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ABSTRACT

Smartphone security research has produced manulusef
tools to analyze the privacy-related behaviors abite
apps. However, these automated tools cannot assess
people’s perceptions of whether a given action is
legitimate, or how that action makes them feel with
respect to privacy. For example, automated toolghimi
detect that a blackjack game and a map app both use
one’s location information, but people would likelew

the map’s use of that data as more legitimate thean
game. Our work introduces a new model for privacy,
namelyprivacy as expectation®Ve report on the results

of using crowdsourcing to capture users’ expeatatiof
what sensitive resources mobile apps use. We afsortr

on a new privacy summary interface that prioritizesl
highlights places where mobile apps break people’s
expectations. We conclude with a discussion of
implications for employing crowdsourcing as a pciya
evaluation technique.
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INTRODUCTION

The number of smartphone apps has undergone
tremendous growth since the inception of app markes

of June 2012, the Android Market offered 460,00psap
with more than 10 billion downloads since the Maike
launch; the Apple App Store offered more than 660,0
apps with over 30 billion downloads since its launc
These mobile apps can make use of a smartphone’s
numerous capabilities (such as users’ currentilmcatall

logs, and other information), providing users wittore
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pertinent services and attractive features. Howeaaress

to these capabilities also opens the door to nedskbf
security and privacy intrusions. Malware is an ologi
problem[17], but a more prevalent problem is thgbad
number of legitimate apps gather sensitive personal
information without users’ full awareness. For epdan
Facebook and Path, were found uploading usersacont
lists to their servers, which greatly surprisedirthesers
and made them feel very uncomfortable [21, 34].

A number of research projects have looked at ptioigc
mobile users’ privacy and security by leveraging
application analysis [10, 13-15, 19], or propossegurity
extensions that provide app-specific privacy cdstto
users [6, 22, 39]. These systems are useful foludag

and analyzing an app’s usage of sensitive resources
However, no purely automated technique today (and
perhaps not ever) can assess people’s perceptibns o
whether an action is reasonable, or how that actiakes
users feel with respect to their privacy. For exEmjs a
given app’s use of one’s location solely for thepmse of
supporting its core functionality? It all depends the
context: for a blackjack game, probably not, butdanap
application, very likely so. However, currentlyeus have
very little support in making good trust decisions
regarding what apps to install.

In this paper, we frame mobile privacy in the fooh
people’sexpectationsabout what an app does and does
not do, focusing on where an app breaks people’'s
expectations. There has been a lot of discussi@mutab
expectations being an important aspect of priva83].[
We framed our inquiry on the psychological notioh o
mental modelghat first introduced by Craik [11] and later
mentioned in other domains[29]. All people have a
simplified model that describes what people think a
object does and how it works (in our case, theahgean
app). ldeally, if a person’s mental model alignshwihat
the app actually does, then there would be fewmapy
problems since that person is fully informed asthe
app’s behavior. However, in practice, a person’sitale
model is never perfect. We argue that by allowiegpie

to see the most common misconceptions about arvapp,
can rectify people’s mental models and help thenkema
better trust decisions regarding that app.



We believe that this notion of privacy as expeotaican

be operationalized by combining two ideas. The fggo

use crowdsourcing to capture people’s mental moadkls
an app’s privacy-related behaviors in a scalablamaa
This requires some knowledge of an app’s actual
behaviors, which can be obtained with app analysits
such as TaintDroid. The second is to convey these
expectations to users through better privacy sunesar
that emphasize the surprises that the crowd hadtabo
given app.

Our long term goal is to build a system that legesa
crowdsourcing and traditional security approaches t
evaluate the privacy-related behaviors of mobil@sap
This paper presents the first step to understamdi¢isign
space and the feasibility of our ideas.

We make the following research contributions:

* We demonstrate a way of capturing people’s
expectations using crowdsourcing. More specifigally
we conducted user studies on Amazon Mechanical
Turk (AMT) with 179 Android users, surveying their
expectations and subjective feelings about differen
apps accessing sensitive resources (such as locatio
contact lists, and unique ID) in different conditso

« We identify two key factors that affect people’s
mental model of a mobile app, namely expectation
and purpose, and show how they impact users'
subjective feelings.

* We present an analysis which indicates that
informing users of why a given resource is being
used can allay their privacy concerns, since most
users have difficulty figuring out these purposes.

* We present the design and evaluation of a new
privacy summary that emphasizes behaviors that did
not match the crowd’s expectations. Our results
suggest that our interface significantly increases
users’ privacy awareness and is easier to compdehen
than Android’s current permission interface.

RELATED WORK

We have organized related work into three secti@ms:
overview of the Android permission system; researnh
mobile app analysis and security extensions; aleaat
work in mental model analysis and design for prwac
related user interfaces.

Android Permissions

The Android permission framework is intended toveer
two purposes in protecting users: (1) to limit melaipps’
access to sensitive resources, and (2) to assss us
making trust decisions before installing apps. Avndir
apps can only access sensitive resources if thelarde
permissions in their manifest files and get appdoby
users during the installation time. On the officdaddroid
Market, before installing an app, users are shown a
permission screen listing the resources an appaailess.
Users can choose to either install the app withtlz!

requested permissions or not to install the apglla®nce
granted, permissions cannot be revoked unless users
uninstall the app.

There have also been several user studies looking a
usability issues of permission systems in warnisgrsi
before downloading apps. Kelley et al. [26] conedct
semi-structured interviews with Android users, &mand

that users paid limited attention to permissioneens,
and had poor understanding of what these permission
imply. Permission screens generally lack adequate
explanation and definitions. Felt et al. [18] fousidhilar
results from Internet surveys and lab studies thatent
Android permission warnings do not help most users
make correct security decisions.

Our work leverages this past work investigating
Android’s permissions. We extend their ideas in tveav
ways. The first is using crowdsourcing as a way of
measuring people’s expectations regarding an app’s
behavior, rather than relying solely on automated
techniques. This allows us to capture a new aspéct
mobile app privacy that past work has not. The sdde

the design and evaluation of a new privacy summary
interface that emphasizes access to sensitive nesou
that people did not expect.

Mobile Application Analysis and Security Extensions
Researchers have also developed many useful tegmiq
and tools to detect the sensitive information Igekan
mobile apps [3, 10, 12-16, 19, 35, 36], by using
permission analysis (e.g. [3, 16]), static codalysis
(e.g. [12]), network analysis (e.g. [35]), or dyriarflow
analysis (e.g. [14]). Their results identified th&ong
penetration of ads and analytics libraries, andermth
prevailing privacy violations including excessively
accessing sensitive information. We used TaintDfb]

in our work to investigate the ground truth of tbe 100
popular Android apps on how and for what purpose
sensitive resources were used. Amini et al. [2¢reffl an
vision of an cloud-based service that leverages
crowdsourcing and traditional security approaches t
analyze mobile applications. Our work follows tkision
and demonstrates the feasibility of incorporating
crowdsourcing in application analysis.

Many security extensions have been developed tehar
privacy and security. MockDroid [6], TISSA [39] and
AppFence [22] substitute fake information into Adallls
made by apps, such that apps could still functiaivith
zero disclosure of users' private information. Naonet
al. [28] proposed Apex which provided more fineigeal
control over the resources usage based on contekt a
runtime constraints. To enable wide deploymentnJeo
al. proposed an alternative solution that rewrdte t
bytecode of mobile apps to enforce more privacytrods
[24] instead of modifying the Android system as the
previous solutions.



Though app analysis provides us with a better
understanding of apps’ behaviors, it cannot infeope’s
perceptions of privacy or distinguish between bérav
which are necessary for an app’s functionality wers
behaviors which are privacy-intrusive. Similarly hive
the security extensions above provide users witliemo
control over their private data, it is unclearaf lusers can
correctly configure these settings to reflect thesal
preferences. Our work complements this past work by
suggesting an alternative way of looking at mobile
privacy from the users’ perspective. We study users
mental models of mobile privacy, aiming to identthe
most pertinent information to help users make bette
privacy-related trust decisions.

Expectations of Privacy, Mental Model Studies and
Privacy Interface Design

The notion of expectations is fairly common in
discussions of privacy [33]. For example, in Katz v
United States, Supreme Court put forward “reasanabl
expectation of privacy” to test reasonableness egfll
privacy protections under the Fourth Amendment [1].
Palen and Dourish [30] and Barth et al. [4] disedssow
expectations are governed by norms, past expesdgence
and technologies. Our notion pfivacy as expectatioris

a narrower construct, focusing primarily on people’
mental models of what they think an app does areb do
not do. Our core contribution is in operationalgin
privacy in this manner, in terms of using crowdsing

to capture people’s expectations as well as réfigdhe
crowd’s expectations directly in a privacy summaoy
emphasize places where an app’s behavior did ntthma
people’s expectations.

Past work has looked at understanding people’s ahent
models regarding computer security. For examplenCa
[9] discussed five different high-level metaphoos fiow
people think about computer security. Wash [38]
identified eight mental models (‘folk models’) adcurity
threats that users perceived and how these models c
justify why users ignored security advice. Bravdid_iet

al. [8] conducted studies to explore the psychalalgi
processes of users involving perceiving and resipgntt
computer alerts. Sadeh et al. also studied the Iexity

of people’s location sharing privacy preferencesi3].
This past research has a similar flavor as outsrims of
trying to understand the mental models people used
make trust decision. Our work extends this paskwora
new domain, namely mobile app privacy.

Kelley et al. proposed simple visualizations called
“privacy nutrition labels” [25] to inform user hotheir
personal information is collected, used and shdrnged
web site. Our new proposed mobile privacy summary
interface is inspired by their work. Our work diffein
how we acquire privacy-related information. In thei
work, the expectation is that a ‘nutrition labelowd be

generated by the owner of the web site. In our ,case
information is gathered through both crowdsourcing
users’ mental models and profiling mobile apps gsin
dynamic taint analysis (e.g. using TaintDroid).

CROWDSOURCING USERS’ MENTAL MODELS

In this section, we present the design and resdlisur
study using crowdsourcing to capture users’ mental
models about a mobile app’s behavior.

Taking a step back, there are four reasons why
crowdsourcing is a compelling technique for examgni
privacy. Past work has shown that few people read- E
User License Agreements (EULAS) [20] or web privacy
policies [23], because (a) there is an overridiegig: to
install the app or use the web site, (b) readingsé¢h
policies is not part of the user's main task (whilko use
the app or web site), (c) the complexity of readihgse
policies, and (d) a clear cost (i.e. time) with leac
benefit. Crowdsourcing nicely addresses these pnadl

It dissociates the act of examining permissionsnfithe

act of installing apps. By paying participants, make
reading these policies part of the main task asd affer
clear monetary benefit. Lastly, we can reduce the
complexity of reading Android permissions by having
participants examine just one permission at a tiatker
than all of the permissions, and by offering cleare
explanations of what the permission means.

Study Design

We recruited participants using Amazon’'s Mechanical
Turk (AMT). We designed each Human IntelligencekTas
(HIT) as a short set of questions about a speéifidroid
app and resource pair (see Figure 1). Participaete
asked to read the provided screenshots and désoripit

an app, as retrieved from the official Android netrk
Then they were asked if they have used this appréef
and what category this app belongs to. The cateaiion
guestions were designed as an easy check to détect
participants were gaming our system (e.g., clicking
through HITs without answering questions).

After these two questions, participants were shona of
two sets of follow-up questions. One of the colwdis
(referred to ashe expectation conditigrwas designed to
capture users' perceptions of whether they expeated
given app to access a sensitive resource and wdy th
thought the app used this resource. Participants aiso
asked to specify how comfortable they felt lettthis app
access the resource, using a 4-point Likert scaiging
from very comfortable (+2) to very uncomfortabl@)(-In
the other condition (referred to &g purpose conditign
we wanted to see how people felt when offered rfines
grained information. Participants were told thatestain
resource would be accessed by this app and givemifisp
reasons, e.g. user's location information is aakder
target advertising. We identified these reasons by
examining TaintDroid logs and using knowledge alamlit



App Name: Toss it

Toss a ball of crumpled paper into a waste bin. Surprisingly addictive! Join the
MILLIONS of Android gamers already playing Toss I, t
on the market -- FREE!

account for the wind!
- Challenge your friends to a multiplayer game with Scoreloop
- Toss that paper through 9 unique levels -- ygu can even throw an iPhone! — Glob

Toe LIVE! - aiMinesweeper (Minesweepe
Four)

Please read the application description carefully and answer the questions below.

€ most addictive casual game

- Simple yet challenging game play: toss paper balls/into a trash can, but don't forget to

And if you like Toss It, check out these othef free games from myYearbook: - Tic Tac
) - Line of 4 (multiplayer game like Connect

3. Suppose you have installed Toss it on your Android device,
would you expect it to access your precise location? (required)
Yes No

Toss it does access users’ precise location information.
4. Could you think of any reason(s) why this app would need
to access this information? (required)
— precise location is necessary for this app to serve its
major functionality.
~ precise location is used for target advertisement or
market analysis.
~ precise location is used to tag photos or other data
generated by this app.
= precise location is used to share among your friends or
people in your social network.
7 otherreason(s), please specify [ ]
1 | cannot think of any reason.
5. Do you feel comfortable letting this app access your precise
location? (required)
_! Very comfortable
| Somewhat comfortable
_* Somewhat uncomfortable

1. Have you used this app befofe? (required)

—‘Yes “No
2. What category do you
(required)

_'Game Applieation

The Expectation Condition OR The Purpose Conditi
Please provide any comments of this app you may have below.

“1Book, music or video

~» Very uncomfortable

Based on our analysis, Toss it accesses user's precise
location information for targeted advertising .
3. Suppose you have installed Toss it on your Android device,
do you feel comfortable letting it access your precise location?
(required)

_! Very comfortable

Somewhat comfortable
_! Somewhat uncomfortable
) Very uncomfortable

Figure 1. Sample questions in our study to capturasers’ mental models. Participants were randomly ssigned to one of the
conditions. In the expectation condition, participants’ were asked to specify their expections and speculate the purpose for
this resource access. Iithe purpose condition, the purpose of resource access was given to pafpiants. In both conditions,
participants were asked to rate how comfortable thg felt having the targeted app access their resoues.

networks. Participants were then asked to providsr t
comfort ratings as in the expectation conditiomaHiy,
participants from both conditions were encouraged t
provide optional comments on the apps in generaé T
separation of the two conditions let us comparerdise
perceptions and subjective feelings when different
information was provided.

We focused our data collection on four types ofsgame
resources (as suggested by AppFence [22]): uniquieel

ID, contact list, network location, and GPS locati®Ve
also restricted the pool of apps to the Top 100tmos
downloaded mobile apps on the Android market. Qijera
56 of these apps requested access to unique pBorEs |

to the contact list, 24 to GPS location, and 28l&dwork
Location. This resulted in 134 app and resourcespae.
134 distinct HITs. For each HIT, we recruited 40quie
participants to answer our questions (20 per cangit

We used the following qualification test to limituro
participants to Android users, as well as to filtmnt
people who were not serious. Crowd participantsewer
asked to provide the Android OS version of thevice,
with instructions on where to find this informatiam
their Android devices. When reviewing participants’
qualification requests, we also randomly assigned
qualified participants to different conditions byvigg
them different qualification scores. In this waye would

ensure a between-subject design where a participant
would only be exposed to one condition.

To prevent other confounding factors such as calltar
language issues, we restricted our participantshtse
who were located within the U.S. To guarantee thadity
of our data, we also required participants to have
lifetime approval rate higher than 75% (i.e. théeraf
successfully completing previous tasks).

All the HITs of this study were completed over twirse
of six days. We collected a total of 5684 respon2é&4
were discarded due to incomplete answers, and Et8 w
discarded due to failing the quality control questi
yielding 5360 valid responses. There were 179 ieekif
Android users in our study, with an average life&tim
approval rate of 97% (SD=8.79%). The distributich o
Android versions our participants used was vergelm
Google’s official numbers [37]. On average, papagits
spent about one minute per HIT (M=61.27, SD=29.03),
and were paid at the rate of $0.12 USD per HIT.

The Most Unexpected and the Most Uncomfortable

Our first analysis looked at what sensitive resewrsages
were least expected by users based on data from the
expectation condition. For each app and resourite\pa
aggregated the data by calculating the percentdge o
participants who expected the resources to be sedes
and averaging the self-reported comfort ratingsidireg



from very comfortable +2.0 to very uncomfortable0)2
Table 1 summarizes the resource usages that lass th
20% of participants said that they expected. Famgxe,

only 5% of participants expected the Brightest Hight

app would access users’ network location infornmgtio
and overall, participants felt uncomfortable abahits
resource usage (M= -1.25, SD=0.39). Similarly, a6

of participants expected the Talking Tom app would
access users’ device ID, and 20% of people expected
Pandora to access their contact list.

Generally speaking, when participants were surgrtse
an access to a sensitive resource, they also fbardito
explain why this resource were needed. Note thahén
expectation condition, participants were only infied
about which resources were accessed without thmopar
of access. This is similar to what the existing Amd
permission list conveys to users. In this conditiore
observed a very strong correlation (r= 0.91) betwie
percentage of expectations and the average comfort
ratings. In other words, the perceived necessitythef
resource access was directly linked to their subjec
feelings, thus guiding the way users make truststtats
on mobile apps. As many participants also mentianed
their comments, these surprises prompted them ke ta
different actions. For example, participant W2 @isatbout
Brightest Flashlight app, “Why does a flashlighedeo
know my location? | love this app, but now | knotv i
access my location, | may delete it.” W92 saidditin't
know Pandora can read my phone book. But why? Can |
turn it off? I'l search for other internet radipm”
Similarly, W56 showed a similar concern (for thes$adt
game), “I do not feel that games should ever neeéss
to your location. | will never download this game.”

Lay Users Have a Hard Time Identifying the Reasona n
App Accesses a Resource

Another way to look at the expectation conditiorhiat it
presented users with information comparable to vihat
provided by the Android permission system, nameatv
resources may be accessed. We wanted to see to what
extent people understand the behaviors of appsis t
optimal case, where they were paid to read theapyiv
summaries. Based on our results, even if users fudly
aware of which resources were used, they still &n&drd
time understanding why these resources were needed.

We used TaintDroid [14] to analyze all the mobips.in

our study to identify the actions that triggerede th
sensitive resource access and where the sensitive
information was sent to. We then manually categatiz
each app and resource pair into three categorgsiof
major functionality, (2) for sharing and taggingr (o
supporting other minor functions), (3) for target
advertising or market analysis. Many resource esdgll

into more than one category. For example, the

Resource | App name % ExpectedAvg
Comfort
Network |Brightest Flashlight 5% -1.25
Location |Toss It 109 -1.15
Angry Birds 109 -0.43
Air Control Lite 20% -0.55
Horoscope 20% -1.05]
GPS Brightest Flashlight 10% -0.95
Location |Toss It 59 -0.95
Shazam 20% -0.05
Device ID | Brightest Flashlight 5% -1.35
TalkingTom Free 10% -0.78
Mouse Trap 15% -0.85]
Dictionary 15% -0.69
Ant Smasher 20% -1.13
Horoscope 20% -1.03
Contact |Backgrounds HD 10% -1.35
List Wallpapers
Pandora 20% -0.70
GO Launcher EX 20% -0.75

Table 1. The most unexpected resource usages iddietl in
the expectation condition, i.e. resource usage exqted by
no more than 20% of participants. Users felt
uncomfortable with these unexpected app behaviordror
each app and resource pair, 20 participants were sweyed.
The comfort rating was ranging from -2.0 (very
uncomfortable to +2.0 (very comfortable). For all he apps
we surveyed, there was a strong correlation (r=0.91
between people’s expectation and their subjectiveélings.

WeatherBug application uses location for retrievViocgl
weather information as well as for targeted adsig.

We compared the reasons our participants provideke
expectation condition against the ground truth froum
analysis as shown in Table 2. In most cases, theritya

of participants could not correctly state why aegivapp
requested access to a given resource. When tberces
were accessed for functionality purposes, partitpa
generally had better answers; however, the accuraegr
exceeded 80%. When sensitive resources were used fo
multiple purposes, the accuracies tended to be much
lower. We also note that, participants had slighdter
answers of why their location information was nekde
compared to the other two types of sensitive recsesur

Note that, these results are for the situation wher
participants were paid to carefully read the desicn.
Many of them had even already used some of thege ap
before. We believe for general Android users, rthei
ability to guess would be even worse. This alsbciates
that simply informing users of what resources aeduas
today’s Android permission screen does) is not ghou
for users to make informed decision.

Clarifying the Purpose May Ease Worries

Given the lack of clarity of why their resourcese ar
accessed, users have to deal with significant teiogies
when making trust decisions regarding installingd an



Resource| Resource used for | cnt | % of % of
Type [1] Major functionality accurate| no
[2] Tagging or sharing guess idea
[3]Advertising or
market analysis
Contact | [1] 20 56% 8%
List (25) | [2] 2 28% | 35%
[1]+[2] 2 19% | 16%
[1]+][2]+][3] 1 27% | 14%
GPS [1] 14 74%| 11%
Location | [2] 4 80% | 10%
(24) [3] 2 35%| 55%
[1]+[3] 3 15% | 27%
[2]+[3] 1 15% | 40%
Network | [1] 15 77% 8%
Location | [2] 2 55% | 10%
(29) [3] 7 29% | 63%
[1]+[3] 3 15% | 22%
[2]+[3] 2 13% | 25%
Device [1] 1 51%| 29%
ID (56) [3] 30 22%| 58%
[1]+[3] 12 7% | 55%

Table 2. Participants had a difficult time speculaihg on
the purposes of their sensitive resource usages. dfirst
column shows the type of resource accessed and thal
number of apps accessing that resource. The second
column shows the ground truth of why the resourcesi
accessed, the third column shows the number of apps
each category (e.g. 20 apps access contact list feason
[1]). The third column shows the percentage of
participants stated the purpose correctly. The last
column shows the percentages of participants who Ha
no idea why the resource is accessed.

using a given mobile app. We wanted to see if pliog

users with more fine-grained information, espegidlie

purposes of resource access, would have any imftuen

users’ privacy-related subjective feelings. To agrsthis

guestion, we compared the average comfort ratirgs f
both conditions, for each mobile app and resouaie p

We observed that for all four types of sensitiveorgces
(i.e. device ID, contact list, network location,daGPS
location), participants felt more comfortable whirey
were informed of the purposes of a resource aoEeEss
Table 3). The differences between the comfort gatin
were statistically significant in t-tests. For exae) with
regard to accessing the device ID, the average ardmf
rating in the purpose condition was 0.3 higher timathe
expectation condition (t(55)=7.42, p<0.0001). Bome
apps, informing people of the purpose led to tptall
different feelings. For example, participants falteasy
when told the Dictionary app accessed their network
location (Myomior= -0.83, SD=0.41). However, when they
were informed that the location was only used tarcle
for trending words that people nearby are lookipgthey
felt much less concerned (My=0.80, SD=0.29).
Similarly, Air Control Lite, eBuddy, Shazam, Antius,
and other 7 apps all demonstrate a significantease

comfort comfort
Resource | rating w/ | rating w/o
Type purpose | purpose dff T p
Device ID | 0.47(0.30) -0.10(0.41) 5% 7.42 0.0001
Contact
List 0.66(0.22) 0.16(0.54) 24 4.4 0.0002
Network
Location | 0.90(0.53)| 0.65(0.55) 28 3.14  0.004
GPS
Location 0.72(0.62) 0.35(0.73) 28 3.6D 0.001

Table 3. Comparison of comfort ratings between the
expectation condition (2nd column) and the purpose
condition (3rd column). Standard deviations are shan
between parentheses. When participants were infornade
of the purpose of resource access, they generalbitfmore
comfortable. The differences were statistically sigjficant
for all four types of resources. The comfort rating were
ranging from -2.0 (very uncomfortable to +2.0 (very
comfortable).

(6>1.0) in comfort rating when the purpose of a reseu
access was explained.

This finding suggests that providing users with the
reasons why their resources are used not only dhas
more information to make better trust decisiong, dan
also ease their concerns caused by uncertaint@s. tNat
informing users about the “purpose” for collectitigeir
information is a common expectation in many legad a
regulatory privacy frameworks. Our results confithe
importance of this information. This finding alsmpides

us with strong rationale for including the purpa3egf
resource access in our new design of privacy sugmmar
interface.

Impact of Previously Using an App

We also wanted to see how previous experiencesanith
app impacted participants’ expectations and level o
comfort. To answer this question, we compared the
responses between participants who had and haded u
the app before. The ratio of people who had andrtwad
used the apps in our study varied greatly. Somes app
(such as Facebook and Twitter) saw high usage among
our participants, while others (such as Kakao Talk
Messenger and Horoscope) had fairly low usage. akem
the comparison fair, we only examined apps that &ad
least 5 responses in both the used and not usegocags.

In our data, the differences between participarite wad
and had not used these apps before were not isttist
significant with respect to their expectation ohsiéve
resource access. Regarding their comfort level,otfilg
significant difference we observed is the averagafort
ratings for accessing the contact list. Participawho
used an app before felt more comfortable lettirag Hpp
access their contact list (t(20)=2.68, p=0.015)r Hwe
other three types of resources, the experiencds agips
didn't cause any statistically significant diffeces in
participants' subjective feelings.



This finding suggests that people who use an appado
necessarily have a better understanding of whaapipeis
actually doing, in terms of accessing their sewssiti
resources. It also suggests that, if we use crowdsw

to capture users’ mental models of certain appsjaveot
have to restrict our participants to people whoaiready
familiar with these apps, allowing us access to a
potentially larger crowd.

NEW PRIVACY SUMMARY INTERFACE

In the previous section, we had identified thatpose and
expectation are two key factors that impact users’
subjective feelings. Based on this finding, we préshe
design of a new privacy summary interface highliggnt
the purposes of sensitive resource usage and people
perceptions about app’s behaviors.

Design Rationale

Privacy summary interfaces, such as the permission
screen in current Android, are designed for users t
review before downloading mobile apps. By that time
users have limited information to form their memntaidel

of the targeted mobile app since they haven't hag a
interaction with it. In contrast with our crowdsourg
study, we cannot rely on general users to carefully
examine an app's description or screenshots torstathel
how this app works in reality. In our new designe w
directly leverage other users’ mental models. The
underlying rationale is similar to the idea of Pati al.
[31] in the sense of incorporating others’ opinioins
making privacy decisions. Our work differs from ithe
work by aggregating users’ subject feedback froawcis
instead of from one’s social circle and highlightinsers’
surprises. By presenting the most common
misconceptions about an app, we can rectify pesple’
mental models and help them make better trust idesis
We consider userséxpectationsand the purposes of
resource accessas the two key points that we want to
convey to users in our new summary interface.

Previous research has discussed several probleimshei
existing Android permission screens [18, 26], inahg:

» The wording of the permission list contains too muc
technical jargon for lay users.

« They offer little explanations and insight into the
potential privacy risk.

« A long list of permissions make users experience
warning fatigue.

With these problems in mind, in addition to the two
identified key features, we proposed several ppiesi for
our own design:

e Using simple terms to describe the relevant
resources; e.g., instead of using “coarse (Network)
location”, we use the term “approximate location”.

e Only displaying the resources that have greater
impact on users’ privacy, such as location, dellie

=
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GOLDENSHORES TECHNOLO...

[
Dictionary.com
£ D DICTIONARY.COM, LLC

85% users were surprised this app
sent their phone’s unique ID to
mobile ads providers.

95% users were surprised this app
sent their approximate location
to mobile ads providers.

¢
@

25% users were surprised this app
sent their approximate location to
dictionary.com for searching nearby
words.

95% users were surprised this app
sent their phone’s unique ID to
mobile ads providers.

90% users were surprised this app
sent their precise location to
mobile ads providers.

10% users were surprised this app
wrote contents to their SD card.

©

0% users were surprised this app
0% users were surprised this app could control their audio settings.

can control camera flashlight.
See all

See all

Figure 2: A mockup interface of our newly proposedorivacy
summary saeen, taking the Brightest FlashLight and the
Dictionary app as examples. The new interface progis
extra information of why certain sensitive resource are
needed and how other users feel about the resourcsages
Warning sign will appear if more than half of the previous
users were surprised about this resource access.

storage, contact list etc. Users could choose éalch
out other low-risk resources by clicking “See all”.

« Sorting the list based on expectation as captured
through crowdsourcing. We order the list so that th
more surprising resource usages are shown first.

« Highlighting important information. We bold the
sensitive resources mentioned in text, and use
warning sign and striking color to highlight the
suspicious resource usages, i.e. when the surprise
value exceeds a certain threshold.

Figure 2 shows two examples of our new privacy
summary interface. To make the comparison more
symmetric, our design uses the same background colo
and pattern are used in the current Android peioniss
screen. The surprise numbers (i.e. “n% of usersewer
surprised”) used in these mockups were obtained fyar
crowdsourcing study where possible. The surprise
numbers for other resources (such as camera figashli
SD card) were reasonable estimates made by our team

Evaluation

We used AMT to conduct a between-subject user simdy
evaluate our new privacy summary interface. Pg@dicis
were randomly assigned to one of the two conditions
the same way as our previous study.the permission
condition participants were shown the permission screen
that the current Android Market uses; in the other
condition (referred asthe new interface condition
participants were shown our new interfaces. We tised
data we collected in our previously described
crowdsourcing study to mock up the privacy summary



* p <0.05 **p<0.005| # of People Mentioning
Privacy Concerns (out of 20) Accuracy (max=1.0) Timm spent (sec)

App Name Permission New Interface| Permissipn New Interface |pPermission| New Interface p
Brightest Flashlight 4 6 0.58 0.8 ** 74.59 65.11
Dictionary 1 3 0.73 0.91 = 68.21 43.92 *
Horoscope 3 7 0.75 095 ~* 68.41 48.7 *
Pandora 3 3 0.68 0.94 * 76.86 76.82
Toss it 4 13 0.61 0.8 ** 67.43 57.10

Table 4. Comparisons between the existing Androidgrmission screen (permission condition) and our nely proposed privacy
summary (new interface condition). Our new interfa@ makes users more aware of the privacy implicatianand is easier to
understand. Users in general spent less time on e newly proposed interfaces but got more fine-gnaéd information.

interfaces for five mobile apps, namely Brightest
Flashlight, Dictionary, Horoscope, Pandora, andsTibs

In both conditions, the app’s name, screenshots,
description and the quality control question were
presented the same way as in previous study. Tihacyr
summary was then shown (either the current peranissi
screen or our newly proposed interface). Partidparere
asked whether they would recommend this app teadr
who might be interested in it, and why (or why natje
used JavaScript to keep track of the time partitpa
spent on reading the privacy summary before making
their recommendation choices. After this question,
privacy summary screens were covered by grey
rectangles. Participants could recheck the privacy
summaries by moving their mice over the grey regiem

In this way, we could accurately record the adddio
time participants spent on viewing privacy summary
screens by monitoring the mouse hovering evente W
then added up all these time fragments to comphue t
total time participants spent on reading the prvac
summary. Participants were tested on their undedsig

of the presented privacy summary screen by spagfyi
the resource(s) usages suggested by the privaonpanm

For each condition per app, 20 unique participavese
recruited. Participants could evaluate multiplesapithin

the same condition. A total of 237 responses were
submitted, 19 of which were discarded due to
incompletion and 18 of which were discarded due to
failing the quality control question. Sixty-sevemd¥oid
users participated in this study with an averafstithe
approval rate of 96.31% (SD=6.27%). Thirty-five
participants were assigned to the permission ciomdit
and thirty-two were assigned to the new interface
condition. Participants on average spent 2 min 4hd
sec (SD=77.3 sec) in completing each evaluatidn tasd
were paid at the rate of $0.20/HIT.

We evaluated the new privacy summary interface from
three perspectives to test its effectiveness amdbility.
The first isprivacy awareness.e. whether users are more
aware of the privacy implications. This is measubsd
counting the number of participants who mentioned
privacy concerns when justifying their recommermfati
decisions. The second é®@mprehensibilityi.e. how well

users understood the privacy summary. This is nedsu
by the accuracy in answering questions about thesap
behavior. The third isfficiency i.e. how long it took
participants to understand the privacy summary,sonesl

by the number of seconds they spent on reading the
privacy summary screens.

The comparisons between the two conditions are
summarized in Table 4. Generally speaking, pasditip

in the new interface condition weighted their pdya
more when they made decisions about whether the app
was worth recommending. More people in this cooditi
mentioned privacy-related concerns when they were
justifying their choices. When we asked people athb
conditions to specify the resources used by thgetapps

of the target apps, people in the new interfaceditiom
also demonstrated a significantly higher accuracy
compared to their counterparts. Furthermore, exéapt
the Pandora app, participants in the new interface
condition on average spent less time reading theqr
summaries on average, though the time differencenga
always statistically significant. This finding swegds that
we can provide more useful information without rieigg
users to spend more time to understand it.

In our future work, we plan to conduct lab studies
evaluate our new privacy summary interface in deyth
will focus on the effectiveness of the new inteefaghen
users only look at it briefly (e.g. for 5-10 secsiice in
reality general users are not likely to devote teofotime
to reading.

DISCUSSION

In this section, we discuss the potential implicasi of
our work and how it fit into our vision of leveragj
crowdsourcing for application analysis.

Implications for Privacy Analysis

A Potential Win-Win A major finding of our work is that
users feel more comfortable when they are inforrokd
the reasons why their sensitive resources are deéde
some cases, it might be again tied to users’ eafiens.
For example, the “trending, popular and nearby c&ar
functionality provided by the Dictionary app usesdtion
information to retrieve the words that people ngaalbe
looking up. It is a relatively minor function ofithapp
and may not be expected even for users who ardidami



with this app. Therefore, when we asked participant
state the reasons for accessing location informatizost

of them thought it was for targeted advertisingpose,
hence rating the comfort level much lower than theye
informed about the actual reason. We also observed
several cases (e.g. the Weather Channel, GasBuddy,
Compass) where participants had correct answer® as
why the app was using one’s location, but stilt feks
comfortable when compared to the condition where
participants were directly given the purpose. Ijgests
that when dealing with uncertainties, users tencbdo
more concerned or even paranoid about their privacy
results provide evidence that properly informingenss
with the purposes of resource usage can actuake ea
their worries. In other words, it would potentialbgnefit

all parties, including app developers, market ownand
advertisers.

Currently, the default Android permission screemesitt
contain any explanations. One possible approach for
getting this information is to scale up our crowasing
approach, but there is the potential for errorswassaw

in Table 2. Another approach is to require app bpears

to include a rationale, but this is an optimistfgpeoach
assuming that developers won't lie. This also setge
that better tools are still needed for analyzingpsap
behaviors in a more scalable and automated mamser,
envisioned in [2] .

Privacy Concerns of Mobile Advertising We observed
that mobile advertising services were a consigteracy
concern for the most participants. For all foureypof
resources, users felt the least comfortable whey were
used for advertising or market analysis. We underst
that many developers rely on ads for income. Howeve
there is still space for app developers and ad aonéiswvto
improve the user experience, such as by providseysu
with more informed consent and more explanations on
how and why their personal information is used. @th
potential ways include tweaking the sensitive reseu
usage to a coarser level, or using hashing or other
methods to conceal users’ identities. These teahnic
methods can address users’ privacy concerns without
sacrificing too much on the ads' quality.

Leveraging Crowd for Application Analysis

The long term vision of our work is to design alabke
privacy evaluation system for mobile apps by conmgn
automated application analysis with crowdsourcing
techniques. The automated techniques are meant to
capture an app's behaviors involving sensitive uess,
whereas the crowdsourcing techniques capture people
perceptions and expectations about an app's beabkavio

One important contribution of this paper is to desteate
the feasibility of using crowdsourcing to captursers'
perceptions, and to identify the strength and weakrof
the crowd in evaluating privacy. Based on our dasers

were not very good at speculating on the purpose of
resource access, which is not surprising and mixgght
compensated by leveraging existing mobile app aimly
techniques. However, specifying their expectatihsa
relatively easy job for most people but cannot be
addressed by existing app analysis tools.

As the first work of this kind, we simplified thegblem
by focusing only on privacy, although we realizatth
users may weigh utility over privacy when making
decisions about installing an app. Future reseavith
need to take utility into account in understandimmgy
people make trust decisions.

We also only captured people’s perceptions at aseoa
granularity and with limited types of sensitive gesces.

We will extend our work to finer-grained interact®) e.qg.
whether users expect the Yelp app to send theéatitme

to yelp.com when they press 'Search nearby restéura
button. We envision that this level of analysis Idou
provide us more detailed information for evaluating
mobile apps, and could possibly lead to better liesu
when asking the crowd why an app accesses a given
resource.

In our crowdsourcing study, it cost us $2.40 USQ an
about 20-25 minutes (deducted from the effectivarlyo
rate reported by AMT) to examine one app and resour
pair with input from 20 participants. There is denpom

to improve the crowdsourcing efficiency. Examples
include extending the participant pool to all sphdne
users, minimizing the number of questions, and 80 0
There are also several techniques suggested byopsev
crowdsourcing work [7, 27] that we can leverage to
improve the overall efficiency, e.g. dynamically
publishing HITs, adaptively adjusting the compeiasat
rate and the number of required responses. Givanhitth
only took about one minute for our participants to
complete a crowdsourcing task, we believe this otkth
would scale well, though formal scalability anatyss
still an open issue and will be included in ounufat work.

Alternatively, crowdsourcing users’ perceptions Idolbe
achieved in conjunction with the exiting app rating
mechanism. When users rate a mobile app, theylsan a
optionally specify their expectations of one asp#cthe
target app. As the number of rating grows, the egated
perceptions will be more representative.

CONCLUSION & FUTURE WORK

A great deal of past work in mobile security antvgey
research has focused on providing tools for autedhat
analysis. However, there is still no easy way to
distinguish whether accessing certain sensitiveme® is
necessary, or how that action makes users feel with
respect to their privacy. Our work demonstratesea n
way for evaluating mobile app’s privacy. We explore
users’ mental models of mobile privacy by crowdsmg



users’ expectations of mobile apps’ sensitive resou
usage. Our results suggest that both users’ exmetta
and the purpose of why sensitive resources are heves

a major impact on users’ subjective feelings aneirth
trust decisions. Another major finding is that pedp
informing users of the purpose of resource access c
ease users' privacy concerns to some extent. Basedr
findings, we proposed a new privacy summary interfa
that highlights common misconceptions that othesrsis
have and the purpose of a resource access. Commared
the existing Android permission screen, our integfas
much easier to understand and provides users wdtfe m
pertinent information for users to make better ttrus
decision.
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ABSTRACT

In this paper, we investigate the feasibility of identifying a small
set of privacy profiles as a way of helping users manage their
mobile app privacy preferences. Our analysis does not limit itself
to looking at permissions people feel comfortable granting to an
app. Instead it relies on static code analysis to determine the
purpose for which an app requests each of its permissions,
distinguishing for instance between apps relying on particular
permissions to deliver their core functionality and apps requesting
these permissions to share information with advertising networks
or social networks. Using privacy preferences that reflect
people’s comfort with the purpose for which different apps
request their permissions, we use clustering techniques to identify
privacy profiles. A major contribution of this work is to show
that, while people’s mobile app privacy preferences are diverse,
it is possible to identify a small number of privacy profiles that
collectively do a good job at capturing these diverse preferences.

1. INTRODUCTION

As of December 2013, the Google Play Store offered more than
1,130,000 apps; the Apple App store offered more than 1,000,000
apps. Each store has reported more than 50 billion downloads
since its launch [1, 2]. The growth in the number mobile apps has
in part been fueled by the increasing number APIs made available
to developers, including a number of APIs to access sensitive
information such as a user’s current location or call logs. While
these new APIs open the door to exciting new applications, they
also give rise to new types of security and privacy risks. Malware
is an obvious problem [3, 4]; another danger is that users are often
unaware of how much information these apps access and for what
purpose.

Early studies in this area have shown that privacy interfaces,
whether for iOS or for Android, did not provide users with
adequate information or control [5-7]. This was quickly followed
by research exploring solutions that offered users finer grain
control over the use of these APIs [8-10]. Perhaps because of this
research, i0OS and Android have now started to offer their users
somewhat finer control over mobile app permissions, enabling
them for instance to toggle permissions on and off on an app-by-
app basis (e.g. i0S5 and above, and also App Ops in Android 4.3).
However, with users having an average of over 40 apps on their
smartphone [11] and each app requiring an average of a little over
3 permissions [12], systematically configuring all these settings
places an unrealistically high burden on users.

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
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This paper investigates the feasibility of organizing end-users into
a small set of clusters and of identifying default privacy profiles
for each such cluster as a way of both simplifying and enhancing
mobile app privacy. We use data obtained through static code
analysis and crowdsourcing, and analyze it using machine
learning techniques to highlight the limitations of today’s
interfaces as well as opportunities for significantly improving
them. Specifically, our results were obtained by collecting 21,657
preference ratings from 725 users on 837 free Android apps.
These preference ratings were collected on over 1200 app-
permission-purpose triples. Each such preference rating captures
auser’s willingness to grant a given permission to a given app for
a particular purpose. Identification of the purpose(s) associated
with a given app’s permission was inferred using static code
analysis, while distinguishing between different types of 3"-party
libraries responsible for requesting access to a given permission.
For example, if location data is used by an app only because of an
ad library bundled with the app, we can infer that location is used
for advertising purposes.

Our analysis indicates that a user’s willingness to grant a given
permission to a given mobile app is strongly influenced by the
purpose associated with such a permission. For instance a user’s
willingness to grant access to his or her location will vary based
on whether the request is required to support the app’s core
functionality or whether it is to share this information with an
advertising network or an analytics company. Our analysis further
shows that, as in many other privacy domains, people’s mobile
app privacy preferences are diverse and cannot adequately be
captured by one-size-fits-all default settings. Yet, we show that it
is possible to cluster users into a small number of privacy profiles,
which collectively go a long way in capturing the diverse
preferences of the entire population. This in turn offers the
prospect of empowering users to better control their mobile app
permissions without requiring them to tediously review each and
every app-purpose-permission for the apps on their smartphones.
Beyond just mobile apps, these results open the door to privacy
interfaces that could help reconcile tensions between privacy and
user burden in a variety of domains, in which explosion in
functionality and usage scenarios are stretching demands on users
(e.g. browser privacy settings, Facebook settings, and more).

The contribution of this research is threefold. First, we provide an
in-depth analysis of mobile app permissions that is not limited to
the types of sensitive resources an app requests (e.g. location,
contact lists, account information) but also includes the “purpose”
associated with these requests — with purpose identified through
static analysis of third party libraries and their API calls. Second,
we describe the results of a larger-scale version of the
crowdsourcing methodology originally introduced by Lin et. al.
[13]), collecting over 21,000 privacy preferences associated with
different permissions and purposes. This allows us to
quantitatively link users’ mobile app preferences to different



types of app behaviors that involve sensitive resource usage.
Third, we present a clustering analysis of the privacy preferences
of 725 smartphone users, and show that, while these preferences
are diverse, a relatively small number of privacy profiles can go
a long way in simplifying the number of decisions users have to
make. This last contribution offers the promise of alleviating user
burden and ultimately increasing their control over their
information.

2. RELATED WORK

A great deal of past work analyzing smartphone apps has focused
on developing useful techniques and tools to detect and manage
leakage of sensitive personal information [8-10, 14-26] or
studying how users react to these usages [6, 13, 27, 28]. In this
section, we summarize the relevant mobile privacy literature,
which we organize around three themes.

2.1 Finer Grain Privacy Controls

In Android, apps can only access sensitive resources if they
declare permission requests in manifest files' and obtain
authorization from users to access these permissions at download
time. Several studies have examined usability issues related to the
permission interface displayed to users as they download Android
apps [5-7]. The studies have shown that Android permission
screens generally lack adequate information, with most users
struggling to understand key terms and the implications
associated with the permissions they are requested to grant.

Android 4.3 saw the introduction of a hidden permission manager
referred to as a “App Ops” that allows users to review and
manipulate settings associated with the permissions of the apps
they have downloaded on their smartphones [29, 30], This feature
was later removed in Android 4.4 presumably due to usability
problems — namely the unrealistically large number of permission
decisions already mentioned in Section 1. Similar fine grain
control over permissions has also been offered by third party
privacy manager apps, such as LBE privacy guard [31], though it
is only available on rooted Android devices. Similar settings are
also available in i0S (i0S 5 and above), where users have the
ability to turn on and off access to sensitive data or functionality
(such as location, contacts, calendars, photos, etc) on an app-by-
app basis. ProtectMyPrivacy [32] offers similar settings to
jailbroken iPhone users and also provides recommendations
based on majority voting (effectively looking for popular one-
size-fits-all settings, when such settings can be identified).

A number of research prototypes have also offered used fine grain
controls over the permissions [8, 10, 32-35]. MockDroid [8] and
TISSA [10] also allow users to ibject fake information in response
to API calls made by apps. AppFence [9], a follow-up to
TaintDroid [17], also allows users to specify resources, which
should only be used locally. Apex proposed by Nauman et al. [34]
provides fine-grained control over resource usage based on
context and runtime constraints.

These proposed privacy extensions aim to provide users with
finer control over the data accessed by their apps. However, these
extensions also assume that users can correctly configure all the
resulting settings. We argue that asking users to specify such a

! The Android manifest file of each app presents essential
information about this app to the Android system, information
the system must have before it can run any of the app's code.

large number of privacy preferences is unrealistic. In addition, we
show that controlling permissions on an app-by-app basis without
taking into account the purpose of these permissions does not
enable one to capture important differences in people’s mobile
app privacy preferences. The present paper complements prior
work in this area by identifying a small number of manageable
privacy profiles that takes into account purpose and offers the
promise of empowering users to manage their mobile app privacy
without imposing an undue burden on them.

2.2 Modeling People’s Mobile App Privacy
Preferences

A second line of research has focused on studying users’ mobile
app privacy concerns and preferences. For example, Felt et al.
[28], Chin et al. [27], and Egelman et al [36] conducted surveys
and interviews to understand mobile users’ mobile privacy
concerns as well as their over understanding of the choices they
are expected to make.

Several efforts have researched interfaces intended to improve the
way in which users are informed about mobile app data collection
and usage practices. Kelley et al. evaluated the benefits of
including privacy facts in an app’s description in the app store,
effectively enabling users to take into account privacy
considerations prior to download time [7]. Choe et al. showed that
a framing effect can be exploited to nudge people away from
privacy invasive apps [37]. The National Telecommunications
and Information Administration (NTIA) released guidelines for a
short-form mobile app privacy notice in July 2013, aiming to
provide app users with clear information about how their personal
data are collected, used and shared by apps [38, 39]. Work by
Balebako et al. [40], suggests that more work may be required for
these interfaces to become truly effective. More generally, Felt et
al. discussed the strengths and weaknesses of several permission-
granting mechanisms and provided guidelines for using each
mechanism [41].

Studies have also shown that users are often surprised when they
find out about the ways in which information collected by their
apps is being used [13, 42, 43], e.g. what type of data is requested,
how often, and for what purpose. In [13], we used crowdsourcing
to identify app-permission-purpose triples that were inconsistent
with what users expected different apps to collect. We further
showed that such deviations are often closely related with lack of
comfort granting associated permissions to an app. Our paper
builds on this earlier work by scaling up our crowdsourcing
framework and performing more advanced data analysis to allow
for the development of finer privacy preference models. Our main
contribution here is not only to show how mobile app privacy
preferences vary with the purpose of app permission pairs but also
in the form of a taxonomy of purposes, which we can later
leverage to identify clusters of like-minded users.

2.3 Privacy Preference Learning

A first data mining study of mobile app permissions was
presented by Frank et al., where they authors looked for
permission request patterns in Android apps [44]. Using matrix
factorization techniques, they identified over 30 common patterns
of permission requests. Rather than looking for patterns of



permission requests, our work in this area aims to identify
patterns in user privacy preferences, namely in the willingness of
users to grant permissions to mobile apps for different purposes.

This work more closely aligned with an earlier study published
by three of the co-authors, looking at patterns among the Android
permission settings of 239,000 LBE Privacy Guard [31] users for
around 12,000 apps [12]. In this earlier work, the three co-authors
showed that it was possible to define a small number of privacy
profiles that collectively captured many of the users’ privacy
settings. It further explored mixed initiative models that combine
machine learning to predict user permission settings with user
prompts when the level of confidence associated with certain
predictions appears too low. In contrast to analyzing actual user
privacy settings, our work focuses on deeper privacy models,
where we elicit people’s privacy preferences in a context where
they are not just about the permissions requested by an app but
also about the one or more purposes associated with these
requests (e.g. to enable the app’s core functionality versus to share
data with an advertising network or an analytics company).
While our results bear some similarity with those presented in
[12], they are significant because: (i) they show that the purpose
for which an app requests a certain permission has a major impact
on people’s willingness to grant that permission., and (ii) using
these more detailed preference models elicited from better-
informed users, it is possible to derive a small number of privacy
profiles with significant predictive power.

To the best of our knowledge, our work on quantifying mobile
app privacy preferences is the first of its kind. It has been
influenced by earlier work by several of the co-authors on
building somewhat similar models in the context of user location
privacy preferences. [45-52]. For example, Lin et al. [45]
suggested that people’s location-sharing privacy preferences,
though complicated, can still be modeled quantitatively. Early
work by Sadeh et al. [52] showed that it was possible to predict
people’s location sharing privacy preferences and work by
Benisch et al. explored the complexity of people’s location
privacy preferences [S1]The work by Ravichandran et al. [46]
suggested that providing users with a small number of canonical
default policies can help reduce user burden when it comes to
customizing the fine-grained privacy settings. The work by
Cranshaw et al. [47] applied a classifier based on multivariate
Gaussian mixtures to incrementally learn users’ location sharing
privacy preferences. Kelley et al [49] and later Mugan et al. [48]
also introduced the notion of understandable learning into privacy
research. They used default personas and incremental suggestions
to learn users’ location privacy rules, resulting in a significant
reduction of user burden. Their results were later evaluated by
Wilson et al. [50] in a location sharing user study.

As pointed out by Wilson et al. with regard to location sharing
privacy in [50], “... the complexity and diversity of people’s
privacy preferences creates a major tension between privacy and
usability...” The present mobile app privacy research is
motivated by a similar dilemma, which extends well beyond just
location. It shows that approaches that worked well in the context
of location sharing appear to offer similar promise in the broader
context of mobile app privacy preferences, with a methodology
enhanced with the use of static analysis to identify the purpose of
mobile app permissions.

3. DATA COLLECTION

Before analyzing people’s privacy preferences of mobile apps, it
is necessary to gain a deeper understanding of mobile apps with
regard to their privacy-related behaviors as well as the implication
of these behaviors. In this section, we provide technical details of
how we leveraged static analysis to dissect apps and what we
learnt.

3.1 Downloading Android Apps and Their

Meta-data

We crawled the Google Play web pages in July 2012 to create an
index of all the 171,493 apps that were visible to the US users,
among which 108,246 of them were free apps. We obtained the
metadata of these apps, including the app name, developer name,
ratings, number of downloads, etc. We also downloaded all the
binary files of free apps through an open-source Google Play API
[3]. Note that Google has strict restrictions on app purchase
frequency and limits the number of apps that can be purchased
with a single credit card. Because of these restrictions, we opted
to only download and analyze free apps in this work. Additional
analysis using similar method of our work can be applied to paid
apps as well.

3.2 Analyzing Apps’ Privacy-Related
Behaviors

We used static analysis tools given that they are more efficient
and easier to automate. We chose Androguard [53] as our major
static analysis instrument. Androguard is a Python based tool to
decompile Android apk files and to facilitate code analysis. We
focused our analysis on the top 11 most sensitive and frequently
used permission as identified earlier [19]. They are: INTERNET,
READ PHONE STATES, ACCESS COARSE LOCATION,
ACCESS _FINE LOCATION, CAMERA, GET _ACCOUNTS,
SEND SMS, READ SMS, RECORD AUDIO, BLUE TOOTH
and READ CONTACT. We created our own analysis scripts
with the Androguard APIs and identified the following
information related to apps’ privacy-related behaviors: 1)
permission(s) used by each app; 2) The classes and segments of
code involved in the use of permissions; 3) All the 3"-party
libraries included in the app; 4) Permissions required by each 3%-
party library. The analysis of 3rd-party libraries provided us more
semantic information of how users’ sensitive data were used and
to whom they were shared.

We obtained permission information of each app by parsing the
manifest file of each apk file. We further scanned the entire de-
compiled source code and looked for specific Android API calls
to determine the classes and functions involved in using these
permissions. We identified 3"-party libraries by looking up
package structures in the de-compiled source code. It is possible
that we may have missed a few libraries, though we are pretty
confident that we were able to correctly identify the vast majority
of them and in particular the most popular ones. For the sake of
simplicity, we did not distinguish between different versions of
the same third party library in our analysis. Similar to the
permission analysis step described above, the permission usage
of each 3rd-party library was determined by scanning through all
the Android standard API calls that relate to the target permission
in the de-compiled version of the library’s source code.

We further leveraged five Amazon EC2 M1 Standard Large
Linux instances to speed up our analysis of this large quantity of



Table 1. Nine categories of 3rd-party libraries

Type Examples Description
Utility Xmlparser, Utility java libraries, such as
hamcrest parser, sql connectors, etc
Targeted Ads admob, Provided by mobile behavioral
adwhirl, ads company to display in-app
advertisements
Customized Ul Easymock, Customized Android Ul
Components kankan, components that can be inserted
into apps.
Content Host Youtube, Provided by content providers
Flickr to deliver relevant image, video
or audio content to mobile
devices.
Game Engine Badlogic, Game engines which provide

cocos2dx software framework for
developing mobile games.

SNS Facebook, SDKs/ APIs to enable sharing
twitter, app related content on SNSs.

Mobile Analytics | Flurry, Provided by analytics company
localytics to collect market analysis data
for developers.

Secondary Gfan, ximad, | Libraries provided by other
Market getjar... unofficial Android market to
attract users.

Payment Fortumo,

paypal,
zong...

e-payment libraries

apps. The total analysis required 2035 instance hours, i.e.
approximately 1.23 minutes per app. Among all the 108,246 free
apps, 89,903 of them were successfully decompiled (83.05%).
Upon manual inspection of a few failure examples, we observed
that failure to de-compile was primarily attributed to code
obfuscation.

In the static analysis, we identified over a thousand 3rd-party
libraries used by various apps. We looked up the top 400 3rd-
party libraries that are most frequently used in all these apps to
understand the purpose or functionality associated with each,
based on which we organized these 3rd-party libraries into 9
categories as detailed in Table 12. These categories include
Targeted Advertising, Customized Ul Components, Content
Host, Game Engine, Social Network Sites (SNS), Mobile
Analytics, Secondary Market, Payment and other Utilities. We
also analyzed how different types of resources (permissions) were
used for various purposes. For all the apps we analyzed, we
observed an average usage of 1.59 (6 =2.82, median=1) 3rd-party
libraries in each app. There were some extreme cases where an
app used more than 30 3rd-party APIs. For example, the app with
the package name  “com.wikilibs.fan tatoo design for
~women_2” used 31 3rd-party libraries, 22 of which were
targeted advertising libraries, such as adwhirl, mdotm,
millenialmedia, tapjoy, etc. In the majority of cases (91.7%), apps
are bundled with less than or equal to 5 different 3rd-party
libraries. The targeted advertising libraries are found in more than
40% of these apps. SNS libraries achieved an average penetration

2 The library uses follows a power-law distribution, therefore, the
top 400 most popular libraries covered over 90% of uses.

of 11.2% of the app market, and mobile analytics libraries had an
average penetration of 9.8% of the app market.

In additional to these nine categories of sensitive data uses by
third parties, we also used “internal use” to label sensitive data
usages caused by the application itself rather than a library. It
should be noted that, for these internal uses, we currently cannot
determine why a certain resource is used (e.g., whether it is “for
navigation”, “for setting up a ringtone”, etc.). Based on existing
practices, the fact that the API call is within the app’s code rather
than in a 3rd party library indicates a high probability that the
resource is accessed because it is required by the mobile app itself
rather than to collect data on behalf of a third party.

Our static analysis provided a systems-oriented foundation for us
to better understand mobile apps in terms of their privacy-related
behaviors, which enabled us to study users’ preferences in regard
to these app behaviors in the later part of this paper. Note that,
although we only collected users’ preferences of 837 apps among
the apps we dissected as described in the following subsection,
the static analysis of 89,000 + apps was necessary for us to
understand the bigger picture of sensitive data uses and to identify
the nine categories of 3™-party libraries.

3.3 Crowdsourcing Users’ Mobile App

Privacy Preferences

To link users’ privacy preferences to these app behaviors we
identified through static analysis, we leveraged Amazon
Mechanical Turk (AMT) to collect users’ subjective responses
through a study similar what Lin et al. did in [13]. Participants
were shown the app’s icon, screen shots, and description of apps.
Participants were asked if they expected this app to access certain
type of private information and were also asked how comfortable
(from “-2” very uncomfortable to “+2” very comfortable) they
felt downloading this app given the knowledge that this app
accesses their information for the given purposes. Each HIT
(Human Intelligence Task) examined one app — permission —
purpose triple that we identified as described in the previous
section. For example, in one HIT, participants were asked to
express their level of comfort in letting Angry Birds (app) access
their precise location (permission) for delivering targeted ads
(purpose). We added one qualification question in each HIT,
asking participants to select from a list of three app categories, to
test whether they had read the app’s description and whether they
were paying attention to the questions. The template of the HIT
is shown in Appendix A.

In total we published 1200 HITs on AMT, probing 837 mobile
apps that we randomly sampled from the top 5000 most popular
free apps. For each HIT, we aimed to recruit 20 unique

Table 2. Participants’ demographic summary

Education % Age Group %

High School 31% Under 21 11%

Bachelor

Degree 63% 21-35 69%

Graduate

Degree 6% 36-50 16%
51-65 3%

Gender % Over 65 1%

Female 41%

Male 59%
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Figure 1 (a) The average self-reported comfort ratings of different permission usages. The lighter shades represent permission-
purpose pairs users are more comfortable granting, whereas the darker shades of red indicate less comfort. (b) The variances in
comfort levels. Many entries have large variances. Entries with a short dash indicate the absence of data for a particular

permission-purpose.

participants to answer our questions. Participants were paid $0.15
per HIT. We restricted our participants to U.S. smartphone users
with previous HIT approval rate higher than 90%.

The study ran for 3 weeks starting on June 15th, 2013. After the
data collection period, we first eliminated responses that failed
the qualification questions (~7%), and then we eliminated 39
HITs because they had less than 15 responses. This yielded a
dataset of 21,657 responses contributed by 725 AMT workers.

4. DESCRIPTIVE RESULTS
4.1 Participants

We collected demographic information of our participants
including gender, age and education background to help us
analyze our data, though we did not specifically control the
gender ratio or any other demographic composition of our
participants. Among these participants, 41% of them were female;
69% of participants were between 21 and 35, 16% of them are
between 36 and 50 (see Table 2). We also observed that more than
60% of the participants were reported to have a bachelor’s degree
or equivalent and 6% had a master’s degree or PhD. The average
education level of our participants was significantly higher than
the average education level of the entire U.S. population as
reported in [54]. Compared to the demographics of crowd
workers as reported in [55], our participant pool contains more
people with bachelor’s degrees and fewer with graduate degrees.

This difference in demographics may be caused by self-selection,
since usually crowd workers would be more likely to work on
HITs that interest them. However, other data collection methods,
such as Internet surveys, often have similar sampling problems.
While this sample bias has to be taken into account when
interpreting our results, we suspect that our study is no worse than

most others in terms of the representativeness of our participant
pool.

4.2 Users’ Average Preferences and Their
Variances

To visualize our results, we aggregated self-reported comfort
ratings by permission and purpose. Figure 1 (a) shows the average
preferences of all 725 participants, where white indicates
participants were very comfortable (2.0) with the disclosure, and
red indicates very uncomfortable (-2.0). In other words, darker
shades of red indicate a higher level of concern. Entries with a
short dash indicate the absence of data for a particular permission-
purpose. For example, in our analysis, we did not see any
analytics library accessing users’ contact information or trying to
send or receive SMS. Note that these heat map visualizations only
display the most important six permissions and four purposes,
since they are the most popular data uses and the sources of the
primary distinctions among users (which we will introduce in the
next subsection).

The three use cases with the highest levels of comfort were: (1)
apps using location information for their internal functionality
(fine location: p = 0.90, coarse location: p = 1.16); (2) SNS
libraries bundled in mobile apps using users’ location information
so this context information can be used in sharing (fine location:
p = 0.28, coarse location: p = 0.30); (3) apps accessing
smartphone states, including unique phone IDs, and account
information for internal functionality (n = 0.13).

For the remaining cases, users expressed different levels of
concerns. Users were generally uneasy with (1) targeted
advertising libraries accessing their private information,
especially for their contact list (u = -0.97) and account



information® (u = -0.60); (2) SNS libraries that access their unique
unique phone ID (p = -0.42), contact list (n = -0.56), as well as
information related to their communication and web activities
such as SMS (u =-0.17) and accounts (u = -0.23); and (3) mobile
analytic libraries accessing their location (n = -0.29) and phone
state* (u = -0.09).

This aggregation of data gave us a good starting point to spot
general trends in users’ privacy preferences. At the same time,
these are averages and, as such, they do not tell us much about the
diversity of opinions people might have. An important lesson we
learnt from previous literature of location privacy is that users’
privacy preferences are very diverse. To underscore this point, we
plotted the variances of user preferences of the same use cases, as
shown in Figure 1 (b). Here, darker shades of yellow indicate
higher variance among users’ comfort rating for different
purposes.

Figure 1 (b) shows that users’ preferences are definitely not
unified. Variances are larger than 0.6 (of a rating in a [-2, +2]
scale) in all cases. In 25% of cases, variances exceeded 1.8. Users’
disagreements were highest in the following cases, including: (1)
SNS libraries accessing users’ SMS information as well as their
accounts; (2) targeted advertising libraries accessing users’
contact list; (3) users’ location information being accessed by all
kinds of external libraries.

This high variance in users’ privacy preferences suggests that
having a single one-size-fits-all privacy setting for everyone may
not work well — at least for those settings with a high variance.
We cannot simply average the crowdsourced user preferences and
use them as default settings as suggested in [32]. This begs the
question of whether users could possibly be subdivided into a
small number of groups or clusters of like-minded individuals for
which such default settings (different settings in different groups)
could be identified. We discuss this idea in the next section.

S. LEARNING MOBILE APP PRIVACY
PREFERENCES

Given the large variances identified above, a unified default
setting evidently cannot satisfy all the users’ privacy preferences.
Therefore, we chose to investigate methods for segmenting the
entire user population into a number of subgroups that have
similar preferences within the subgroups. Then by identifying the
suitable default settings for each of these groups and the group
each user belongs to, we can suggest individual users with more
accurate default settings.

5.1 Pre-processing

To identify these groups, we need to properly encode each user’s
preferences into a vector and trim the dataset to prevent over-
fitting. More specifically, we conducted three kinds of
preprocessing before feeding the dataset into various clustering
algorithms. First, we eliminated participants who contributed less
than 5 responses to our data set, since it would be difficult to
categorize participants if we know too little about their
preferences. This step yielded a total number of 479 unique
participants with 20,825 responses. On average, each participant

3 GET_ACCOUNTS permission gives apps the ability to discover
existing accounts on managed by Android operating system without
knowing the passwords of these accounts.

contributed 43.5 responses (¢ = 38.2, Median=52). Second, we
aggregated a participant’s preferences by averaging their
indicated comfort levels of letting apps use specific permissions
for specific purposes. “NA” is used if a participant did not have a
chance to indicate his/her preferences for a given permission-
purpose pair. Lastly, for each missing feature (“NA”), we found
the k (k=10) nearest neighbors that had the corresponding feature.
We then imputed the missing value by using the average of
corresponding values of their neighbor vectors.

After these preprocessing steps, we obtained a matrix of 77
columns (i.e. with regard to 77 permission-purpose pairs) and 479
rows, where each row of the matrix represented a participant.
Each entry of the matrix was a value between [-2, +2]. This
preference matrix was free of missing values.

5.2 Selection of Algorithms and Models

We opted to use hierarchical clustering with an agglomerative
approach to cluster participants’ mobile app privacy preferences.
In the general case, the time complexity of agglomerative
clustering is O(n®) [56]. Though its time complexity is not as fast
as k-means or other flat clustering algorithms, we chose
hierarchical clustering mainly because its resulting hierarchical
structure is much more informative and more interpretable than
unstructured clustering approaches (such as k-means). More
specifically, we experimented with several distance measures
[56], including Euclidean distance, Manhattan distance [57],
Canberra Distance [58], and Binary distance [59]. We also
experimented with four agglomerative methods, including
Ward’s method [60], Centroid Linkage Method [61], Average
Linkage method [61], and McQuitty’s Similarity method [62].

We limited our exploration to the above-mentioned distance
functions and agglomerative methods, since other distance
functions or agglomerative methods either produce similar results
as the above-mentioned ones or are not appropriate for our tasks
based on the characteristics of our data. As research on clustering
techniques continues, it is possible that new techniques could
provide even better results than the ones we present. We found
however these techniques were already sufficient to isolate very
different categories of mobile apps, when it comes to their
permissions and the purposes associated with these permissions.

To select the best model, we experimented with various ways of
combining the four agglomerative methods and four distance
measures and also varied the number of clusters k from 2 to 20 by
using the R package “hclust” [63]. We conducted all the
experiments on a Linux machine which has XeonE5-2643
3.3GHz CPU (16 cores) and 32G memory. We had two selection
criteria in determining which combination of distance function
and agglomerative method to use. First, the combination should
not generate clusters with extremely skewed structures in
dendrograms. A dendrogram is a tree diagram frequently used to
illustrate the arrangement of the clusters produced by hierarchical
clustering. The tree structure in the dendrogram illustrate how
clusters merged in each iteration. We check this by heuristically
inspecting the dendrograms of each clustering result. The other
criteria is the combination of three internal measures, namely
connectivity [64], Silhouette Width [65] and Dunn Index [66].

4 READ_PHONE_STATE permission gives apps the ability to obtain
unique phone id and detect if the users is currently calling someone.
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Figure 2. The resulting dendrogram produced by
hierarchical clustering with Canberra distance and average
linkage agglomerative method. Four different colors are
used to indicate the cluster composition when k=4. We also
overlay the cluster names on the dendrogram which will be
explained in Section 6.1.

These three internal measures validate the clustering results based
on their connectivity, compactness and degree of separation.

5.3 Resulting Clusters

Based on the two criteria described in the previous sub-section,
we obtained the best clusters by using Canberra distance and
Average Linkage method with k=4.

Figure 2 illustrates the resulting dendrogram produced by the
above-mentioned clustering configurations, where four different
colors indicate the four clusters when k=4. Among the four
identified clusters, the largest one (colored in black in Figure 2)
includes 47.81% of instances, whereas the smallest cluster
(colored in red) includes 11.90% instances. We assigned a name
to each cluster based on its outstanding characteristics and
overlaid these names on the dendrogram as well. The explanation
of these names and the interpretation of our clustering results are
discussed in the following section.

6. RESULT INTERPRETATION

To make sense of what these clusters mean, we computed the
centroid of each cluster by averaging the feature vectors of
instances within the cluster. Note that we computed the centroid
of each cluster based on the non-imputed data points, i.e. only
averaging the entries when there were true values, since they
better estimate the true average preferences of users in each
category.

6.1 Making Sense of User Clusters

We used a heat map to visualize these clusters® as shown in Figure
3 —Figure 6. The vertical dimension of these heat maps represents
the uses of different permissions, and the horizontal dimension
represents why a certain permission is requested. In each figure,
the left grids represent the centroid of the cluster. We use two
colors to indicate people’s preferences. White indicates that
participants feel comfortable with a given permission-purpose
whereas shades of red indicate discomfort, with darker shades of
red corresponding to greater discomfort. The right grids in each
figure show the corresponding variances within the cluster.
Compared to the variances in Figure 1, the variance of each

> Again, in these visualizations, we only display the most important six
permissions and four purposes that strongly differentiate participants.

clusters are significantly smaller. Some of them are almost
negligible.

We have labeled each cluster with a name that attempts to
highlight its distinguishing characteristics. The labels are
(privacy) “conservatives”, “unconcerned’, “‘fence-sitters”, and
“advanced users”.

The (Privacy) Conservatives. Although conservatives form the
smallest group among the four clusters, they still represent 11.90%
of our participants (see Figure 3). Compared to the heat maps of
other clusters, this cluster (or “privacy profile”) has the largest area
covered in red and also the overall darkest shades of red (indicating
the lack of comfort granting permissions). In general, these
participants felt the least comfortable granting sensitive
information and functionality to third parties (e.g., location and
unique phone ID). They also felt uncomfortable with mobile apps
that want to access their unique phone ID, contacts list or SMS
functionality, even if for internal purposes only.

The Unconcerned: This group represents 23.34% of all the
participants and forms the second largest cluster in our dataset
(Figure 4). The heat map of this privacy profile has the largest
area covered in light color (indicate of comfort). In general,
participants who share this privacy profile showed a particularly
high level of comfort disclosing sensitive personal data under a
wide range of conditions, no matter who is collecting their data
and for what purpose. The only concerning (red) entry in the heat
map is when it comes to granting SNS libraries access to the
GET_ACCOUNTS permission (e.g. information connected to
accounts such as Googlet+, Facebook, YouTube). A closer
analysis suggests that it might even be an anomaly caused by the
lack of sufficient data points for this particular entry. Another
possible interpretation might be that a considerable portion of
participants did not understand the meaning of this permission
and mistakenly thought this permission gives apps ability to know
their passwords of all accounts

The Fence-Sitters: We labeled participants in this cluster as
"Fence-Sitters" because most of them did not appear to feel
strongly one way or the other about many of the use cases (Figure
5). This cluster represents nearly 50% of our population.
Unsurprisingly, this group of participants felt quite comfortable
letting mobile apps access sensitive personal data for internal
functionality purposes. When their information is requested by
3rd-party libraries such as for delivering targeted ads or
conducting mobile analytics, their attitude was close to neutral
(i.e. neither comfortable nor uncomfortable). This is reflected in
the heat map with large portions of it colored in light shades of
pink (close to the middle color in the legend). This group of
participants also felt consistently comfortable disclosing all types
of sensitive personal data to SNS libraries. Further research on
why so many participants behave in this way is challenging and
necessary. We suspect that this might be related to some level of
habituation or warning fatigue, namely they might have gotten
used to the idea that this type of information is being accessed by
mobile apps and they have not experienced any obvious problem
resulting from this practice.

This cluster of participants also reminds us of the privacy
pragmatist group identified by Westin in producing privacy
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Figure 3. The centroid (left) and variances (right) of Privacy
Conservatives. This group of participants expressed the most
conservative preferences. They did not like their private
resources used by any external parties. Notice how much lower
the variances are relative to those in Figure 1.
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Figure 5. The centroid (left) and variances (right) of the fence-
sitters. This is the largest cluster in our study. This group of
participants felt neutral to ads and mobile analytics. This group
also had the largest within-cluster variances.

indexes [67]. Westin found that while small numbers of users
would fall at both extremes of the spectrum (i.e. privacy
fundamentalist, and unconcerned), the majority of users tend to
be in-between (pragmatists). An interesting finding of our
analysis is that the preferences of these middle-of-the-road users
can generally be captured with just two profiles, namely the
“fence-sitters” and the “advanced users” (see next subsection).

The Advanced Users: The advanced user group represents
17.95% of the population (see Figure 6). This group of
participants appeared to have a more nuanced understanding of
what sorts of usage scenarios they should be concerned about. In
general, most of them felt comfortable with their sensitive data
being used for internal functionality and by SNS libraries. One
possible reason of why they felt okay with the latter scenario is
because they still have control over the disclosures, since these
SN libraries often let people confirm sharing before transmitting
data to corresponding social network sites. In addition, this group
disliked targeted ads and mobile analytic libraries, but still felt
generally agreeable to disclosing context information at a coarser
level of granularity (i.e. coarse location). This observation again
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Figure 4. The centroid (left) and variances (right) of the

unconcerned. This group of participants felt comfortable
disclosing their data to 3rd-parties for most cases.

Very Advanced Users

Comfortable
2.0| -

COARSE_LOC

0.12 0.04 0.16 0.09

0.11 0.11 0.22 0.23

g 0.9
% PHONE_STATE . d 0.26 0.05 023 035 12
E
0.0 5 037 000 — 047 ;g
o
01l —  — 034 2
ACCOUNTS|ES . 020 013 — 024
7] - J wm @
20 2 g S 2 &
Very Z w 5
Uncomfortable <z( E :z((
86 participants
17.95% Purposes Purposes

Figure 6. The centroid (left) and variances (right) of advanced
users. This group of users were more selective in their privacy
preferences.

suggests that this group of users have better insight when it comes
to assigning privacy risks to different usage scenarios.

6.2 Estimating the Predictive Power of the

Clusters

As discussed above, the clusters we have identified give rise to
significant drops in variance. Could these or somewhat similar
clusters possibly help predict many of the permission settings a
user would otherwise have to manually configure? Providing a
definite answer to this question is beyond the scope of this paper,
in part because our data captures preferences (or comfort levels)
rather than actual settings and in part also because answering such
a question would ultimately require packaging this functionality
in the form of an actual Ul and evaluating actual use of the
resulting functionality. Below we limit ourselves to an initial
analysis, which suggests that the clusters we have identified have
promising predictive power and that similar clusters could likely
be developed to actually predict many permission settings — for
instance in the form of recommendations.
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Advanced Users 80.54%
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Figure 7. Compared to using a single one-size-fits-all grand
average profile to all participants, classifying participants
into four profiles can significantly increase the accuracy in
predicting if the system should grant , deny or prompt users
for a specific app-permission-purpose triple (55.82% vs.
79.37%). For two profiles (“unconcerned” and
“conservatives”) the prediction accuracies are higher than
85%. All numbers were averaged over 10 runs with different
partitions of training and testing data.

Specifically, as part of our analysis, we transformed the four
cluster centroids into four “privacy profiles” (i.e. sets of
recommendations) by quantizing the [-2, 2] comfort rating into
three options, namely “Accept” (average comfort rating higher
than or equal to 0.67), “Reject” (average comfort rating lower
than or equal to -0.67), and “Prompt” (average comfort rating
between -0.67 and +0.67 exclusively). In other words, in our
analysis, we assumed that “Accept” meant the corresponding
purpose-permission pair would be automatically granted.
Similarly a “Reject” value is interpreted as automatically denying
the corresponding permission-purpose pair. Cases with values
falling in between are simply assumed to result in a user prompt,
namely asking the user to decide whether to grant or deny the
corresponding permission-purpose pair. In short, under these
assumptions, a user would be assigned a profile, which in turn
would be used to automatically configure those permission-
purpose settings for which the profile has an “Accept” or “Reject”
entry, with the remaining settings having to be manually
configured by each individual user.

We now turn to our estimation of the potential benefits that could
be derived from using clusters and privacy profiles to help users
configure many of their app-permission-purpose settings. The
results presented here are based on assumptions made about how
one could possibly interpret the preferences we collected and treat
them as proxies for actual settings users would want to have.
While we acknowledge that an analysis under these assumptions
is not equivalent to one based on actual settings and that the
clusters and profiles one would likely derive from actual settings
would likely be somewhat different, we believe that the results
summarized below show promise both in terms of potential
predictive power and potential reductions in user burden.

We randomly split all the participants into 10 folds of (almost)
identical sizes. We then used each possible combination of 9 folds
of participants to compute cluster centroids and generate privacy
profiles (in terms of “Accept”, “Deny”, and “Prompt” for each
permission-purpose pair). The remaining fold of participants was
used to evaluate the benefits of the learned profiles — both in terms
of expected increase in accuracy and in terms of expected
reductions in user burden. We assumed that all testing participants

CGence-{itters 47.94%
Advanced Users 19.71%
Unconcerned 33.40%
Conseratives 11.24%
All t rofiles m——— 36.46%
Grand Average 86.75%
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Figure 8. Choosing a good privacy profile reduces the user
configuration effort down to just 36.5% of all app-
permission-purpose triples, whereas users would need to
configure nearly 87% of the triples if one were to rely on a
single one-size-fits-all grand profile. For users in the
“advanced” and “conservative” categories, user burden
drops below 20%. All numbers were averaged over 10 runs
using different partitions of training and testing data and
were weighted by the usages of all permission-purpose pairs
among the 837 apps.

were able to choose a privacy profiles that closely captured their
preferences (which will be discussed in Subsection 6.3-6.4). We
averaged the following two metrics across all 10 runs:

(1) Accuracy: the percentage of time that the selected privacy
profile agreed with the comfort rating provided by each
individual participants in the testing group for each of the
app-permission-purpose triples available in the data set for
that user. (Figure 7).

(2) User burden: the percentage of time the participants in
testing sets would be prompted to specify their decisions,
weighted by the usages of all permission-purpose pairs
among all apps (Figure 8). These usages were measured by
calculating the percentage of apps in crowdsourcing study
(837 in total) that use a specific permission for a specific

purpose.

To evaluate the benefits of the profiles, we compare both of these
metrics, as obtained using our profiles, with identical metrics
obtained using a single one-size-fits-all grand profile for all users
(as shown in Fig. 1 (a)). This is referred to as “Grand average
profile”.

As can be seen in Figure 7, the profiles result in an overall
accuracy of nearly 80% (79.37%). In comparison predictions
based on a single one-size-fits-all model result in an accuracy of
merely 56%, which is not much better than simply prompting
users all the time. In particular, using our four profiles, accuracies
for people falling in the “unconcerned” and ‘“conservative”
groups are higher than 85%.

Figure 8 shows how under our assumptions applying privacy
profiles as default settings could significantly reduce user burden.
In particular, when using a single- one-size-fits-all model, users
would on average have to be prompted for nearly 87% of all their
app-permission-purpose triples. In contrast, when using the four
privacy profiles, the number of prompts drops to 36.5% of the
user’s total number of app-permission-purpose triples. This
clearly represents a significant reduction in user burden. For users
falling in the “advanced” and “conservative” categories the
number of prompts drops below 20%. While we acknowledge that
further research is required, using actual permission settings



rather than measures of comfort levels, we believe that the results
of our analysis show great promise and warrant further work in
this area.

6.3 Do Demographics Matter?

Now we want to see how to assign users to the privacy profiles
that most closely capture their privacy preferences. Here we first
look at whether users’ demographic information — including
gender, age and education level — is sufficient to determine which
privacy profile a user should be assigned. This included looking
at the distribution of gender, age and education level in each user
cluster and also looking at variance (ANOVA) to see if there are
significant differences in these distributions.

In general, we found that in regard to the gender distribution, a
one-way analysis of variance yield NO significant differences
between groups, F(3, 475)=2.049, p=0.106. For age distribution,
we encoded the age groups as (1:= under 21, 2:= age 21-35,
3:=age 36-50, 4:=age 51-65, 5:=above 65) in our calculation. A
one-way analysis of variance reveals significant differences
between groups in regard to age distribution, F (3, 475)=4.598,
p=0.003. Post hoc analyses also reveals that the unconcerned
group on average are younger (L = 1.69, ¢ = 0.57) than other
groups combined (n = 1.91, 6 = 0.76), and the advanced user
group on average are older (u = 2.05, 6 = 0.61) than other groups
combined (n=1.83, 6 =10.71).

We also performed a similar test on the education level of all four
groups of participants. We encoded the education levels such that
“1” stands for high school or lower level of education, “2” stands
for bachelor or equivalent level of degrees, and “3” stands for
master’s or higher level of degrees. An ANOVA test shows that
the effect of education level was strongly significant, 73,
475)=7.52, p=6.3E-05. Post hoc analyses show that the
conservatives (L = 1.65, 6 = 0.48) and the unconcerned (1 = 1.67,
6 = 0.54) have lower education levels compared to the remaining
groups combined (p = 1.85, 6 = 0.57), and the advanced users (n
= 2.01, o = 0.60) are more likely to have a higher level of
education.

Although there are statistically significant effects in
demographics, a regression from demographic information to the
cluster label yields accuracy no better than directly putting every
user as Fence-Sitters. In other words, we should not directly use
gender, age, or education level to infer which privacy profile
should be applied to individual user. This does not mean however
that in combination with other factors, these attributes would not
be useful. Below, we seek more deterministic methods to assign
privacy profiles in the following sub-section.

6.4 Possible Ways to Assign Privacy Profiles
We start with a typical scenario where a privacy profile can be
assigned to a user. When a user boots up her Android device for
the first time (or possibly at a later time), the operating system
could walk her through a “wizard” and determine which privacy
profile is the best match for her. The profile could then be used to
select default privacy settings for this user. As the user downloads
apps on the smartphone, “App Ops” or some equivalent
functionality would then be able to automatically infer good
default settings for the user. The major challenge here is how we
can accurately determine which cluster this user belongs to
without any previous data about this user.

One possible way is to ask users to label a set of mobile apps. We
could present users with a small set of example apps together with
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detailed descriptions such as the sensitive data collected by these
apps and for what purposes. Users could rate each app based on
its sensitive data usages. We could then classify users based on
these ratings. This would work well if we could identify a small
number of particularly popular apps that can differentiate between
users - say just asking people whether they feel comfortable
sharing their location with Angry Birds game for advertising
purpose and whether they feel comfortable posting their location
on Facebook through the Scope app. Further research on selecting
the most effective set of apps would make this process more
effective and stable.

Alternatively, we might probe users’ privacy preferences by
asking them a small set of general questions. Similar ideas have
been suggested for helping users set up their location sharing rules
[46] [48]. In particular Wilson et al. in [50] described a simple
wizard for the Locaccino system, where a small number of
questions were asked to guide users through the selection of good
default location sharing profiles. A similar method could be used
to identify a small number of questions to help determine
appropriate mobile app privacy profiles for individual users.

Given the four privacy profiles that we identified, we note several
observations that could be used to differentiate between different
groups of users. For example, the reported comfort ratings with
respect to sharing data with advertising agencies can be used to
separate the unconcerned group from the privacy conservatives
and the advanced users; we could use people’s preferences with
regard to sharing coarse location information for mobile analytics
to further differentiate between the latter two groups; or we can
isolate the privacy conservatives based on their extreme negative
comfort rating with SNS libraries. One should be able to identify
a small number of questions based on these or similar
observations. The ideal scenario would be that, based on their
answers to these questions, users could be accurately assigned to
the most appropriate cluster. For example, we can ask one
question with regard to targeted advertising, such as “How do you
feel letting mobile apps access your personal data for delivering
targeted ads?” or questions about mobile analytics, such as “How
do you feel about letting mobile apps share your approximate
location with analytics companies?” The exact wording and
expressions used in these questions would obviously need to be
refined based on user studies.

The privacy profiles we extracted are a good estimation but might
not perfectly match individual user preferences. It is necessary to
clarify that applying privacy profiles does not prevent users from
further personalizing their privacy decisions. In addition to
choosing an appropriate privacy profile as a starting point, users
could be provided with user-oriented machine learning
functionality or just interactive functionality that helps them
iteratively refine their settings [47-49].

7. DISCUSSION
7.1 Limitations of This Work

This work has several limitations. For example, our study focused
solely on free apps downloaded from the Google Play. Apps that
require purchase might exhibit slightly different privacy-related
behaviors with regard to what sensitive resources to request and
for what purpose. There are two major challenges that prevented
us to investigate paid apps: (a) the monetary cost of purchasing a
large number of paid apps would be substantial (we estimate over
$80K to get all the paid apps); (b) there is no way to
programmatically do batch purchasing on Google Play, since



Google limits the frequency of app purchases using a single credit
card in a single day. It should also be noted that free apps
represent the majority of app downloads, and paid apps tend to
request fewer permissions — in other words, they give rise to a
somewhat smaller number of privacy decisions. This being said,
there is no reason to believe that the models derived for free apps
could not be extended to paid apps — while people’s privacy
preferences might be different, there is no reason to believe that
similar clusters could not be identified.

In determining why certain sensitive resources are requested, our
study used a relatively coarse classification. Our static analysis
cannot give finer-grained explanations, such as requesting
location for navigation vs. requesting location for nearby search.
We acknowledge that our approach is not perfect. However,
comparing to a finer analysis relying on manual inspection, using
libraries to infer the purpose of permissions enables us to conduct
our analysis at large scale. Additional techniques could possibly
be developed over time to further increase accuracy. For example,
the tool described by Amini et al. [26] that combines
crowdsourcing and dynamic analysis might be able to provide this
level of details, through it has not been publicly available yet.

Among all the four clusters we identified, the Fence-Sitter cluster
has a relatively high variance. By using more advanced clustering
techniques better clusters could likely be generated with even
smaller intra-cluster variances. However, we consider the primary
contribution of this work is to demonstrate the feasibility of
profile-based privacy settings. As part of future work, we hope to
extend our data collection and experiments, such that we can
further refine our clusters and possibly obtain even better results.

7.2 Lessons Learned and Future Prospects
Users’ mobile app privacy preferences are not unified. This
paper quantitatively proved that mobile app users have diverse
privacy preferences. This suggested that simply crowdsourcing
people’s average preferences as suggested by Agarwal and Hall
in the PMP privacy settings [32] might not be optimal. In spite of
the diversity, we also show that there are a relatively small
number of groups of like-minded users that share many common
preferences. Using these identified groups, we derived mobile app
privacy preferences profiles, find for each user a profile that is a
close match, and use this information to automate the privacy
setting process.

Purpose is more important. Previous work in mobile app
analysis as well as on users’ privacy concerns focused more on
identifying the what sensitive information is accessed by apps
[17,42] as well as how often sensitive information is shared with
external entities [43]. Lin et al. [13] pointed out the purpose of
why sensitive resources are used is important for users to make
privacy decision, though they did not quantitative backup this
statement. Our work provides crucial evidence to support this
statement. The clusters we identified in our participants are more
differentiated in the dimension of why these resources are
accessed. This finding also provides important implications to
privacy interface design in the sense that properly informing users
the purposes of information disclosures are at least as important
as informing them what information is disclosed. Unfortunately,
the current privacy interfaces, such as the Google Play’s
permission list, fall short in making good explanation of the
purposes. We strongly suggest mobile app market owners to
consider notifying this important information to their customers.
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Make use of the naturally crowdsourced data. In our study, we
use Amazon Mechanical Turk as the major platform to collect
users’ privacy preferences. In reality, given the availability of
“App Ops” in Android 4.3, “ProtectMyPrivacy” on jailbroken
iPhone, or other similar extensions in rooted Android devices, the
operating system or the third-party privacy managers could
naturally crowdsource users’ privacy preferences without extra
effort. These valuable datasets also presumably have better user
coverage and are more representative than what we can collect
with the limited resources we have. A significant portion of the
methodologies discussed in this work can be directly applied to
these dataset to build models of mobile users in the wild. We
encourage industry to make fully uses of the findings we present
in this paper to make real impact in providing users with better
privacy controls.

In short, the findings that we present provide important lessons
about mobile app users, and also point out a way to make privacy
settings potentially usable to end users. However, there is still
much work that needs to be done to model users’ privacy
preferences. We are also aware that users’ privacy preferences
might keep on evolving and are influenced by the introduction of
new technologies and the habituation effect that formed through
interacting with the same practices for a long time. Therefore, in
addition to all the techniques we proposed, we believe other
prospects such as proper user education, improving and enforcing
laws and regulations are also crucial and need to be promoted in
the long run.

8. CONCLUSION

This paper complements existing mobile app privacy research by
quantitatively linking apps’ privacy related behaviors to users’
privacy preferences. We utilized the static analysis with specific
focus on how and why 3rd-party libraries use different sensitive
resources and leveraged crowdsourcing to collect privacy
preferences of over 700 participants with regard to over 800 apps.
Based on the collected data, we identified four distinct privacy
profiles, providing reasonable default settings to help users
configure their privacy settings. Initial results intended to
estimate the benefits of these profiles suggest that they could
probably be used to significantly alleviate user burden, by helping
predict many of a user’s mobile app privacy preferences. Under
our proposed approach, users would still be prompted when the
variance of the predictions associated with an entry in a given
profile exceeds a certain threshold. More sophisticated learning
techniques could possibly further boost the accuracy of such
predictions.
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APPENDIX A.

Template of Amazon Mechanical Turk Task

Please read the description carefully and answer the questions
below. HIT will be rejected if you just click through.

[app name][app icon]

Developer: [developer name]

Average rating: [rating] /5.0

Rating count: [count]

Description: [description text copied from Google Play]

[App Screenshot from Google Play #1]

[App Screenshot from Google Play #2]

[App Screenshot from Google Play #3]

You must ACCEPT the HIT before you can answer questions.

Have you used this app before? (Required)

a. Yes
b. No

What category do you think this mobile app belongs to?
(Required)
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a. [Candidate category #1]
b. [Candidate category #2]
c. [Candidate category #3]

Suppose you have installed [app name] on your Android device,
would you expect it to access your [describing permission in plain
English]? (Required)

a. Yes
b. No

Based on our analysis, [app name] accesses user's [describing
permission in plain English] for [explaining purpose]. Assuming
you need an app with similar function, would you feel
comfortable downloading this app and using it on your phone?
(Required)

a. Most comfortable

b. Somewhat comfortable
¢. Somewhat uncomfortable
d. Very uncomfortable

Please provide any comments you may have below, we appreciate
your input!

[text box]



