
A Guide to
Effective Release
Management

2

You’ve finally received word from your product team that the new features they’ve been debating will be
added to the upcoming release. With the design spec in hand, it’s now time for your release team and the
engineers to plan for this next release.

Before you get started, you think back to previous releases and notice a couple patterns:

•	 The reliability of the release and the process itself doesn’t always go as smoothly as you’d like, even if
previous releases have been “okay.”

•	 Releases often get rushed and pushed out quickly when customers are in dire need of a feature.

•	 When pressing product changes are needed, timelines get moved up and builds are forced out faster.

You may find yourself asking, “Am I doing releases right?!”

Relax. It’s common. Design changes happen, new priorities are raised, and engineering teams often
experiment with new engineering processes.

Release management is a forever evolving process
that needs continuous improvement and tweaking.

3

Creating repeatable release processes
The key is to adopt a repeatable release process in which you can:

That’s where Bugsnag comes into play, allowing you to fully manage your release health and give you
control over the quality and the reliability of your software launch.

The end result? You and your team can continue to build product iterations and put forth the best
experiences possible for your customers.

Quickly identify major issues in testing
stages and know exactly where to fix them

Remain agile and focus solely on the major bugs

Constantly monitor stability health and
adherence to stability targets

4

Managing releases can be difficult because there are so many teams and moving parts involved.

Release managers must be able to:

The challenges of managing releases

Adjust when non-scoped features are added to a release at the last minute

Ensure additional functionality does not impact the stability of each
release iteration

Recognize potential obstacles immediately and make sure to address them
before things get out of hand

Provide instantaneous feedback to each team on release health

Know with certainty when it’s safe to move to the next phase of
your release process

Pro tip: Product and executive teams should use Bugsnag as well. (It’s not only for
software and release teams!) By sharing knowledge about the health of a release, the
entire company can be aligned around realistic expectations for the release launch.

5

As a sample use case, let’s take a look at
the launch of a website refresh.

The workflow for adding new features
to a front-end application has many
steps and hand-off moments. While it
starts with the product team specing
product requirements and the design
team explaining the new features,
the engineering team must scope the
work and develop a plan for how to
best architect the features to meet the
product requirements. During and after
the immediate build by the engineering
team, an internal QA and code review will
also need to be completed.

All of these handoffs introduce risk at
each stage. It’s important to have the
right tools in place to monitor stability
throughout the development process.
That way, you can pinpoint roadblocks as
soon as they come up and avoid missing
problems too far down the line.

Begin with the
development
stage

05 New feature deployed to staging
(alpha, beta, etc.) for review

06 Monitor the release by filtering to see
your staging deployment

01 New feature design spec from
product team

08 Keep in mind your stability target. At
what point must you stop feature work
and fix bugs?

10 Monitor stability closely in the first 24
hours after a release and at all times as
stability is something you continually
work on.

02 Hand to release manager and engineering
for planning and development

03 Define a ‘development’ stage in Bugsnag
for early-issue detection

04 New feature goes through testing

07 Filter by a specific build to see how it
compares to others. If it introduces more
errors, send feedback to engineering team

09 Launch time

6

The Bugsnag release dashboard is especially good for addressing this process. While the project is with the
engineering team, you can define a builds stage called “development” and begin monitoring errors and
issues in real-time.

Move on to staging environments
After several iterations of testing, the product team reviews the latest release in your dedicated staging
environment (or alpha / beta environment). They can troubleshoot, look at specific use cases, complete a
review of high-risk or sensitive areas, and submit suggested changes back to the engineering team.

7

Throughout this process, you have the power to continually monitor the deploy and compare the number
of errors seen in previous builds to those in the latest release. If your team is fortunate enough to have
the ability to run automated testing and regression testing, additional custom stages can be created and
monitored in the Bugsnag release dashboard as well.

It’s also becoming common practice for partial and phased rollouts to be used that deliver new software to
only a small percentage of users first. Wouldn’t it be great to see and catch the errors that hit the first 3%
of your users and resolve these errors before they reach the other 97%? With Bugsnag, this process is easy.

How can I use Bugsnag during the staging process?

Bugsnag allows you to monitor the process through custom metadata that’s set up using
the build tool integration. That means key metadata is specific to a build. For example,
you can identify key differences between various releases by adding the parameters used
to build the application, as well as details of the changes contained in the build.

What are some Bugsnag customer strategies that have worked?

Many Bugsnag customers have used custom data to run experiments that can help
developers know if a particular new feature in a release has more bugs than other similar
builds without that feature. Others have created custom identifiers for customers or
users who have opted into a beta build of a new product, which is then used to attribute
crashes to users who have opted in versus those on existing releases.

8

Each release should have stability targets. At Bugsnag, we
call this metric your “Error Budget,” which is defined as
your threshold for taking immediate action on fixing and
prioritizing errors seen in your releases.

This error budget might be different for each team within
your organization. Your engineering team might decide
that a 96.55% crash-free rate is an acceptable standard for
your staging builds. However, your Executive team might
not let builds go out until you have reached a minimum
98.95% score due to SLAs with high-paying customers or a
desire not to drive away users who won’t come back and
use your service again.

Therefore, it’s important to have an open, healthy
dialogue amongst teams and keep in mind what the most
important driving metric for each release should be.

Set stability targets throughout the process

Pro tip: Using tools integrated
with Bugsnag such as Splunk,
SQS Data Forwarding, or
webhooks allows information
to be passed seamlessly so
each team can process it and
compare with other datasets
that impact decisions.

https://blog.bugsnag.com/how-application-stability-impacts-business-growth/
https://blog.bugsnag.com/how-application-stability-impacts-business-growth/

9

Congratulations! You have launched your latest release to your production environment. However, your
journey doesn’t stop there.

In Bugsnag, we do all the heavy lifting to allow you to quickly identify and fix errors. Some of the tools you
can use in Bugsnag include:

•	 View Errors introduced, new errors

•	 Integrating Bugsnag stack traces with your source control (GitHub, BitBucket, GitLab)

•	 Creating issues from Bugsnag errors in your issue tracker

You can also easily integrate Bugsnag into your everyday workflow by integrating with tools like Slack,
Jira, email, and many more. Bugsnag currently offers 45+ integrations and a dedicated API to make sure
that you have all the necessary alerts, information, and data to make the best release decisions.

Launch your release

Pro tip: Dedicated Slack channels and custom email notifications can alert you
to major spikes or increases in errors. These integrations make it easy for you to
immediately know when you should be reviewing Bugsnag.

Ongoing stability management requires constant review and discipline.
It’s not something you fix once but rather a continuous process.

Monitoring release health is especially important during the 24 hours after
launch. Errors during this time provide an indication of the end user experience.

10

Inject confidence into your entire company by adopting a release process that teams can follow. By
utilizing Bugsnag, you make it easy for everyone to track release stability and continually monitor your
releases. No surprises here.

While you’ll always need to remain flexible and ready for curve balls, a well-calibrated and predictable
release cycle goes a long way to providing company-wide peace of mind. When Bugsnag’s stability scores
and targets are used, everyone becomes accountable for the stability of the release and the customer
experience, which equates to stronger production releases from the word “go.”

Conclusion

Bugsnag is the number one solution for full stack stability monitoring
with best in class support for mobile apps. Trusted by engineering
teams at Airbnb, Lyft, HotelTonight, Pandora, and more.

When monitoring a release, Lyft uses filters to find errors by version,

a powerful functionality that gives them visibility into each release

without much effort.

LYFT | VIEW CASE STUDY

https://www.bugsnag.com/customers/lyft/

bugsnag.com sales@bugsnag.com San Francisco, CA & Bath, UK

https://www.bugsnag.com/
mailto:sales%40bugsnag.com?subject=

