𝑝𝑝, 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 → 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

The prediction model is trained using a collection of decision 
records in the form of {user, app, permission, decision} 
quadruples. As we further trim our dataset to limit ourselves to 
decisions that are either “Allow” or “Deny”, we are left with a 
corpus of 14.5 million records corresponding to a total of about 
239,000 users and 12,000 apps.  

Through experimentation, we have found that good results can be 
obtained by simply using a linear kernel SVM as our model. This 
model also has the advantage of being quite efficient 
computationally [16]. The results reported below were obtained 
using a state-of-the-art toolbox called LibLinear [1] with both L2-
loss dual support vector classification with linear kernel and L2-
loss dual logistic regression to train the classifier with highest 
prediction power under linear kernel complexity. 

Below, we report results obtained using ten-fold cross validation, 
where:   

• We randomly split all users into ten groups of equal size. 

• For each fold, one of the 10 groups is used for testing and the 
other 9 groups for training. For each user in the training set, 
all the decision records (Allow and Deny) for this user are 
used to train the classifier.  

• For each user in the test group, we randomly choose 20% of 
the apps installed by the user and the corresponding 
permission decisions made by the user (Allow or Deny) for 
training as well. This data could be obtained by looking at 
apps already installed by the user or by simply asking the 
user to make some decisions for a small group of randomly 
selected apps – equivalent to asking the user a few questions. 

• The remaining 80% of the apps downloaded by users in the 
test group are used to evaluate the accuracy of the classifier. 

4.1.3 High Dimensionality and Sparsity Challenge 
One challenge with using our dataset has to do with its high 
dimensionality coupled with the sparsity of data: a typical user has 
a little over 20 apps, but the dataset contains over 12,000 apps. A 
standard technique for overcoming this challenge involves the use 
of Singular Value Decomposition (SVD) to produce a more 
compact, yet essentially similar dataset by effectively projecting 
the data along a limited number of eigenvectors that collectively 
capture most of the information contained in the original dataset. 

To this end, we define a preference matrix 
#𝑈𝑠𝑒𝑟  ×  #𝑎𝑝𝑝_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠  matrix of preferences   𝑃 , where 

each entry in the matrix corresponds to a user’s decision for a 
given app-permission. Specifically:  

𝑃 𝑢 𝑚 =
+1, if user  𝑢  chose  "Accept" for app_permission 𝑚
−1, if user  𝑢  chose  "Reject" for app_permission  𝑚
0, if  no  selection  has  been  recorded  

 

To the extent that many users share similar preferences, one can 
expect the rank of this matrix P to be much smaller than either the 
number of users or the number of app-permissions. In our analysis 
we used the “irlba” toolbox [4] in R and its implementation of the 
SVD algorithm [27] to produce a more compact dataset. The SVD 
method transforms the matrix P as: 

𝑃 =   𝑈 ∙ 𝛴 ∙ 𝑡 𝑉 , 

where 𝑈 ∙ 𝑡 𝑈 = 𝑉 ∙ 𝑡 𝑉 = 𝐼.  Σ is a 𝑢×𝑚 diagonal matrix of 
eigenvalues, which are sorted in descending order. The “irlba” 
directly calculates an N-dimensional approximation of matrix P as: 

𝑃
!"#

𝑈′ ∙ Σ′ ∙ 𝑡(𝑉!), 

where Σ’ is the top left N×N sub-matrix of Σ. We generate the 
feature vectors of users and items as follows: 

𝐹! = 𝑈! ∙ 𝑠𝑞𝑟𝑡 Σ!

𝐹! = 𝑉′ ∙ 𝑠𝑞𝑟𝑡(Σ!), 𝑃
!"#

𝐹! ∙ 𝑡(𝐹!) 

sqrt(Σ') is a diagonal matrix whose values are the square roots of 
the corresponding diagonal values in Σ'. For each user u and entry 
m, we then have: 

𝑃 𝑢 𝑚
!"#

𝐹![𝑢] ∙ 𝑡(𝐹![𝑚]) 

Below we report results obtained by limiting dimensionality to the 
100 most significant eignvectors (N=100), which provides for a 
compact, yet expressive summary of the original dataset. 

An alternative to using SVD involves simply aggregating all user 
information along the 12 permissions available in the data set. 
This can be done using #𝑈𝑠𝑒𝑟×#𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠  matrix of 
preferences 𝑃 , where each entry in the matrix aggregates 
decisions made by a given user for the corresponding permission, 
as: 

𝑃 𝑢 𝑚

=

+1, if user  𝑢  always  chose  "Accept" for  permission 𝑚
−1, if user  𝑢  always  chose  "Reject" for permision   𝑚
𝑎 − 𝑟
𝑎 + 𝑟

,

0,

if among all decisions  for permission  𝑚,  user  𝑢  chose
"Accept"  𝑎 times  and  "Reject"   𝑟  times

if no record available of user 𝑢  for item  𝑚

 

Below we report results obtained by enriching the dataset with 
either of these two models, namely a model where preferences are 
aggregated around each the 12 permissions (Model 1) and one 
obtained using SVD (Model 2).  

4.1.4 Performance of the Default Settings Prediction 
Preliminary analysis discussed in subsection 4.1.1 suggests that 
people’s privacy preferences when it comes to granting 
permissions are diverse. In this subsection, we take a closer look 
at the importance of different features in building classifiers that 
can be used to predict a user’s permission decisions. As discussed 
in Subsection 4.1.2, we use 10-fold cross validation. We also 
include in the training set permission decisions for 20% of the 
apps installed by users in the testing group. This is intended to 
capture scenarios where we use privacy preferences for apps a 
user has already installed to predict permission decisions for new 
apps he or she downloads on his/her phone.  



 
Table 1 summarizes the 10 feature sets considered in this 
particular part of our study. They include a feature set where we 
aggregate decisions across all users and all apps (FS-1), a feature 
set where we aggregate decisions across all users and all 
permissions (FS-2), one where we aggregate decisions across all 
users for each app-permission (FS3),  one where we aggregate 
decisions for each user across all apps and all permissions (FS-4), 
one where data is organized by user ID and permission ID (i.e. 
aggregated across all apps for each user-permission pair) (FS-5), 
one where data is aggregated across all permissions for each app-
user pair (FS-6), and one where data is broken down for each user 
by app-permission pair (i.e. user-app-permission triples) (FS-7). 
We also consider three feature sets where FS-7 is enriched with: 

• The 12-permission user profiles introduced in 4.1.3 as 
“Model 1: - referred to as Feature Set 8 (or FS-8) in Table 1 

• An SVD model (Model 2 introduced in 4.1.3) of user-
permissions obtained by focusing on the 200 most popular 
apps in the dataset 

• An SVD model (Model 2 introduced in 4.1.3) of user-
permissions obtained by focusing on the 1,000 most popular 
apps in the dataset 

As can be seen in Figure 3, looking at the prediction accuracy 
obtained with each of these feature sets, users, apps and 
permissions all contribute to enriching the model and increasing 
its predictive power, with FS-7 (accuracy of 85.03% and Std Err = 
0.08%) outperforming the other six feature sets FS-1 through FS-6.  
Supplementing these features with SVD models based on the top 
200 or 1000 most popular apps does not help and in fact results in 
lower predictive accuracy. On the hand adding user profiles based 
on the 12 permissions (“model 2”/FS-8) does enhance accuracy, 
bringing it from 85.03% to 87.8% (Std Err = 0.06%). The lack of 
improvement with the SVD model could be due to the fact that we 
took too many apps into account (200 and 1000 most popular 
apps). A model based on a smaller number of apps (which would 

increase the likelihood that a bigger fraction of the apps are shared 
by many users) could possibly yield better results. The 
improvement based on the 12-permission model suggests that 
simple profiles based on aggregating user decisions along each of 
the 12 permissions provide additional discriminative power. 
Intuitively, this amounts to differentiating between different 
groups of users who may be more or less comfortable granting 
different combinations of permissions across many apps. (e.g. 
people who have a problem disclosing their location versus people 
who do not mind).  

 

4.1.5 Evaluating Interactive Scenarios 
While 87.8% accuracy is promising, it is easy to imagine that 
even higher accuracy could possibly be achieved if one could 
single out predictions that have a relatively low level of 
confidence and just ask users to manually make those decisions. 
This observation opens the door to the evaluation of more 
interactive scenarios and the exploration of tradeoffs between 
accuracy and the number of decisions where we might want to 
query the user – in other words tradeoffs between accuracy and 
user burden.  While it is unrealistic to expect users to want to 
manually specify decisions on over 60 permissions (average of 
over 20 apps per user and over 3 permissions per app), it is not 
unreasonable to think that users might be willing to enter 5 to 10 
decisions. In theory, if users were ready to manually enter all 60 
decisions, one could theoretically reach 100% accuracy. The 
question is how much accuracy do we lose by requesting users to 
only provide a fraction of these decisions. 

Results presented in this subsection were obtained using the 
LibLinear tool for large-scale classification already mentioned in 
subsection 4.1.3. We use L-2 loss logistic regression from 
LibLinear and compute labeling confidence measures for each test 
data point. The classifier provides the same accuracy as that 
reported for FS-8 in Figure 4 (87.8%) while also estimating the 
probability of each class label.  

Accordingly, we can compute the confidence of a given labeling 
decision as  

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = |𝑃𝑟𝑜𝑏 𝐿𝑎𝑏𝑒𝑙 = +1 −   𝑃𝑟𝑜𝑏 𝐿𝑎𝑏𝑒𝑙 = −1 | 
where the predicted label is the one that has the higher probability, 
either +1 (“Allow”) or -1 (“Deny”) A threshold can then be 
selected, where if the confidence of a labeling decision falls below 
that threshold, the user is queried. A lower threshold simply 
results in lower user burden but also lower accuracy, whereas a 

Table 1: Feature Compositions 
Feature 
Set 

Features Description 

FS-1 Permission IDs Preference 
statistics of all 
users on apps 
& permissions 

FS-2 App IDs 

FS-3 App ids & Permission IDs 

FS-4 User IDs + Users’ 
overall 
preferences FS-5 User ids & Permission IDs 

FS-6 User ids & App IDs 

FS-7 
User ids, App IDs & Permission 
IDs 

FS-8 

FS-7 appended with aggregated 
P[u][m] for corresponding user 
and permission 

+ Numerical 
estimation of 
users’ 
preferences 
from 
aggregation of 
permission or 
SVD on user 
and app-
permission 
pairs. 

FS-9 

FS-7 appended with estimated 
P[u][m] for corresponding user 
and app-permission pairs from 
top-200 apps 

FS-10 

FS-7 appended with estimated 
P[u][m] for corresponding user 
and app-permission pairs from 
top-1000 apps 

 

 
Figure 3.  Accuracy of Predictions 



higher threshold results in more user queries but also a higher 
level of accuracy.  

Results obtained by varying the threshold level and adjusting the 
percentage of decisions (or “data points”) where the user is 
queried (horizontal axis) are presented in Figure 4. Again, these 
results are obtained using 10-fold cross validation.  Figure 5 plots 
precision on “unlabeled data”, namely on those decisions where 
we do not query the user, as well as overall precision, namely 
combining both predictions made by the classifier when 
confidence is above the threshold and predictions made by the 
user when confidence is below the threshold. We assume that, by 
definition, querying the user has 100% accuracy. 

As can be seen, when asking users to make just 10% of the 
permission decisions, overall accuracy climbs from 87.8% to 
91.8%. Given that users have already installed 4 applications out 
of an average of about 20 and that an app requires an average of 3 
permissions, this simply amounts to asking users to provide 5 
permission decisions (10% of 48 app-permission pairs).  If users 
were willing to answer 10 permission decisions, overall accuracy 
would jump over 94%.  

4.2 Simplifying Privacy Decisions Using 
Privacy Profiles  
In our prior work in the context of location privacy we found that, 
while people’s privacy preferences are often complex and diverse 
[5], a relatively small number of privacy profiles can be identified, 
which collectively do a good job at capturing these preferences 
[19, 18b, 22]. Each profile effectively corresponds to a different 
group or cluster of like-minded users and captures their privacy 
preferences. By asking users a few questions or presenting them 
with easy-to-understand descriptions of available profiles, it is 
possible to match individual users with profiles, In turn, these 
profiles can help predict with a high level of accuracy many of the 
users’ location privacy preferences. A major motivation for our 
study of the LBE dataset is to determine to what extent mobile 
app privacy preferences, as captured in this dataset, exhibit similar 
patterns, namely to what extent a relatively small number of 
privacy profiles could be identified to simplify app permission 
decisions. 

4.2.1 Generating Privacy Profiles by Clustering 
Like-Minded Users 
Each user can be modeled as vector of app-permission decisions. 
As already discussed in subsection 4.1.4 such vectors are very 
sparse and did not yield the best predictive performance in our 
tests (see Fig. 3). Instead, aggregation of user preferences along 
each of the 12 permissions in the LBE dataset was shown to yield 
greater performance  (FS-8). Accordingly, we represent each user 
as a 12-dimensional vector similar to the one used for Model 1 in 
subsection 4.1.3. 

Using a K-means algorithm with Euclidean distance, we proceed 
to identify clusters of users. This is done using the standard 
“cluster” toolbox in R for our implementation.  

4.2.2 Interpreting the Resulting Privacy Profiles 
Before discussing the results of our analysis, we need to briefly 
introduce a few metrics. We start with a “discriminative” metric 
intended to help capture those most salient permissions or pairs of 
permissions characterizing a given cluster. We then proceed to 
also introduce three metrics intended to help us evaluate the 
benefits of using different numbers of privacy profiles (or user 
clusters). 

We represent a user’s decision on whether or not to grant a 
permission to a given app as a variable d ∈ {−1,+1}, where “+1  
denotes “Allow” and -1 “Deny”. For each permission p, user u 
and decision d, we define 𝑆(𝑢, 𝑝,𝑑) as the number of instances 
that the user u has assigned decision d to permission p. We also 
define 𝑆 𝑢, 𝑝 = 𝑆 𝑢, 𝑝,+1 + 𝑆 𝑢, 𝑝,−1 , namely the total 
number of decisions on permission p made by user u.  For each 
permission p, decision d and privacy profile C, we 
define  𝐴 𝐶, 𝑝,𝑑  (in range [0,1]) as the average users’ agreement 
in privacy profile C on assigning decision d to permission p:  

𝐴 𝐶, 𝑝,𝑑 =
𝑆 𝑢, 𝑝,𝑑 /𝑆 𝑢, 𝑝   !∈!

1!∈!
 

We can now introduce a discriminative score for permission p in 
privacy profile C as: 

𝐷𝑖𝑠𝑐 𝑝,𝐶 = 𝑚𝑎𝑥!(
𝐴 𝐶, 𝑝,𝑑 − 𝐴 𝐶!, 𝑝,𝑑!!!𝐶

𝐾 − 1
)  

For example, if we have 3 privacy profiles, and 99% of users in 
one of the profiles agree to deny access to the phone’s location 
(across all apps), while  5% and 3% of the users in the other two 
profiles respectively agree to deny it, then we claim that the 
“Denying access to location” permission has a discriminative 
score of 95%2. 

Similar discriminative metrics can be computed for permission 
pairs. Below, when characterizing privacy profiles, we rely on 
single permissions and permission pairs with the highest 
discriminative scores, showing those five permissions and/or 
permission pairs with the highest score. Sample descriptions of K 
privacy profiles (for K=3 and K= 6) are shown in Figure 6 and 
Figure 7. 

4.2.3 How Many Privacy Profiles Do We Need? 
We now turn our attention to determining a good value of K, 
namely the number of clusters or privacy profiles to rely on.  In 
comparing different values of K, we consider three distinct 
metrics. 
                                                                    
2 Max {½ [(1-95)+(1-97)], ½ [(99-5)+(99-3)]}=95 

 
Figure 4. Classification with uncertainty 

 



 (1) Precision of predicting default settings for users 

As stated earlier, an important objective of our work is to 
determine to what extent a small collection of profiles can 
collectively help achieve a high level of accuracy.  

To this end, we re-run the classification task while replacing 
the identities of users with their cluster membership. The 
resulting loss in accuracy will tell us to what extent the 
profiles are collectively capturing the complexity and diversity 
of privacy preferences of our user population. We use the 
same 10-fold cross validation procedure discussed in section 
4.1.2.  We denote the average precision as 𝑷𝒓𝒆𝒄 𝑲 . 

(2) Interpretability & understandability 

This is a more subjective metric. Here as we vary the number 
of clusters (K), we want to know to what extent we can still 
identify a small number of features that can be used to 
characterize each cluster. The idea is that these compact 
descriptions could possibly be presented to users who would 
then identify which profile best matches their preferences – 
based on a relatively small (and hence understandable) 
number of features. An alternative approach might be to 
simply ask each user discriminative questions to determine 
which cluster best captures their privacy preferences. 

While this measure is more subjective, for the sake of 
providing a comprehensive analysis, we define an 
interpretability score  𝑰𝒏𝒕𝒆𝒓𝒑(𝑲) as: 

𝐼𝑛𝑡𝑒𝑟𝑝 𝐾 =
𝑚𝑎𝑥!{𝐷𝑖𝑠𝑐 𝑝,𝐶 }!

1!
 

In short highly discriminative features contribute to the 
interpretability of clusters. As indicated earlier, the thinking is 
that clusters that are easy to interpret would also make it easier 
for users to identify which cluster best matches their 
preferences.. An alternative scenario might involve asking 
users discriminative questions to identify clusters that best 
match their preferences. 

(3) Stability of privacy profiles 

Stability is yet another desirable attribute of clusters. We do 
not want our privacy profiles to change in response to small 
perturbation in the data. We compute a stability metric based 
on the following algorithm. Given a collection of privacy 
profiles obtained for a given value of K, we randomly split all 
the users into 10 folds of equal size. We then use each 
possible combination of 9 folds (of users) as training data for 
our K-means algorithm (the same algorithm already 
introduced in Section 4.2.1).  For each combination of 9 folds, 
we use the resulting cluster centers to re-label all the users. 
This gives us two sets of cluster labels for the same group of 
users: the original labels and the ones obtained from the 
relabeling. We use maximum-weight matching of bipartite 
graphs to find the mapping between the two sets of clusters. A 
stability score can then be computed as the percentage of users 
who remain in the same cluster. The stability score of the 
original privacy profiles obtained for a given value of K, 
denoted 𝑺𝒕𝒂𝒃 𝑲 , can in turn be defined as the average 
stability score taken across all combinations of 9 folds. 

Accordingly, we can also define the adjusted precision of 
privacy profiles 𝐴𝑃𝑟𝑒𝑐 𝐾  as: 

𝐴𝑃𝑟𝑒𝑐 𝐾 = 𝑃𝑟𝑒𝑐 𝐾 ∙ 𝑆𝑡𝑎𝑏 𝐾 + 𝑃𝑟𝑒𝑐 ∙ (1 − 𝑆𝑡𝑎𝑏 𝐾 ) , 

where 𝑃𝑟𝑒𝑐 is the average precision of the classifier regardless 
of cluster membership information of users. In other words, it 
means the adjusted accuracy would be the combined 
measurement of accuracy among users who remain in same 
cluster and average accuracy regardless of privacy profiles 
among users who fail to have a stable cluster membership.  

Finally, in an attempt to summarize all three of these metrics as a 
single one, we also compute an overall score of for each value of 
K, as: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝑆𝑐𝑜𝑟𝑒 𝐾 =
2 ∙ 𝐴𝑃𝑟𝑒𝑐(𝐾) ∙ 𝐼𝑛𝑡𝑒𝑟𝑝(𝐾)
𝐴𝑃𝑟𝑒𝑐 𝐾 + 𝐼𝑛𝑡𝑒𝑟𝑝(𝐾)

 

While imperfect, this final metric can help us compare the 
benefits associated with different numbers of clusters (namely 
different values of K). Results obtained using the LBE Data set, 
including all four metrics are shown in Figure 5. 

 

From the results in Figure 5, we can see that: 

• As the number of clusters increases, classification accuracy 
gradually increases too, especially for 𝐾 ≥ 3. The increased 
complexity of the privacy profiles helps better distinguish 
between users with different preferences. However, the 
accuracy of this form of light-weight personalization 
theoretically converges to that of the fully personalized 
method captured with feature set FS-10 in section 4.1.4. 
Results shown in Figure 5 indicate that somewhat similar 
performance can be   achieved with values of K as low as 3.  

• As one would expect, the stability of our clusters moves in 
the opposite direction, decreasing as the number of clusters 
increases. 

• The interpretability scores of privacy profiles fluctuate as K 
changes, with a rapid drop beyond K=3, as the clusters 
become finer and more difficult to articulate. At the same 
time, we believe that this metric should be taken “with a 
grain of salt”. User studies would be needed to better 
evaluate this issue. In addition, it is likely that a simple 
wizard could easily be built to sort people among a set of 
available clusters/profiles by asking them a small number of 
questions. A user who has already installed a number of 
applications and configured permissions for these 

 
Figure 5. Effectiveness of Privacy Profiles 

 



applications could possibly be classified as falling in a given 
cluster without even having to answer a single question. 

If one is to naively follow these scores, one would conclude that a 
solution with just 3 clusters might be optimal. For reasons just 
explained above, we are inclined to believe that the 
interpretability metric used above is somewhat simplistic and that 
usable solutions could be developed for somewhat higher values 
of K,, which in turn could yield higher accuracy levels.  

Fig 6 and 7 provide discriminative descriptions of profiles/clusters 
for K=3 and K=6. These discriminative features could provide a 
basis for asking a few questions to users and determine in which 
cluster they fall. 

 

Beyond the discriminative features depicted in Fig. 6 and 7, it is 
possible to also visualize and compare different privacy profiles 
using different color schemes. Figure 8 shows such a 
representation for scenarios where K=3, K=4, K=5, and K=6. 
Each cluster is represented by a 12-dimensional vector, with each 
cell colored according the cluster’s propensity to allow or deny 
the corresponding permission. Dark blue denotes a strong 
propensity to grant the permission, dark red one to deny, while 
white denotes a split population – or at least a population whose 
decisions range about evenly between “allow” and “deny” across 
all mobile apps. Judging solely from the color schemes, one 
would conclude that clusters for K=3, 4 and 5 are very distinct, 

whereas the value of adding a 6th cluster (K=6) is starting to 
become less obvious. All scenarios seem to have one cluster that 
is particularly conservative when it comes to granting permissions 
(C3 for K=3, C4 for K=4, C5 for K=5, and C3 for K=6). Starting 
with K=6, a second conservative cluster (C4) is starting to emerge, 
though its population is not quite as reticent as that in C3., In 
general, we see that some clusters of users appear rather lenient, 
while others are more conservative. As the number of clusters 
increases, the nuances become finer. Some permissions also seem 
to yield more diverging preferences than others. For instance, 
looking at Figure 7, it can be seen that “Positioning” elicits very 
different reactions in clusters C3/Profile3 and C4/Profile 4, for 
K=6.  

  
 

Figure 9 shows the variances of user privacy preferences for each 
permission in each profile for different values of K. As can be 
expected, variance tends to decrease as the number of clusters or 
profiles increases. For K=1, namely a single one-size-fits-all 
profile, the average variance of all permissions is 0.511.  In 
contrast, for K=5 (namely 5 profiles), the average variance drops l 
to 0.216. 

 
Figure 6. Discriminative Descriptions of Privacy Profiles  

(K=3) 
 

 
Figure 7. Discriminative Descriptions of Privacy Profiles  

(K=6) 
 

 

 
Figure 8. Colored Matrix Map of Average Preferences in 

Each Privacy Profile  
(Top: K=5; Bottom (From left to right): K=3, K=4, K=5 
and K=6.  The color represents the average preferences of 
users in the corresponding cluster on the permission. For 
example, if a cell in the matrix has a value   close to -1, 
then most of the users in the cluster can be expected to 
deny access to the corresponding permission) 



 

5. CONCLUDING REMARKS 
Results from this study suggest that it is possible to significantly 
reduce user burden while allowing users to better control their 
mobile app permissions. In particular, we have shown that simple 
personalized classifiers could be built to predict a user’s app 
permission decisions. In the scenario we considered, we assumed 
that a user would install and configure a first small number of 
apps and showed that, using permission decisions made by the 
user for these apps along with app-permission decisions from a 
representative population of users, it is possible to predict other 
permission decisions with a high level of accuracy (over 87%). 
We proceeded to show that by selectively asking users to 
manually make decisions on permissions where confidence in our 
prediction is below a certain threshold, accuracy could climb 
above 90% - as high as 94% if one is willing to ask for user input 
on 20% of permission decisions (92% if we limit ourselves to 
10% of these decisions). We view these results as particularly 
encouraging as they offer the prospect of significantly alleviating 
user burden.  

A closely related approach to reducing user burden involves the 
identification of privacy profiles. Just as our research in location 
privacy had shown [18, 19b, 22], a relatively small number of 
privacy profiles can go a long way in organizing people into 
groups of like-minded users and help predict their permission 
preferences. While it is too early to claim victory, we believe that 
this research opens the door to the design of significantly simpler 

mobile app privacy interfaces, where users do not need to give up 
control in return for usability. Further research in this area will 
require refining the techniques and scenarios introduced in this 
paper as well as exploring ways of combining these techniques. 
Ultimately human subject experiments will be required to evaluate 
how users respond to these interfaces in the wild.  

There are always potential limitations associated with the type of 
analysis presented here. In particular, the dataset we obtained is 
from LBE users with rooted Android devices. While this user 
population is large, it is likely that it is not identical to the overall 
smartphone population at large. This could mean that a more 
representative segment of the population might potentially lead to 
slightly different clusters and slightly different preferences. We 
are inclined to believe however that, given the large LBE user 
base used in this study, we would see fairly similar types of 
profiles and, in particular, we would continue to see that a 
relatively small number of privacy profiles could go a long way in 
capturing the permissions of a user population with rather diverse 
preferences. As pointed out earlier, we also understand the 
limitations of the machine learning techniques used in this 
analysis and suspect that even stronger results could be obtained 
by refining and combining some of the techniques we introduced. 
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