
Lantern Pharma

Corporate Overview

April 15th, 2024

NASDAQ: LTRN

Forward Looking Statements

This presentation contains forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. These forward-looking statements include, among other things, statements relating to: future events or our future financial performance; the potential advantages of our RADR® platform in identifying drug candidates and patient populations that are likely to respond to a drug candidate; our strategic plans to advance the development of our drug candidates and antibody drug conjugate (ADC) development program; estimates regarding the development timing for our drug candidates and ADC development program; expectations and estimates regarding clinical trial timing and patient enrollment; our research and development efforts of our internal drug discovery programs and the utilization of our RADR® platform to streamline the drug development process; our intention to leverage artificial intelligence, machine learning and genomic data to streamline and transform the pace, risk and cost of oncology drug discovery and development and to identify patient populations that would likely respond to a drug candidate; estimates regarding patient populations, potential markets and potential market sizes; sales estimates for our drug candidates and our plans to discover and develop drug candidates and to maximize their commercial potential by advancing such drug candidates ourselves or in collaboration with others. Any statements that are not statements of historical fact (including, without limitation, statements that use words such as "anticipate," "believe," "contemplate," "could," "estimate," "expect," "intend," "seek," "may," "might," "plan," "potential," "predict," "project," "target," "model," "objective," "aim," "upcoming," "should," "will," "would," or the negative of these words or other similar expressions) should be considered forward-looking statements. There are a number of important factors that could cause our actual results to differ materially from those indicated by the forward-looking statements, such as (i) the risk that our research and the research of our collaborators may not be successful, (ii) the risk that promising observations in preclinical studies do not ensure that later studies and development will be successful, (iii) the risk that we may not be successful in licensing potential ADC candidates or in completing potential partnerships and collaborations, (iv) the risk that none of our product candidates has received FDA marketing approval, and we may not be able to successfully initiate, conduct, or conclude clinical testing for or obtain marketing approval for our product candidates, (v) the risk that no drug product based on our proprietary RADR® AI platform has received FDA marketing approval or otherwise been incorporated into a commercial product, and (vi) those other factors set forth in the Risk Factors section in our Annual Report on Form 10-K for the year ended December 31, 2023, filed with the Securities and Exchange Commission on March 18, 2024. You may access our Annual Report on Form 10-K for the year ended December 31, 2023 under the investor SEC filings tab of our website at www.lanternpharma.com or on the SEC's website at www.sec.gov. Given these risks and uncertainties, we can give no assurances that our forward-looking statements will prove to be accurate, or that any other results or events projected or contemplated by our forward-looking statements will in fact occur, and we caution investors not to place undue reliance on these statements. All forward-looking statements in this presentation represent our judgment as of the date hereof, and, except as otherwise required by law, we disclaim any obligation to update any forward-looking statements to conform the statement to actual results or changes in our expectations.

Lantern's Al platform, RADR®, is transforming the cost, pace, and timeline of cancer drug discovery and development

13

Lead drug candidates* powered by Al

5

Clinical stage lead drug candidates*

100+

Issued patents & pending applications

\$41.3M**

Cash/cash eq./ marketable securities

2.5 years

Avg. time for new LTRN programs to Ph. 1 Trial

\$1.5M

Avg. cost for new LTRN programs to Ph. 1 Trial

^{*} Includes drug programs being developed in collaboration ** at 12/31/2023

Only **6%** of clinical trials using traditional drug discovery approaches succeed

*Clinical Development Success Rates and Contributing Factors 2011–2020, BIO Stats

Current Challenges

Costly

Average cost to bring a new cancer drug to market is \$2.8 billion

Risky

Out of 20,000 trials from 2012-2022, **19,200 trials failed**

Slow

Early-Stage development takes **3-5+ Years**, late-stage development takes **6-12+ Years**

Current oncology drug development is being improved by **data-driven**, and **Al-enabled approaches** and technology

Lantern is Transforming Drug Discovery Timelines & Costs with Al

Al insights and biomarkers can increase the odds of clinical trial success by 12X*

(*Parker et al., 2021)

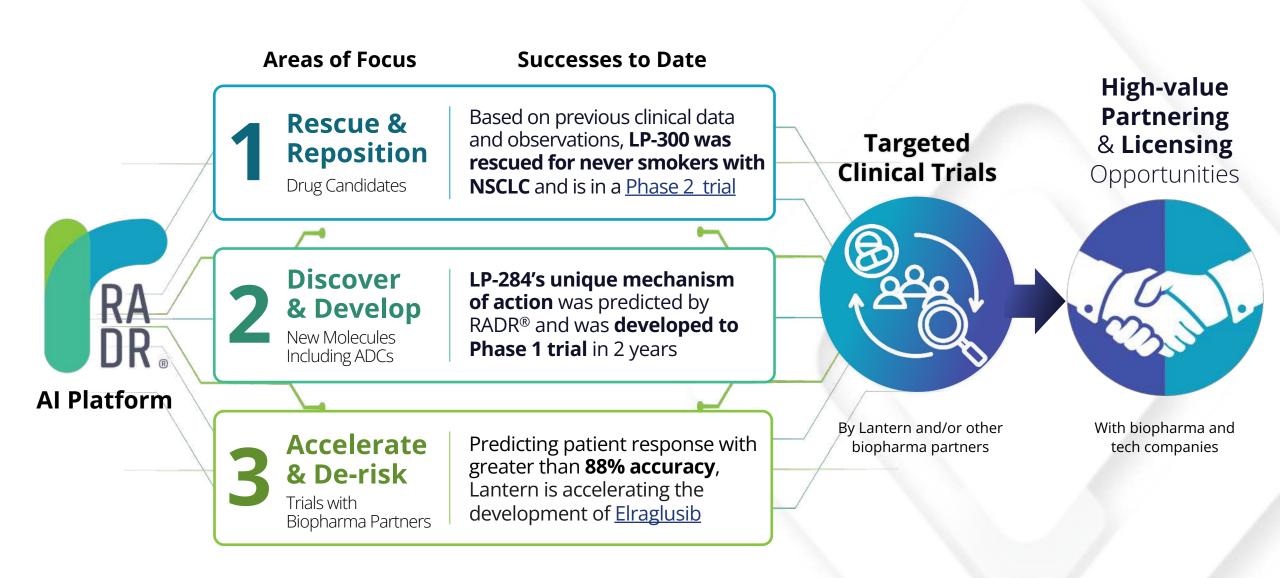
RADR® can predict and stratify real-world patients for clinical trials with 88% accuracy

Lantern can compress the timeline of early-stage drug development by 70% and reduce the cost by 80%

Lantern has launched 10 new programs in 2 years, and has active ongoing ph.1 and ph.2 clinical trials

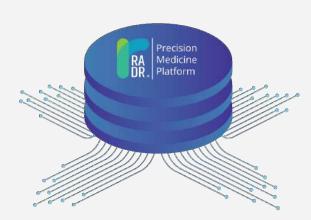
LANTERN'S DRUG DEVELOPMENT MODEL AND OBJECTIVES

Large Scale/Multi-omics Oncology Data


Proprietary Al platform RADR®

Accelerated timelines; reduced costs and risks

Lantern's Al-Driven Business Model has Multiple Routes Towards Success



Precision Medicine Platform

Response Algorithm for Drug Positioning & Rescue

A proprietary integrated data analytics, experimental biology, oncologyfocused, machine-learning-based platform focused on drug development

60+ Billion

Data points from oncology focused real-world patient and clinical data and preclinical studies

80%+

Prediction Success

130K+

Patient Records

200+

Advanced ML Algorithms

8,163+

Data Sets

AI-Powered RADR® Modules for Oncology Drug Discovery and Development

Discover mechanism of action of any compound or drug

Identify/prioritize a compound's disease indications or subtypes

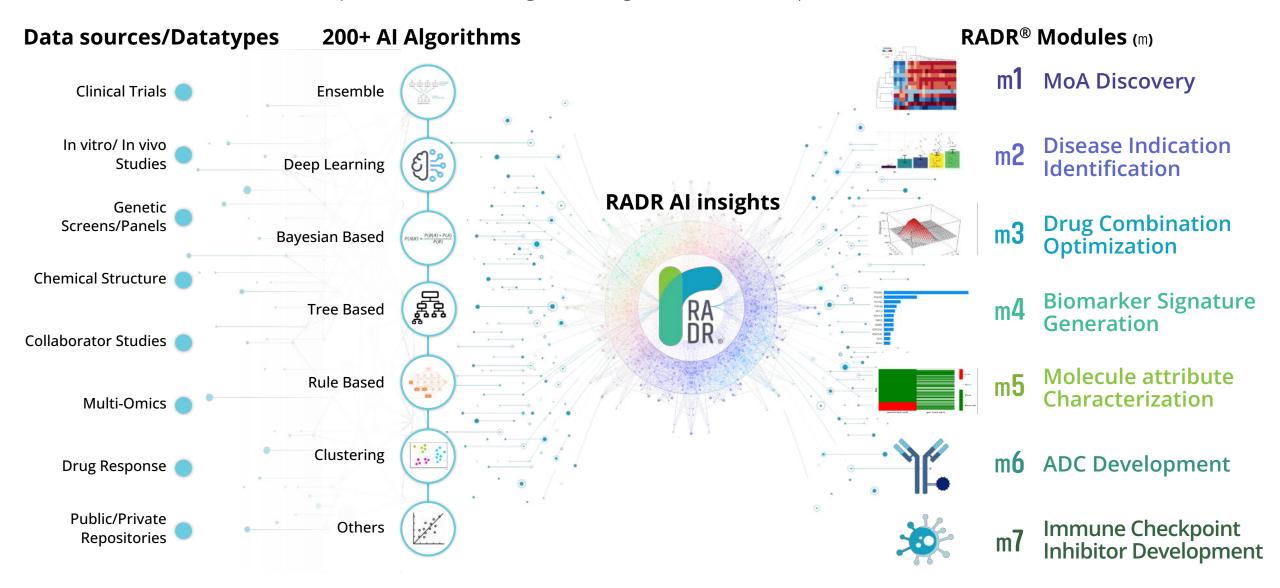
Determine optimal drug combos to improve therapeutic potential

Generate ML-driven biomarker signatures for patient selection

Characterize specialized attributes of a molecule such as BBB permeability

Enhance the selection of optimal combination of ADC components

Discover drug combos for checkpoint inhibitors to improve therapeutic index


Lantern Pharma is a Top 10 End-to-End Al Drug Discovery Company

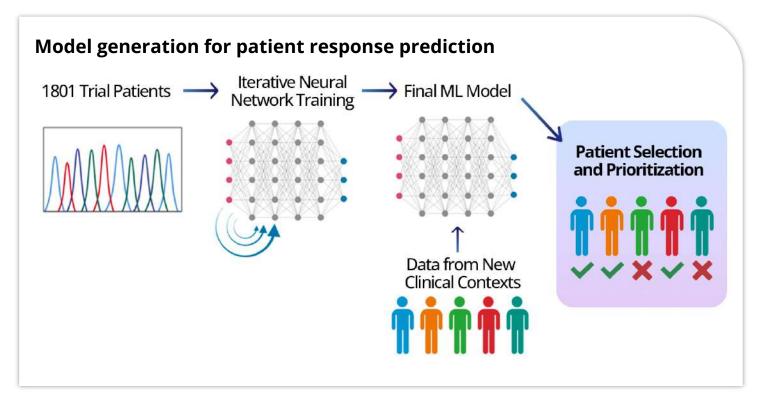
According to Deep Pharma Intelligence (May 04, 2022)

RADR®'s Al Framework

RADR®'s AI framework develops actionable insights using billions of datapoints

RADR® Case Study – Actuate Therapeutics

Advanced RADR® machine learning models predict clinical trial patient responses at 88% accuracy



Lantern is accelerating the development of Actuate Therapeutic's drug candidate, Elraglusib* (9-ING-41), using Al insights produced by RADR®

- Predicted patient response with greater than
 88% accuracy
- Identified metastatic melanoma patients resistant to PD-1 therapies may benefit from Elraglusib
- Insights and new data including RNA, ctDNA, and protein biomarkers are informing design of an upcoming Phase 2 clinical trial
- Lantern received equity in Actuate as part of the collaboration

Posters: AACH ASCO°

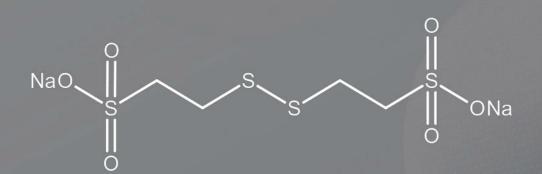
*Elraglusib is a widely researched GSK-3\(\beta\) inhibitor. Currently, Elraglusib is in multiple active Phase I/II clinical trials as a monotherapy and in combination with other agents (NCT03678883)

Collaborations

Strategic collaborations that are providing unique real-world insights and accelerating timelines

World-Class
Academic and
Research Institutions

Biopharma Collaborations



Lantern's Diverse & Unique Al Driven Pipeline of Drug Programs

Lantern has 13 disclosed and collaborative lead drug programs including the Phase 2 Harmonic[™] trial

LP-300 for the Treatment of Non-Small Cell Lung Cancer (NSCLC) in Never Smokers

Lead Indication	Relapsed NSCLC for Never Smokers		
Clinical Status	Phase 2 (initial patients dosed)		
Market Potential*	\$1.3 billion (USD)		
Indication Size*	20,000-40,000 Cases		
Target/ MOA	Tyrosine Kinases & Cell Redox Enzymes		
Molecule Type	Disulfide Small Molecule		
Combination	With carboplatin and pemetrexed		
IP Estate	Claims extending to at least 2032		
	*Estimated Annual US		

Disease Overview – NSCLC in Never Smokers – LP-300

NSCLC in never smokers is one of the largest unaddressed cancer populations

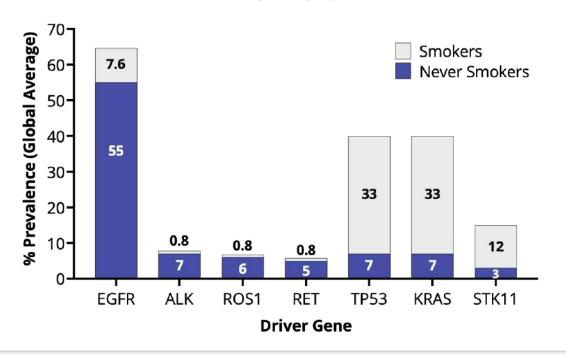
Global Annual Market Potential: \$2.5+ Billion

Lung cancer is the cause of death among cancer patients in the US

initian 6

lung cancer deaths will occur in patients that are never smokers with NSCLC

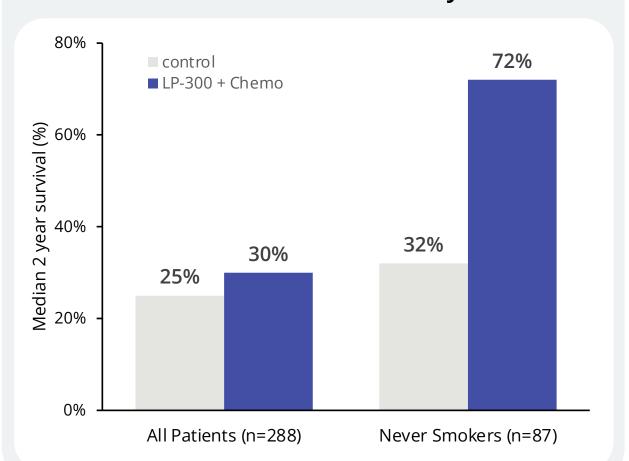
20,000-40,000


never smokers will be diagnosed with NSCLC each year In the US

Cancer.gov

NSCLC in Never Smokers is a Different Disease

Lung Cancer in never smokers has **higher percentage of genetic mutations in Tyrosine Kinases (TK),** a family of cancer-promoting genes, such as EGFR, ALK, ROS and MET

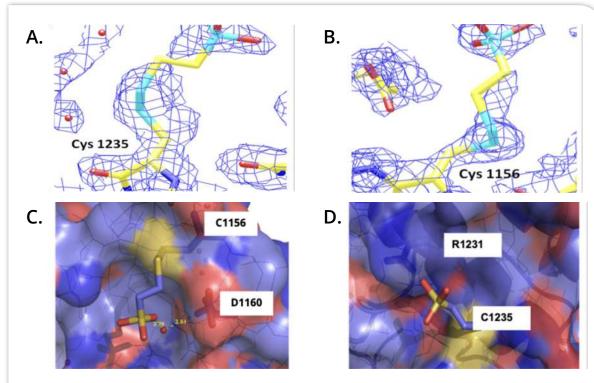

Mutation Frequency by Smoker Status

LP-300 Nearly Doubled Survival Outcomes for Never Smoker Subgroups with NSCLC in Previous Clinical Trial*

*Subpopulations receiving paclitaxel/cisplatin

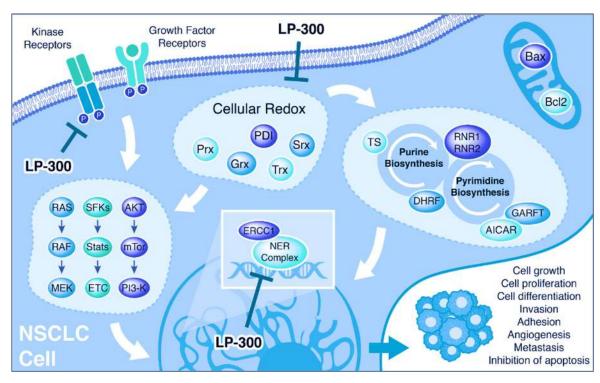
+ 125% increase in median 2 year survival

+ 91% increase in median overall survival


*Overall study did not meet clinical efficacy endpoints

Clinicaltrials.gov (NCT00966914)

Mechanism of Action – LP-300


LP-300's multimodal MoA resensitizes NSCLC to chemo in the never smoker population

1. LP-300 Directly Engages with TKI Receptors via Cysteine Modification

A-B. LP-300 adduct at **Cys1235 Cys1156 C.** Molecular surface of ALK with the LP-300-derived adduct at **Cys1156** (yellow highlight) **D.** Binding site of the LP-300-derived adduct at **Cys 1235** (yellow highlight)

LP-300 Modulates Cellular Redox in Key Signaling Pathways in NSCLC

- Restoring apoptosis sensitivity
- Oxidative stress modulation
- Anti-angiogenesis
- Reduced DNA synthesis and gene expression
- Reduce glutathione/thioredoxin mediated tumor resistance to therapy
- Nephrotoxicity protection against chemotherapy

Clinical Trial – The Harmonic™ Phase 2 Trial for LP-300

Accelerating recruitment efforts for a growing indication with limited treatment options

Phase 2

90

100

Never Smokers Patients

nts Two arm, Open-label, Randomized Trial

Multi-Site

Trial Design

Patients will receive LP-300 with pemetrexed and carboplatin*

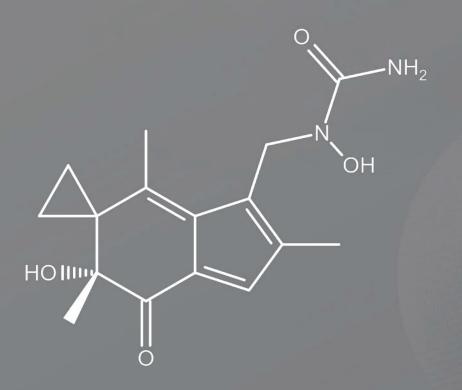
Patients will receive standard of care (pemetrexed and carboplatin)

*after progressing from TKI

Primary Outcomes: Overall and progression free survival

1st patient ──── Estimated Interim Results

Q1 2023


Enrollment anticipated to last 15 - 20 months

2nd half **2024**

I Trial Updates

- Dr. Joseph Treat, MD of Fox Chase Cancer Center: appointed lead principal investigator for the Harmonic[™] study
- Initial patients dosed in first half of 2023, enrollment anticipated to last 18-24 months
- Multiple additional patients and sites across the US anticipated to be enrolled during first half of 2024
- Exploring clinical trial expansion to Asian countries with a higher incidence of NSCLC in never smokers

LP-184 for the Treatment of Advanced Solid Tumors

Lead Indications	DDR deficient solid tumors including Pancreatic cancer, Bladder cancer, and TNBC		
Clinical Status	Phase 1A, Multiple patients dosed		
Market Potential*	\$14+ Billion		
Indication Size*	170,000 + Cases, Estimated 400,000 + Cases Global		
Target/ MOA	Double-stranded DNA breaks; alkylates DNA in the 3' of Adenine		
Molecule Type	Acylfulvene Class		
Combination Potential	Checkpoint inhibitors, PARP inhibitors, Spironolactone, Chemotherapy and Radiation Therapy		
IP Estate	10+ patents/pending apps., Claims extending into 2041		
	*Estimated Annual US.		

Disease Overview - Advanced Solid Tumors with DDR Deficiencies

LP-184 has Blockbuster Potential Across Multiple Cancers as a Single Agent or in Combination Therapy

Annual US Market Potential: \$14+ Billion

(DDR Deficient Solid Tumors)

Triple Negative Breast Cancer

Bladder Cancer

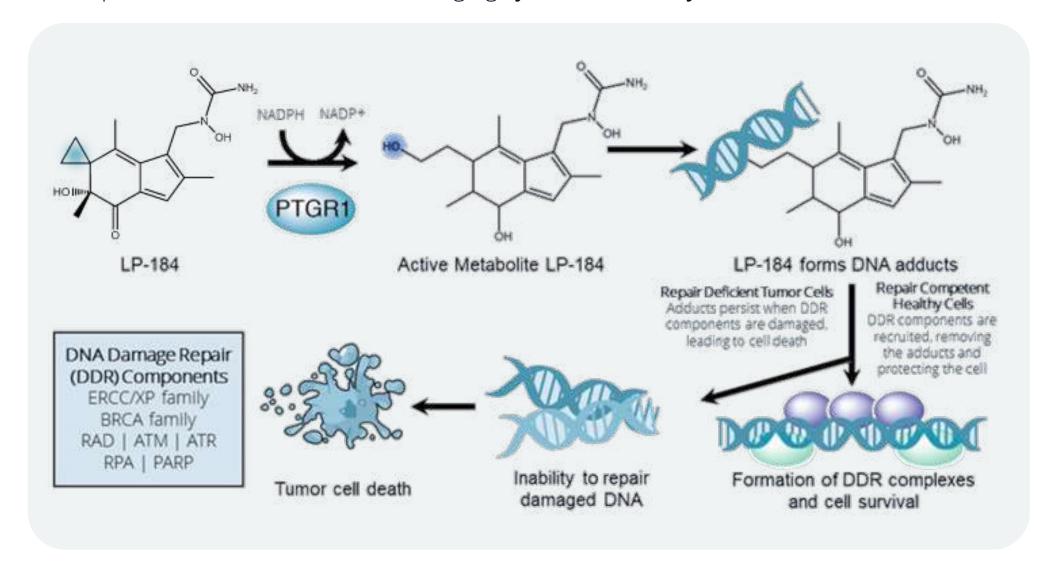
Lung Cancer

Advanced Solid Tumors

- Advanced solid tumor cancers, having spread beyond the primary site, are often more challenging to treat than earlier stage tumors due to their advanced progression
- Current treatment options include; surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy

DNA Damage Response (DDR) Deficiency

DDR is essential for maintaining genomic stability by repairing different types of DNA damage. Inhibition of DDR has been shown to increase the effectiveness of anticancer immunotherapies

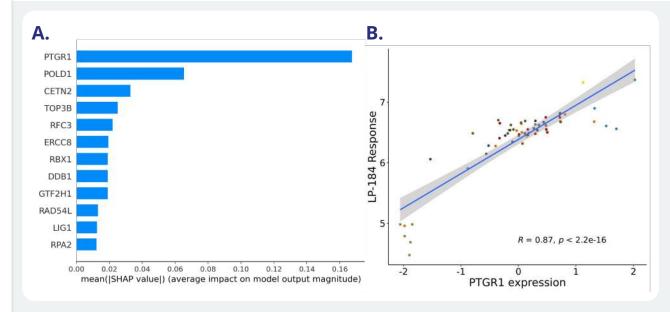

Cancer cells with high underlying levels of DNA damage are more dependent on DDR for survival when compared to normal cells

DDR Deficiencies result in the accumulation of DNA damage, which produces an "Achiles Heel" for drugs leveraging synthetic lethality

Mechanism of Action – LP-184

LP-184 has a unique mechanism of action – leveraging synthetic lethality

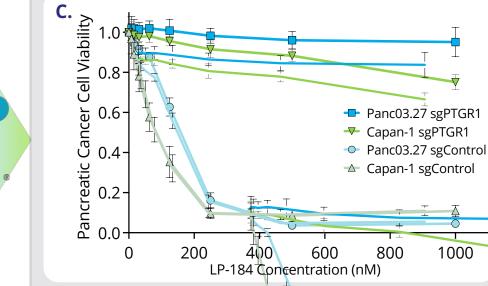
Al insights generated by RADR® – LP-184


LP-184's MoA was predicted by RADR® and validated with In vitro and In vivo studies

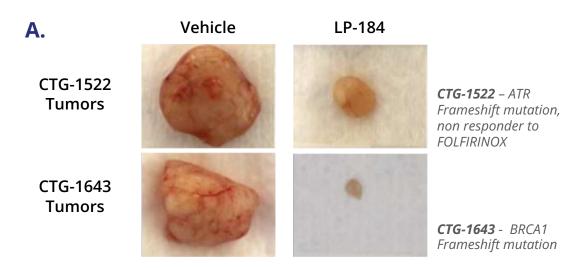
In silico

Precision Medicine Platform

Platform

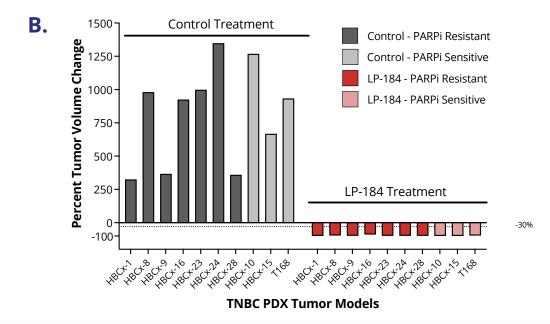

Precision Medicine Platform

- Prostaglandin Reductase 1 (PTGR1) is an oxidoreductase enzyme that is frequently elevated in cancers
- PTGR1 activates LP-184 into its highly potent and cytotoxic form
- RADR® insights predicted that LP-184 activity positively correlates with PTGR1 transcript levels in the NCI60 cancer cell line panel


- CRISPR-mediated depletion of PTGR1 expression in a pancreatic cancer cell line is sufficient to fully diminish LP-184 activity
- This confirmed the RADR® insights and that LP-184 was highly potent in cells with PTGR1

Preclinical Results – LP-184

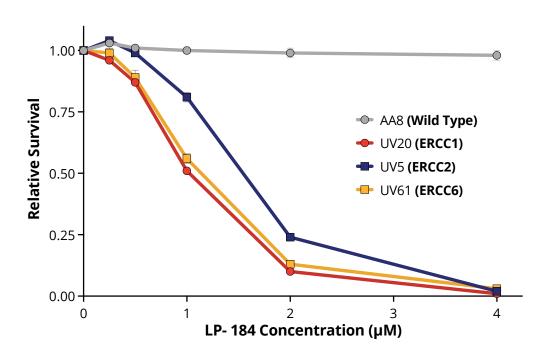
LP-184 treatment results in complete regression in DDR deficient pancreatic cancer PDX models


Pancreatic Cancer

In-vitro PDX pancreatic mouse models treated with LP-184 - CTG-1522 and CTG-1643 models showed **a tumor growth inhibition of >100%**

Triple Negative Breast Cancer (TNBC)

Across 10 TNBC PDX mouse models (*All 10 TNBC PDX models were HR deficient*) LP-184 treatment resulted in 107-141% tumor growth inhibition



- LP-184 exhibits nanomolar potency in PTGR1 overexpressing tumors with DDR deficiencies
- Positioned for 2nd and 3rd line treatment, where there is unmet need for novel therapies
 - FDA **Orphan Drug Designation** granted for LP-184 to treat pancreatic cancer
 - Combination therapy potential with SOC agents: Spironolactone, PARP inhibitors, Gemcitabine, Irinotecan, and Oxaliplatin

Preclinical Results - LP-184

Cancer models with common DNA damage response deficiencies are highly sensitive to LP-184 treatment

LP-184 in **NERD** Cancers

- **LP-184 shows exquisite potency** in cancers with deficiencies in Nucleotide Excision Repair (NERD) pathways
- There are currently **no approved therapies** for NERD cancers

LP-184 in HRD Cancers

PDX Cancer model	IC50 (nM)	HRD Mutations
NSCLC	31	ATM
Prostate	31	PMS2
Pancreatic	45	ATR, BRIP1, PARP1
NSCLC	54	CHEK1, FANCA, NBN, RAD50
Prostate	54	BRCA2, ATM, FANCA, FANCI, FANCM
Prostate	54	BRCA2, CDK12, FANCI, RAD54L,
NSCLC	57	ATM, FANCD2, NBN
Pancreatic	57	BRCA1, BRIP1,
Prostate	92	ATM, ATR, PALB2,
Pancreatic	110	BRCA2, ATM, BLM, FANCA
Pancreatic	270	BRCA2, CDK12, PALB2
Pancreatic	2,900	ATM, BRCA1, BRCA2

- PDX-derived cell lines with mutations in key HR and NER genes are highly sensitive to LP-184
- Only 1 model was not highly sensitive to LP-184 (highlighted in blue)

Clinical Trial - LP-184 Phase 1 Basket Trial

Launched Phase 1 basket trial for a blockbuster molecule with a market potential of \$10+ billion in annual sales

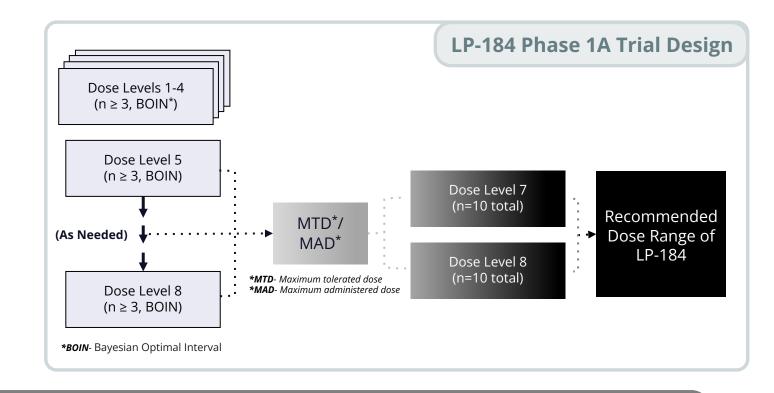
First-In-Human Trial for **LP-184**

Clinicaltrials.gov (NCT05933265)

30-35

Patients expected to be enrolled

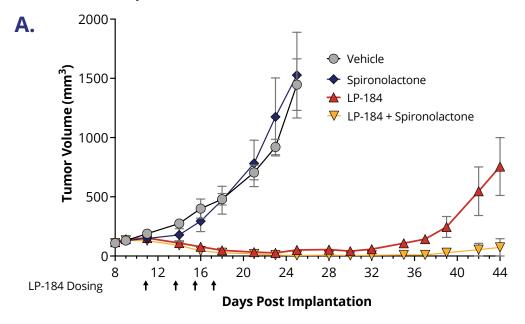
\$14+ Bn


497

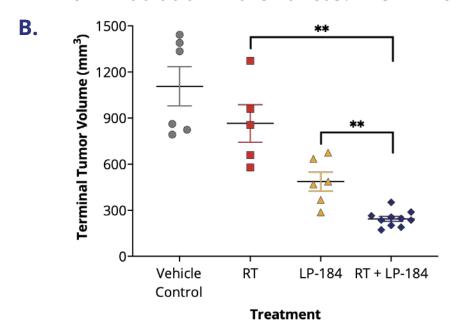
expected Annual US market potential in prolled DDR deficient solid tumors

Multi-Site

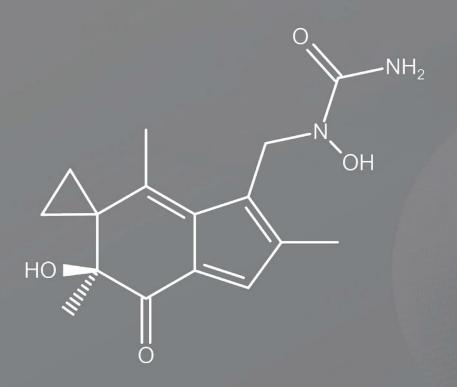
I Trial Highlights


- Trial launched and multiple US sites activated, including Fox Chase Cancer Center
- Multiple patients dosed
- Following determination of the maximum tolerated dose (MTD) and/or recommended phase 2 dose (RP2D), the dose will be confirmed prior to initiating enrollment in Phase 1B
- Potential future studies: Phase 2 in GBM (through Starlight) and Phase 1b/2 in other solid tumors to be initiated after determination of MTD

Preclinical Data on Combination Therapy – LP-184


In-vivo LP-184 has synergy with several SOC agents including spironolactone, radiation therapy, and others

LP-184 + Spironolactone in GBM in vivo mouse model


- Spironolactone is an FDA approved agent that can impair DNA damage repair pathways in tumor cells
- **Combination** of LP-184 or LP-284 with Spironolactone:
 - 1) Enhances potency
 - 2) Decreases expected dose needed for treatment
 - 3) Exploits MoA of both drugs

LP-184 + Radiation in the Panc03.27 CDX Model

- Terminal tumor volumes from the RT + LP-184 treatment group are significantly (**p < 0.01) smaller than treated with RT or LP-184 alone
- Mean tumor volumes of RT + LP184 were ~1.8 fold lower than tumors treated with LP-184 alone

LP-284 for the Treatment of B-cell Non-Hodgkin's Lymphomas (NHL)

IP Estate	Claims extending into 2039		
Combination Potential	Rituximab and Spironolactone		
Designations	Orphan Drug - Mantle Cell Lymphoma		
Molecule Type	Acylfulvene Class		
Target/ MOA	Synthetic Lethality		
Indication Size*	375,000+		
Market Potential*	\$3.75 - 4 Billion		
Clinical Status	Phase 1 Launched in Q4 2023		
Lead Indications	Mantle Cell, Double Hit Lymphomas, DDR Deficient Non- Hodgkin's Lymphomas		

Estimated Annual Globai

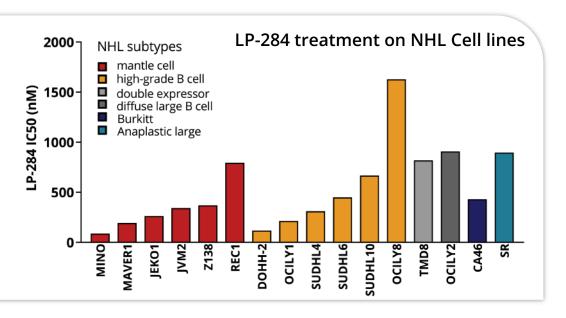
Disease Overview - B-cell Non-Hodgkin's Lymphomas

Superior responses to LP-284 are observed in several B-cell lymphomas

Annual Global Market Potential: \$ 4 Billion

(NHL)

B-cell Non-Hodgkin's Lymphomas


- NHL is a cancer of the lymphatic system and occurs when normal B-cells, T-cells, or Natural Killer (NK)-cells grow out of control
- There are over 30 subtypes of NHL including mantle cell lymphoma (MCL), high-grade b-cell lymphoma(HGBL), and diffuse large B-cell lymphoma

7th

leading cause of cancer in the US

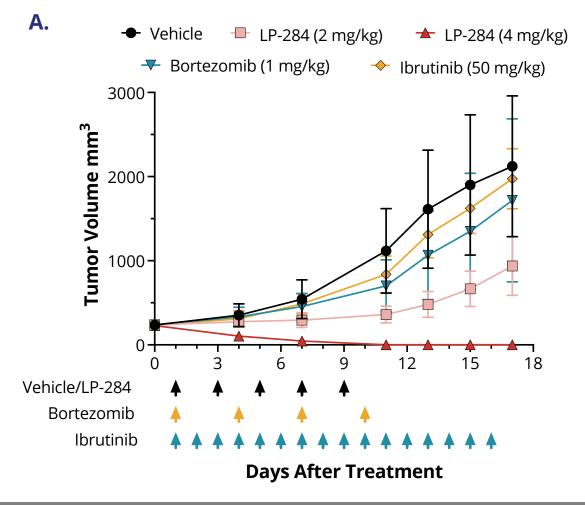
4%

of all cancers are NHL in the US

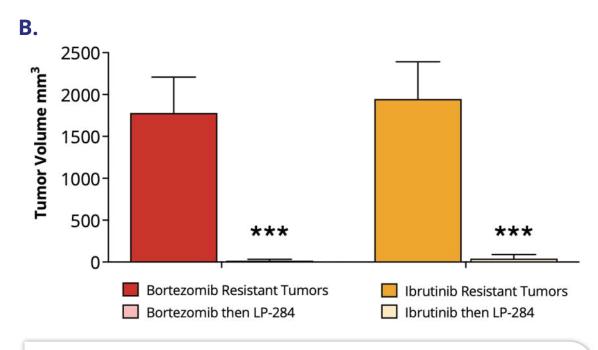
Mantle Cell Lymphoma

(MCL)

High-Grade B-Cell Lymphoma


(HGBL)

- A rare, aggressive type of B-cell NHL distinguished by overexpression of CCND1
- Small-medium size cancer cells in the lymph nodes, spleen, bone marrow, blood, and gastrointestinal system
- Rarely curable with current standard-of-care treatments and poor prognosis
- A rare, aggressive type of B-cell NHL characterized by rearrangements of MYC and BCL2 and/or BCL6 genes
- Often occurs in neck, armpit, groins and can spread to central nervous system
- No standard treatment approach and poor prognosis.


Preclinical Results – LP-284

Superior responses to LP-284 are observed in several NHLs including those resistant to SOC agents

LP-284 has drastically reduced MCL Tumor Volumes in Mice compared to FDA Approved Agents

LP-284 reduced the volume of tumors resistant to Ibrutinib and Bortezomib

Nearly all MCL Patients Relapse from SOC Therapies

In cell-derived xenograft MCL models, LP-284 can completely reduce tumors that are resistant to Ibrutinib and Bortezomib

Clinical Trial - LP-284 Phase 1 Trial

Ph. 1 trial launched in Q4 2023 for recurrent NHLs with scarce therapeutic options

First-In-Human Trial for **LP-284**

Phase 1A

30-35

Patients expected to be enrolled \$4.0Bn

Estimated global annual market potential in NHL

Sep 2023 IND application cleared by FDA

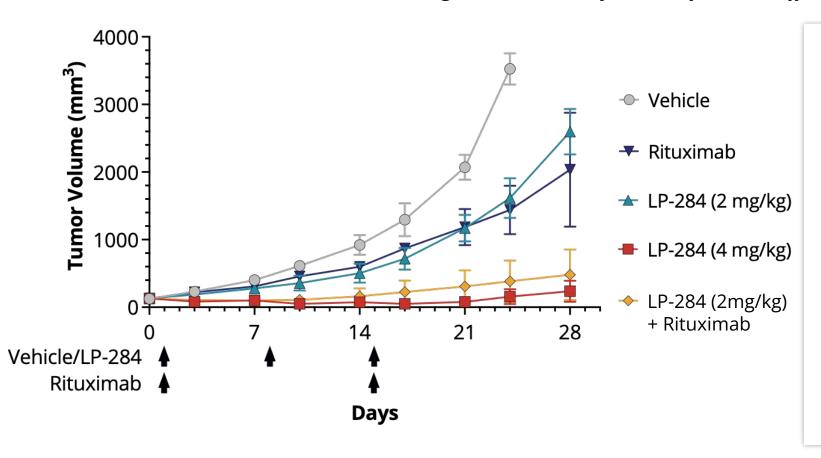
Q4 2023 Launched phase 1 trial

Q1 2024 Initial patients dosed

Recent Highlights

- Trial launched and multiple cites activated in the US
- Multiple additional sites across the US including industry-leading institutes like UT San Antonio to be enrolled

Program Highlights


- LP-284 has nanomolar potency against several aggressive non-Hodgkin's lymphomas (NHL) including mantle cell lymphoma (MCL) and high-grade b-cell lymphoma (HGBL)
- FDA granted Orphan Drug Designation for MCL and HGBL
- In-vivo LP-284 can rescue MCL xenograft tumors resistant to Ibrutinib and Bortezomib
- Enhanced potency when used in combination with rituximab in HGBL xenograft models

Preclinical Data on Combination Therapy – LP-284

LP-284 was highly synergistic when used in combination with rituximab in HGBL xenograft models

High Grade B-cell Lymphoma (HGBL) Tumor Volumes in Mice LP-284 – in combination with rituximab

HGBL have universally poor prognosis after chemotherapy, such as EPOCH, Hyper CVAD, and CODOX-M/IVAC - all are given with Rituximab. Novel agents are critically needed for more effective treatments in HGBL

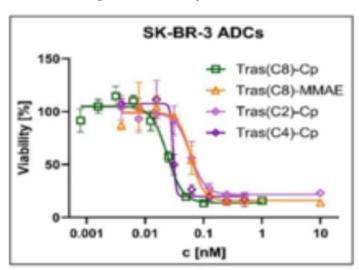
LP-284 treatment led to **near complete tumor growth** inhibition and showed synergistic effects with the FDA-approved agent rituximab

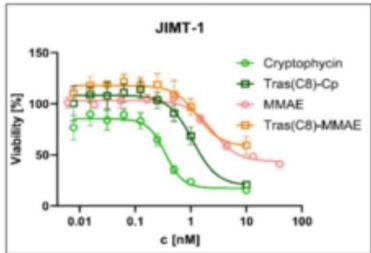
At half of the optimal dose (2mg/kg v. 4mg/kg) **LP-284 when combined with rituximab led to a 63% improvement** in anti-cancer activity (as measured by tumor volumes) versus rituximab alone

- Rituximab alone = 57% TGI
- → LP-284+ Rituximab = 93% TGI

Results presented at:

Advanced the development, synthesis, and preclinical proof-of-concept of a novel, highly potent, cryptophycin-based ADC


ADC Collaboration Update



Collaboration Led by Professor Norbert Sewald, Ph.D.

High HER2 Expression

Moderate HER2 Expression

Key Highlights

- The cryptophycin(Cp) drug-payload and Cp-ADC averaged an 80% cancer cell kill rate
- In a moderate Her2 expression model, the Cp-ADC with a DAR* of 8 (Tras(C8)-Cp) was about 10x more potent than a DAR 8 MMAE**-ADC (Tras (C8)-MMAE)
- Cp-ADC showed highly efficient anti-tumor activity in all six cancer cell lines (breast, bladder, colorectal, gastric, pancreatic, and ovarian cancer) with EC-50 values in the picomolar to single-digit nanomolar range
- Additional studies are now being developed to further validate and expand these findings to obtain a deeper understanding of the genomic and biomarker correlates of payload efficacy

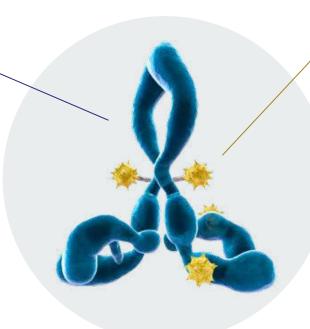
*drug to antibody ratio

**Monomethyl auristatin E - potent tubulin inhibitor that is used as the payload for four FDA-approved ADCs

ADC Optimization Modules powered by RADR® AI

Our module can help identify optimal targets for specific tumors while ensuring minimal off target toxicity, which is critical in developing effective clinical treatments.

Lantern's ADC Module



Current Capability

- Analyzed 1.1B data points using biological datasets to predict potential target antigens
- Identified diverse cancer target antigens
- Considers genomic and mutational profiles for improved treatment response

Future Directions

- Analyzing targets based on cancer stage and type
- Identifying target antigen pairs for bispecific ADCs

2 Payload and Linker Optimization

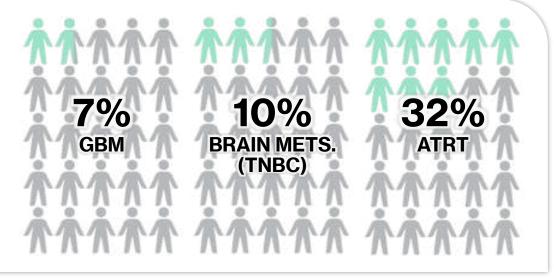
Current Capability

- Strategic methodology for uncovering novel payloads
- Repurposing cytotoxic agents for targeted treatment

Future Directions

- ML based features to identify markers of response for:
 - 1. effective tumor targeting
 - 2. mitigating toxic side effects
- Predicts effective combinations of key components of ADC for tumor selective targeting

Starlight therapeutics

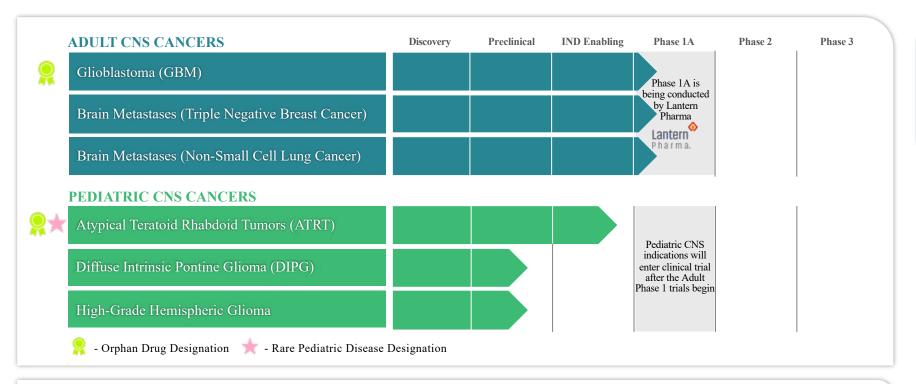

Born from Billions of Datapoints & AI, Starlight has Blockbuster Potential to Provide New Treatment Options for 500,000+ Patients

There are over 120 types of central nervous system (CNS) and brain cancers and a majority have no effective treatment options

- No effective single-agent therapies have been approved for glioblastoma (GBM) in over 18 years
- Effective therapies are needed to improve outcomes for brain metastases patients
- There are no approved therapies for atypical teratoid rhabdoid tumors (ATRT)

S Year Survival Rates of CNS And Brain Cancers Remain Low Despite Advances in Cancer Therapies

- 500,000+ Potential CNS Patients Globally*
- Multiple Clinical-stage CNS Cancer Indications
- STAR-001 has been Granted FDA Orphan Drug Designation for GBM & ATRT and Rare Pediatric Disease Designation for ATRT
- **World Class Collaborators** from Johns Hopkins, UT Health San Antonio, and Children's Brain Tumor Network
- 4 US Patents & Patent Applications and 10+ Foreign Pending Patent Applications


*Estimated Annual Global Numbers

Antern Pharma

NASDAQ: LTRN 33

Multiple Clinical Trials are Planned for STAR-001

- Nanomolar potency gives multiple shots on goal in CNS cancers
- Excellent blood brain barrier permeability
 as predicted by top-performing Al algorithms
 and confirmed in multiple in vivo studies
- Improved bioavailability over current SOC agents

- Target CNS indications have limited or no effective therapies
- Upcoming Phase 1B/2 trial for adult CNS cancers planned for 2nd half 2024
- Upcoming **Phase 1 trial** planned for pediatric CNS cancers

STAR-001 has Multi-billion Market Potential In CNS Cancers

\$5-6 billion (USD)

Global Annual Estimated Market Potential

Glioblastoma

\$1.5-2 billion

Annual US Cases 13K

Other HGGs

\$1.2 billion

Annual US Cases 22K

Brain Mets. (Lung, Breast)

\$3 billion

Annual US Cases 100K

ATRT & Pediatric CNS

\$0.1 billion

ATRT Annual US Cases 600+

NASDAQ: LTRN

IP Portfolio

Intellectual property portfolio builds expanding protections with additional barriers to competition

100+ Issued Patents & Pending Applications

5 Families

Drug Sensitivity & Response Signatures using Biomarkers

11 Families

Methods of Use

2 Families

Composition of Matter

RADR

LP-300

LP-184

LP-284

2041

Identifying suitable cancer types and subtypes for a drug candidate

2041

Determining sensitivity to LP-300 based on biomarkers

2041

Treating rhabdoid tumors with LP-184

2040

Composition of Matter

2043

Applying ensemble methods in machine learning and deep learning for drug discovery

2041

Treating female (nonsmoker) patients with nonsmall cell lung cancer

2039

Treating solid tumor cancers using LP-184 and biomarker

2041

Treating pancreatic cancer using LP-184

2041

Treating blood cancers with LP-284

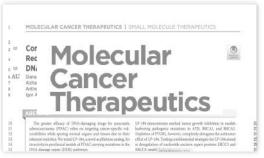
2044

Predicting blood-brain barrier permeability

Increasing cancer patient survival time using LP-300

2042

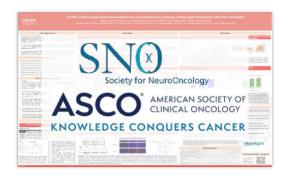
Treating cancers with spironolactone and LP-184


Recent Posters/ Publications

Highlighting the strong validation of RADR® insights, de-risking the development of Lantern's drug candidates

Preclinical Efficacy of LP-184, a Tumor Site Activated Synthetic Lethal Therapeutic, in Glioblastoma

Oct 2023


Conditional Dependency of LP-184 on Prostaglandin Reductase 1 Is Synthetic Lethal in Pancreatic Cancers with DNA Damage Repair Deficiencies

Oct 2023

Targeting homologous recombination deficiencies in B-cell non-Hodgkin's lymphomas with the novel anti-tumor small molecule LP-284

Sep 2023

LP-184, a clinical stage acylfulvene-derived tumor site activated small molecule, inhibits adult and pediatric CNS tumor cell growth

Aug 2023

LP-284, a small molecule acylfulvene, exerts potent antitumor activity in preclinical non-Hodgkin's lymphoma models and in cells deficient in DNA damage repair

June 2023

Artificial intelligence platform, RADR®, aids in the discovery of DNA damaging agent for the ultrarare cancer Atypical Teratoid Rhabdoid Tumors

Oct 2022

Financial Highlights And Cap Table

Solid financial position and capital efficiency fuel continued growth anticipated to provide a cash runway into at least Q3 2025

- Approx. **\$41.3 M of cash, cash equivalents and marketable securities** as of December 31st, 2023
- Committed to creating enduring growth and value for LTRN shareholders

LANTERN PHARMA INC. (LTRN)	
Exchange	Nasdaq
52 Week Per Share Price Range (through 4/15/24)	\$2.38 - \$11.99
Common Shares Outstanding* (12/31/23)	10.72M
Warrants (12/31/23)	178K
Options (Employees, Management and Directors) (12/31/23)	1.09M
Fully Diluted Shares Outstanding* (12/31/23)	11.99M

*This includes a share repurchase of 145,348 shares of LTRN common stock at a purchase price of \$3.44 per share in November 2023

Lantern's Board of Directors

Donald "Jeff" Keyser, J.D., MPH, Ph.D. David Silberstein, Ph.D.

Non-executive Chairman

Vijay Chandru, Ph.D.

Maria Maccecchini, Ph.D.

Panna Sharma

CEO and President

Leadership

PANNA SHARMA

Chief Executive Officer & President

- President & CEO, Cancer Genetics (CGIX)
- CEO & Managing Partner, TSG Partners
- Managing Member, Oncospire Genomics (Joint Venture with Mayo Clinic)
- · CSO, iXL Services

DAVID MARGRAVE

Chief Financial Officer

PRIOR:

- 20+ years of oncology focused management experience
- Chairman, Texas Healthcare & Bioscience Institute (current)
- President & CAO, BioNumerik Pharmaceuticals

KISHOR BHATIA, Ph.D.

Chief Scientific Officer

PRIOR:

- 40+ years experience in cancer research
- Director, Children's cancer Center Riyadh
- Director Office of AIDS Malignancy Program, NCI

REGINALD EWESUEDO, M.D., M.S.c., MBA

VP of Clinical Development

PRIOR:

- · VP, Kymera Theraputics
- VP, Tesaro/GSK
- · VP, Pfizer

MARC CHAMBERLAIN M.D.

Chief Medical Officer

PRIOR:

- Co-director of Neuro-oncology program, UC San Diego; USC; Moffitt Cancer Center; Fred Hutchinson Cancer Center
- Medical Director, Cascadian Therapeutics; SeaGen; Systlmmune; Pionyr Immunotherapeutics

PETER CARR

Principal Software Architect

PRIOR:

- Sr. Software Engineer, Broad Institute Cancer Program
- Sr. Programmer/Analyst, Boston Univ Science & Math Education Center

Investment Highlights

Lantern Pharma (NASDAQ: LTRN)

Proven drug rescue and drug development process and in the clinic with 3 compounds and accelerating additional compounds and combinations to clinical trials...potentially saving tens of millions of dollars and years of development

Several compounds in place with multiple targeted indications, including LP-184 and LP-284 (received Orphan Disease Designations in pancreatic and GBM & Rare Pediatric Disease Designation for ATRT), which can help accelerate development

Growing AI based platform with clear roadmap to 100+ Bn. datapoints focused exquisitely on cancer therapeutic development and companion Dx in a high growth, high demand \$12+ Bn. market

Proven and growing library of AI & machine-learning methodologies published at ASCO, AACR, and SNO used to generate novel IP & patents and accelerate discovery by potentially years

Focused on cancer drug market segments with clear clinical need, understood mechanisms, targeted patient populations that exceed 1 million, and multi-billion USD in annual sales potential

Experienced and innovative management team w/ 70+ years experience in cancer and a passion to change the cost and outcome for cancer patients by using Al and genomics – paradigm changing technologies

A novel Al-powered ADC platform with the potential to develop and out-license or partner ADC assets in early phases

Industry leading collaborations with Johns Hopkins, UT Health San Antonio, Fox Chase Cancer Center, and University of Bielefeld

2024 Investment Highlights

Recent Milestones

- Dosed initial patients in the Harmonic™ clinical trial
- Launched Phase 1A basket trial for LP-184 and multiple patients dosed
- Launched Phase 1A trial for LP-284 and initial patients dosed
- Advanced collaboration with Bielefeld University to develop breakthrough ADCs using AI
- Developed industry leading AI algorithms to predict any compound's ability to cross the BBB
- Expanded RADR® Al platform to 60+ billion datapoints
- Received orphan drug designation for LP-284 in High-Grade B-cell Lymphoma

Upcoming Milestones

- Advance and expand phase 1 clinical trial for LP-184 and LP-284
- **P** Expand enrollment of **The Harmonic™ Trial** to targeted sites in Asia
- **Explore** licensing and partnership opportunities with biopharma companies
- Expand RADR® AI platform to 100+ billion datapoints and develop additional collaborations
- Progress Starlight Therapeutics towards Ph. 1 / 2 adult & pediatric clinical trials
- Further ADC preclinical and IND development to support future Phase 1 launch and/or partnership
- Pevelop combination programs for LP-184, LP-284, and LP-300 with existing approved drugs

Lantern Pharma

NASDAQ: LTRN

IR Contact:
IR@lanternpharma.com
1-972-277-1136

www.lanternpharma.com

X @LanternPharma

