

SACRAMENTO CITY UNIFIED SCHOOL DISTRICT 5735 47th Avenue Sacramento, California 95824

DLR GROUP 1050 20th Street, Suite 250 Sacramento, California 95939

EMG / A Bureau Veritas Company 10461 Mill Run Circle, Suite 1100 Owings Mills, Maryland 21117 800.733.0660 www.emgcorp.com

EMG CONTACT:

PREPARED BY:

Kaustubh Anil Chabukswar Program Manager 800.733.0660 x7512 kachabukswar@emgcorp.com

EMG PROJECT #:

136988.19R000-038.268

DATE OF REPORT:

October 25, 2019

ONSITE DATE:

September 19 & 20, 2019

ZERO NET ENERGY ASHRAE LEVEL II AUDIT

NICHOLAS ELEMENTARY SCHOOL

6601 Steiner Drive

Sacramento, California 95823

TABLE OF CONTENTS

Certification		1
1 Executive Summary		2
1.1. Energy Conservation Measures		3
2 Introduction		В
3 Facility Overview and Existing Conditions		9
3.1. Building Occupancy and Point of Contact		9
3.2. Building Heating, Ventilating and Air-Conditioning (HVAC)		
3.3. Lighting		
4 Utility Analysis		
4.1. Electricity		
4.2. Natural Gas		
4.3. Water and Sewer		
5 Renewable Energy Discussions		
5.1. Rooftop Solar Photovoltaic Feasibility		
6 Operations and Maintenance Plan7 Appendices		
7 Appendices		22
APPENDIX A:	Glossary of Terms	3
APPENDIX B:	. Mechanical Equipment Inventor	y
APPENDIX C:	Lighting System Schedule	Э
APPENDIX D:	ECM Checklis	t
APPENDIX E:	ECM Calculations	3
APPENDIX F:	Solar P\	/

Certification

EMG has completed an Energy Audit of Nicholas Elementary School located at 6601 Steiner Drive in Sacramento, California 95823. EMG visited the site on September 19 & 20, 2019.

The assessment was performed at the Client's request using methods and procedures consistent with ASHRAE Level II Energy Audit and using methods and procedures as outlined in EMG's Proposal.

This report has been prepared for and is exclusively for the use and benefit of the Client identified on the cover page of this report. The purpose for which this report shall be used shall be limited to the use as stated in the contract between the client and EMG.

This report, or any of the information contained therein, is not for the use or benefit of, nor may it be relied upon by any other person or entity, for any purpose without the advance written consent of EMG. Any reuse or distribution without such consent shall be at the client's or recipient's sole risk, without liability to EMG.

Estimated installation costs are based on EMG's experience on similar projects and industry standard cost estimating tools including RS Means and Whitestone CostLab. In developing the installed costs, EMG also considered the area correction factors for labor rates for Sacramento, California 95823. Since actual installed costs may vary widely for particular installation based on labor & material rates at time of installation, EMG does not guarantee installed cost estimates and shall in no event be liable should actual installed costs vary from the estimated costs herein. We strongly encourage the owner to confirm these cost estimates independently. EMG does not guarantee the costs savings estimated in this report. EMG shall in no event be liable should the actual energy savings vary from the savings estimated herein.

EMG certifies that EMG has no undisclosed interest in the subject property and that EMG's employment and compensation are not contingent upon the findings or estimated costs to remedy any deficiencies due to deferred maintenance and any noted component or system replacements.

Any questions regarding this report should be directed to Kaustubh Anil Chabukswar at 800.733.0660, ext. 7512.

Prepared by: Noah Strafford

Energy Auditor Project Manager

Reviewed by:

Kathleen Wright

Technical Report Reviewer for

Kathlein Whight

Kaustubh Anil Chabukswar, CEM CRM

Program Manager

1. Executive Summary

The purpose of this Energy Audit is to provide Sacramento City Unified School District and Nicholas Elementary School with a baseline of energy usage and the relative energy efficiency of the facility and specific recommendations for Energy Conservation Measures. Information obtained from these analyses may be used to support a future application to an Energy Conservation Program, Federal & Utility grants towards energy conservation, support performance contracting, justify a municipal bond funded improvement program, or as a basis for replacement of equipment or systems.

Bldg #	Structures Assessed	Building Type	EMG Calculated Area (SF)	Estimated Occupancy
1	001 Main Building	School Building	11,749	160
2	002 Classrooms 3-7	School Building	5,729	100
3	003 classrooms 9-12	School Building	7,276	110
4	P01 Classrooms K-3	Portable School Building	960	20
5	P02 Classrooms P-18	Portable School Building	960	20
6	P03 Classrooms P-1 to P-7	Portable School Building	6,720	90
7	P04-P07 Classrooms P-08 to P-11	Portable School Building	3,840	60
8	P08-P11 Classrooms P-12 to P-17	Portable School Building	5,760	80
9	P12 Restrooms	Portable School Building	480	12

The study included a review of the building's construction features, historical energy and water consumption and costs, review of the building envelope, HVAC equipment, heat distribution systems, lighting, and the building's operational and maintenance practices.

1.1. Energy Conservation Measures

EMG has identified eight Energy Conservation Measures (ECMs) for this property. The savings for each measure is calculated using standard engineering methods followed in the industry, and detailed calculations for ECM are provided in Appendix E for reference. A 10% discount in energy savings was applied to account for the interactive effects amongst the ECMs. In addition to the consideration of the interactive effects, EMG has applied a 15% contingency to the implementation costs to account for potential cost overruns during the implementation of the ECMs.

The following table summarizes the recommended ECMs in terms of description, investment cost, energy consumption reduction, and cost savings.

Summary of Financial Information for Recommended Non-Renewable Energy Conservation Measures

Item	Estimate
Net Initial ECM Investment (Current Dollars Only)	\$152,242 (In Current Dollars)
Estimated Annual Cost Savings (Current Dollars Only)	\$20,782 (In Current Dollars)
ECM Effective Payback	7.33 years
Estimated Annual Energy Savings	40.4%
Estimated Annual Energy Utility Cost Savings (Excluding Water)	35.0%

Solar Photovoltaic (PV) Screening for NICHOLAS ELEMENTARY SCHOOL

Solar Rooftop Photovoltaic Analysis					
Estimated Number of Panels	273				
Estimated KW Rating	86	KW			
Potential Annual kWh Produced	331,884	kWh			
% of Current Electricity Uses	61.8%				
Financial Summary					
Investment Cost	\$301,000				
Estimated Energy Cost Savings	\$24,422				
Payback without Incentives	12.3	Years			
Incentive Payback but without SRECs	7.4	Years			
Payback with All Incentives	7.4	Years			

Key Metrics to Benchmark the Subject Property's Energy Usage Profile

- <u>Building Site Energy Use Intensity</u> The sum of the total site energy use in thousands of Btu per unit of gross building area. Site
 energy accounts for all energy consumed at the building location only not the energy consumed during generation and transmission
 of the energy to the site.
- <u>Building Source Energy Use Intensity</u> The sum of the total source energy use in thousands of Btu per unit of gross building area.
 Source energy is the energy consumed during generation and transmission in supplying the energy to your site.
- Building Cost Intensity This metric is the sum of all energy use costs in dollars per unit of gross building area.

Greenhouse Gas Emissions - Although there are numerous gases that are classified as contributors to the total for Greenhouse Emissions, the scope of this energy audit focuses on carbon dioxide (CO₂). Carbon dioxide enters the atmosphere through the burning of fossil fuels (oil, natural gas, and coal), solid waste, trees and wood products, and also as a result of other chemical reactions (e.g., manufacture of cement).

Site Energy Use Intensity (Eui)	Rating
Current Site Energy Use Intensity (EUI)	25 kBtu/ft²
Post ECM Site Energy Use Intensity (EUI)	15 kBtu/ft²
Source Energy Use Intensity (Eui)	Rating
Current Source Energy Use Intensity (EUI)	65 kBtu/ft²
Post ECM Source Energy Use Intensity (EUI)	42 kBtu/ft ²
Building Cost Intensity (Bci)	Rating
Current Building Cost Intensity	\$1.02/ft²
Post ECM Building Cost Intensity	\$0.67/ft²

Summary of the Greenhouse Gas Reductions from Recommended Non-Renewable Energy Conservation Measures

The following table provides a summary of the projected Greenhouse Gas Emissions reductions as a result of the recommended Energy Conservation Measures:

Greenhouse Gas Emissions Reduction						
Estimated Annual Thermal Energy Reduction 445 MMbtu						
Total CO ₂ Emissions Reduced	33.66 MtCO ₂ /Yr.					
Total Cars Off the Road (Equivalent)*	6					
Total Acres of Pine Trees Planted (Equivalent)*	8					

^{*}Equivalent reductions per DOE emissions calculation algorithms

Zero Net Energy Analysis for Renewable and Non-Renewable Recommended Measures

Zero Net Energy Analysis						
Building Annual Net Energy Consumption	1,107,361 kBtu					
Total Annual Energy Savings for Non-Renewable Energy Measures	444,775 kBtu					
Total Annual Energy Savings from Renewable Energy Measures	449,988 kBtu					
Total Annual Energy Savings	894,763 kBtu					
Net Energy Consumption from Grid Post Implementation	212,598 kBtu					

Zero Net Energy Analysis	
% Energy Reduction (Annual Energy-Net Energy) / (Annual Energy)	19%

Energy Conservation Measures Screening:

EMG screens ECMs using two financial methodologies. ECMs which are considered financially viable must meet both criteria.

1. <u>Simple Payback Period</u> –The number of years required for the cumulative value of energy or water cost savings less future non-fuel or non-water costs to equal the investment costs of the building energy or water system, without consideration of discount rates. ECMs with a payback period greater than the Expected Useful Life (EUL) of the project are not typically recommended, as the cost of the project will not be recovered during the lifespan of the equipment. These ECMs are recommended for implementation during future system replacement. At that time, replacement may be evaluated based on the premium cost of installing energy efficient equipment.

$$Simple\ Payback = \frac{Initial\ Cost}{Annual\ Savings}$$

2. <u>Savings-to-Investment Ratio (SIR)</u> – The savings-to-investment ratio is the ratio of the present value savings to the present value costs of an energy or water conservation measure. The numerator of the ratio is the present value over the estimated useful life (EUL) of net savings in energy or water and non-fuel or non-water operation and maintenance costs attributable to the proposed energy or water conservation measure. The denominator of the ratio is the present value of the net increase in investment and replacement costs less salvage value attributable to the proposed energy or water conservation measure. It is recommended that energy efficiency recommendations should be based on a calculated SIR, with larger SIRs receiving a higher priority. A project is typically only recommended if SIR is greater than or equal to 1.0, unless other factors outweigh the financial benefit.

$$SIR = \frac{Present\ Value\ (Annual\ Savings, i\%, EUL)}{Initial\ Cost}$$

List of	List of Recommended Energy Conservation Measures For Nicholas Elementary School																		
ECM#	Description of ECM	Projected Initial Investment	Estimated Ar Savi		Estimated Annual Water Savings	Estimated Cost Savings	Estimated Annual O&M Savings	Total Estimated Annual Cost Savings	Simple Payback	S.I.R.	Life Cycle Savings	Expected Useful Life (EUL)							
			Steam	Electricity															
		\$	Mlbs	kWh	kgal	\$	\$	\$	Years		\$	Years							
No/Low	Cost Recommendations			T		T			T	T	1								
1	Install Low Flow Faucet Aerators	\$548	0	0	141	\$6,047	\$0	\$6,047	0.09	94.07	\$51,037	10.00							
	Location: Restrooms And Classrooms					. ,	·	· ,											
	Totals for No/Low Cost Items	\$548	0	0	141	\$6,047	\$0	\$6,047	0.09										
Capital Cos	t Recommendations																		
	Reduce HVAC Hours of Operation	\$12,776	_	16,992		\$3,805	\$0	\$3,805	3.36	3.56	\$32,647								
1	Location: Throughout		0		0							15.00							
2	Install Timers On Exhaust Fans		0.4 0.00	\$1,062	0	4,642	0	\$1,564	\$0	\$1,564	0.68	17.59	\$17,611	15.00					
	Location: Throughout	φ1,002	U	4,042	U	ψ1,504	Q O	Ψ1,004	0.00	17.59	\$17,011	15.00							
	Replace Existing Water Heater With New Energy Efficient Units														***				
3	Location: P01	\$1,002	0	863	0	\$160	\$0	\$160	6.27	2.19	\$1,197	18.00							
4	Upgrade Building Lighting to LED and Install Automatic Lighting Controls	- \$95,632	\$05.632	ΦΩΕ C22		0	46,940	0	\$8,692	\$5,767	\$14,459	6.61	1.80	\$76,979	15.00				
	Location: Building Interior And Exterior		O	40,940	Ü	ψ0,092	φ5,767	ψ14,4 <i>3</i> 5	0.01	1.00	Ψ10,919	13.00							
	Re-Commission The Building & Its Control Systems	#40.400	0	6,372	0				40.00	4.40		45.00							
5	Location: Throughout	\$19,466	0	0,372	0	\$1,797	\$0	\$1,797	10.83	1.10	\$1,988	15.00							
6	Install Low Flow Restroom Flush Tank Toilets	\$1,897	0	0	461	\$16,063	\$0	\$16,063	0.12	125.95	\$237,081	20.00							
	Location: Restrooms And Locker Rooms																		
	Total For Capital Cost	\$131,836	0	75,810	461	\$32,082	\$5,767	\$37,848	3.48										
	Interactive Savings Discount @ 10%		0	-7,581	-60	-\$3,813	-\$577	-\$4,390											
	Total Contingency Expenses @ 15%	\$19,858																	
#NAME?		\$152,242	0	68,229	542	\$34,316	\$5,190	\$39,506	3.85										

In addition to the above measures, EMG has identified the following measure(s) but has not recommended as they fail to meet the above-mentioned financial criteria of SIR>1.0. Thus, EMG has classified the measure(s) as recommended for consideration.

List of	List of Recommended For Consideration Energy Conservation Measures For Nicholas Elementary School																			
ECM#	Description of ECM	Initial Investment	Annual Ener	gy Savings	Annual Water Savings	Cost Savings	Estimated Annual O&M Savings	Total Estimated Annual Cost Savings	Payback	S.I.R.	Life Cycle Savings	Expected Useful Life (EUL)								
		\$	Steam	Electricity	kgal	\$	\$	\$	Years		\$	Years								
	Replace External Windows	0004.000		00.040		#0.004	# 00	#0.000	07.00	0.04	#00.054	05.00								
1	Location: Throughout	\$224,930	\$224,930	\$224,930	\$224,930	\$224,930	\$224,930	\$224,930	\$224,930	\$224,930	0	30,643	0	\$8,221	\$82	\$8,303	27.09	0.64	-\$80,351	25.00
	Install Low Flow Tankless Restroom Fixtures	¢12.201	0	0	0	¢17.401	\$ 0	\$17.491	0.71	#DIV/0!	\$196,425	15.00								
2	Location: Restrooms	\$12,381	0	0	0	\$17,491	\$0	Ψ17,431	0.71	#DIV/U!	₱ 1 9 0,423	15.00								
Total for Ir	nprovements	\$224,930	0	30,643	0	\$8,221	\$82	\$8,303	27.09											

2. Introduction

The purpose of this Energy Audit is to provide Nicholas Elementary School and Sacramento City Unified School District with a baseline of energy usage, the relative energy efficiency of the facility, and specific recommendations for Energy Conservation Measures. Information obtained from these analyses may be used to support a future application to an Energy Conservation Program, Federal and Utility grants towards energy conservation, as well as support performance contracting, justify a municipal bond-funded improvement program, or as a basis for replacement of equipment or systems.

The energy audit consisted of an onsite visual assessment to determine current conditions, itemize the energy consuming equipment (i.e. Boilers, Make-Up Air Units, DWH equipment); review lighting systems both exterior and interior; and review efficiency of all such equipment. The study also included interviews and consultation with operational and maintenance personnel. The following is a summary of the tasks and reporting that make up the Energy Audit portion of the report.

The following is a summary of the tasks and reporting that make up the Energy Audit portion of the report.

ENERGY AND WATER USING EQUIPMENT

 EMG has surveyed the common areas, office areas, rooms, maintenance facilities and mechanical rooms to document utility-related equipment, including heating systems, cooling systems, air handling systems and lighting systems.

BUILDING ENVELOPE

EMG has reviewed the characteristics and conditions of the building envelope, checking insulation values and conditions. This review
also includes an inspection of the condition of walls, windows, doors, roof areas, insulation and special use areas

RECOMMENDATIONS FOR ENERGY SAVINGS OPPORTUNITIES

Based on the information gathered during the on site assessment, the utility rates, as well as recent consumption data and engineering
analysis, EMG has identified opportunities to save energy and provide probable construction costs, projected energy/utility savings and
provide a simple payback analysis.

ANALYSIS OF ENERGY CONSUMPTION

Based on the information gathered during the on-site assessment, EMG has conducted an analysis of the energy usage of all
equipment, and identified which equipment is using the most energy and what equipment upgrades may be necessary. As a result,
equipment upgrades, or replacements are identified that may provide a reasonable return on the investment and improve maintenance
reliability.

ENERGY AUDIT PROCESS

- Interviewing staff and review plans and past upgrades
- Performing an energy audit for each use type
- Performing a preliminary evaluation of the utility system
- Analyzing findings, utilizing ECM cost-benefit worksheets
- Making preliminary recommendations for system energy improvements and measures
- Estimating initial cost and changes in operating and maintenance costs based on implementation of energy efficiency measures
- Ranking recommended cost measures, based on the criticality of the project and the largest payback

REPORTING

The EMG Energy Audit Report includes:

- A comprehensive study identifying all applicable Energy Conservation Measures (ECMs) and priorities, based on initial cost and payback
- A narrative discussion of building systems/components considered and a discussion of energy improvement options;
- A summary of ECMs including initial costs and simple paybacks, based on current utility rates and expected annual savings.

3. Facility Overview and Existing Conditions

3.1. Building Occupancy and Point of Contact

Facility Schedule						
Hours of Operations / Week	35					
Operational Weeks / Year	36					
Estimated Facility Occupancy	651					
% of Male Occupants	50%					

Point Of Contact						
Point of Contact Name	Ken Ramirez					
Point of Contact Title	SPOM1					
Point of Contact – Contact Number	(916) 395-4500					

3.2. Building Heating, Ventilating and Air-Conditioning (HVAC)

Description:

Heating and cooling of permanent buildings 001-003 is provided primarily by central split AC systems with natural gas forced-air furnaces. Packaged rooftop units provide additional heating and cooling to building 001. The portable units are served by a mixture of wall mounted heat pumps and wall mounted gas/ electric package units.

The Mechanical Equipment Schedule in Appendix E contains a summary of the HVAC Equipment at the property.

Building Central Heating System					
Primary Heating System	Forced Air Furnace and Rooftop Packaged Units				
Secondary Heating System	Wall Mounted Package Units				
Hydronic Distribution System	Not Applicable				
Primary Heating Fuel	Natural Gas				
Heating Mode Set-point	69 °F				
Heating Mode- Set-back Temperature	53 °F				

Building Cooling System				
Primary Cooling System	Split Systems			
Secondary Cooling System	Wall Mounted Package Units			
Hydronic Distribution System	Not Applicable			
Cooling Mode Set-point	73 °F			
Cooling Mode- Set-back Temperature	93 °F			

Air Distribution System				
Building Ventilation	Roof-top Exhaust Fans			
On-Demand Ventilation System in Use?	No			
Energy Recovery Wheel / Enthalpy Wheel Exhaust Fans	No			

Domestic Hot Water System				
Primary Domestic Water Fuel	Natural Gas			

3.3. Lighting

Description:

The lighting in the school building primarily consists of T8 linear fluorescent lamp fixtures in classrooms and hallways. The fixtures were observed to be operating on bi-level mode in the classrooms. The exterior lights were primarily High Intensity Discharge (HID) fixtures.

The detailed lighting schedule and the proposed LED alternative is provided in Appendix C

4. Utility Analysis

Establishing the energy baseline begins with an analysis of the utility cost and consumption of the building. Utilizing the historical energy data and local weather information, we evaluate the existing utility consumption and assign it to the various end-uses throughout the buildings. The Historical Data Analysis breaks down utilities by consumption, cost and annual profile.

This data is analyzed, using standard engineering assumptions and practices. The analysis serves the following functions:

- Allows our engineers to benchmark the energy and water consumption of the facilities against consumption of efficient buildings of similar construction, use and occupancy.
- Generates the historical and current unit costs for energy and water
- Provides an indication of how well changes in energy consumption correlate to changes in weather.
- Reveals potential opportunities for energy consumption and/or cost reduction. For example, the analysis may indicate that there is
 excessive, simultaneous heating and cooling, which may mean that there is an opportunity to improve the control of the heating and
 cooling systems.

By performing this analysis and leveraging our experience, our engineers prioritize buildings and pinpoint systems for additional investigation during the site visit, thereby maximizing the benefit of their time spent on-site and minimizing time and effort by the customer's personnel.

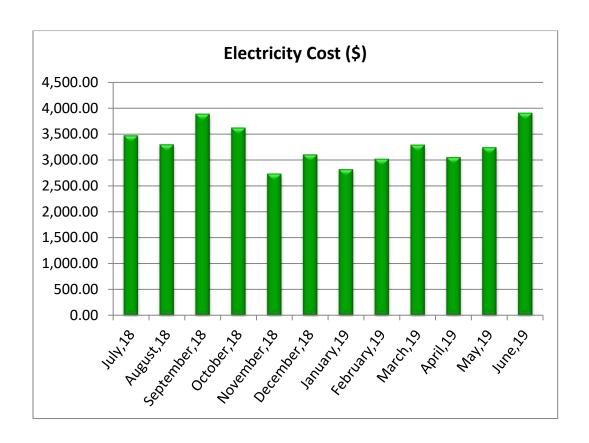
Based upon the utility information provided about the Sacramento City Unified School District, the following energy rates are utilized in determining existing and proposed energy costs.

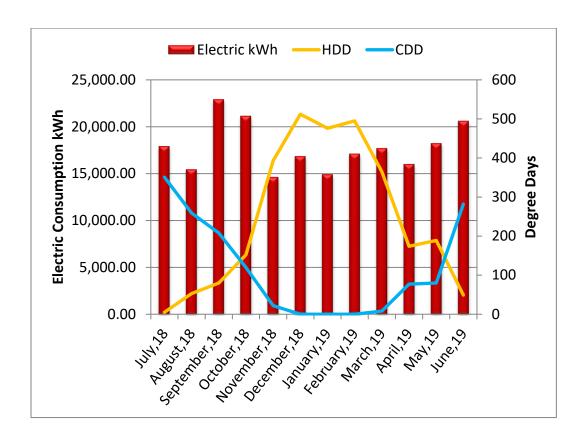
Utility Rates used for Cost Analysis

Electricity (Blended Rate) Natural Gas		Water / Sewer
\$0.19 /kWh	\$1.32 /therm	\$34.86 /kGal

The data analyzed provides the following information: 1) breakdown of utilities by consumption, 2) cost and annual profile, 3) baseline consumption in terms of energy/utility at the facility, 4) the Energy Use Index, or Btu/sq. ft, and cost/sq. ft. For multiple water meters, the utility data is combined to illustrate annual consumption for each utility type.

4.1. Electricity

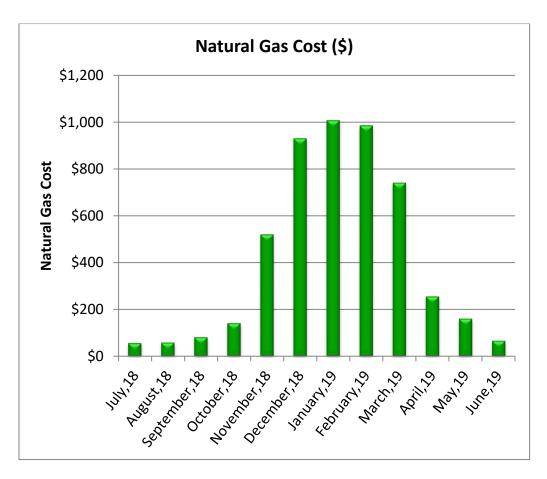

PG&E satisfies the electricity requirements for the facility. The primary end uses for electric utility compromises of lighting, cooling, office/school equipment, and appliances in the break room.


The table below provides the electric use for the period of twelve continuous months.

Electric Consumption and Cost Data

Billing Month	h Consumption Unit Cost/Kwh		Total Cost
July,18	17,917.18	0.19	3,477.77
August,18	15,451.44	0.21	3,304.45
September,18	22,903.85	0.17	3,895.91
October,18	21,138.13	0.17	3,628.70
November,18	vember,18 14,630.54 0.19		2,740.42
December,18	December,18 16,849.52 0.18		3,110.05
January,19	January,19 14,921.75 0.1		2,825.98
February,19	17,109.62	0.18	3,026.25
March,19	17,699.93	0.19	3,297.92
April,19	16,011.68	0.19	3,059.49
May,19	18,229.53	0.18	3,249.92
June,19	June,19 20,609.31 0.1		3,913.78
Total/average	213,472.48	0.19	39,530.64

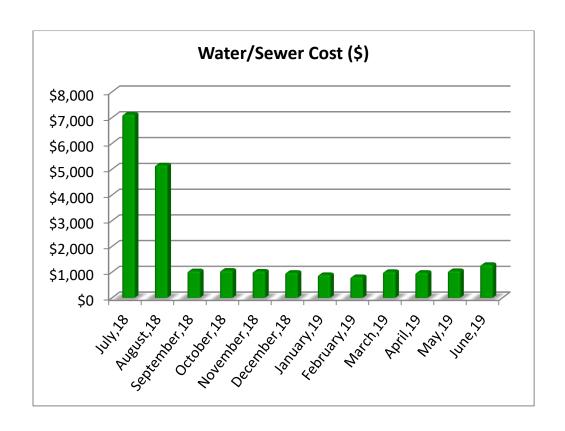
4.2. Natural Gas

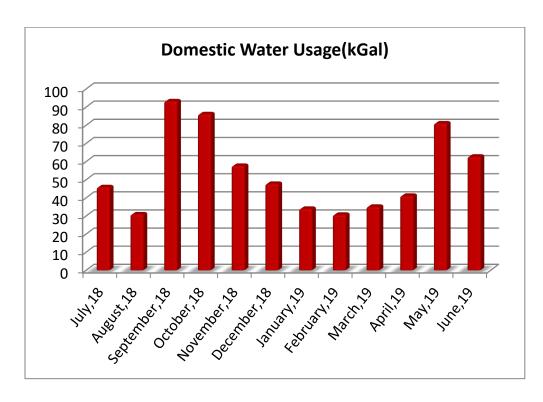

SMUD Gas satisfies the natural gas requirements of the facility. The primary end use of natural gas is for building heating, domestic water heating, and cooking in the cafeteria.

The analysis of the 12 months of consumption is provided below.

Natural Gas Consumption and Cost Data

Billing Month	Consumption (Therms)	·		
July,18	26	\$2.19	\$57	
August,18	28	\$2.08	\$59	
September,18	53	\$1.53	\$82	
October,18	109	\$1.30	\$142	
November,18	427	\$1.22	\$521	
December,18	681	\$1.37	\$930	
January,19	781 \$1.29		\$1,007	
February,19	February,19 750 \$1.31		\$985	
March,19	March,19 559 \$1.32		\$741	
April,19	200	\$1.28	\$256	
May,19	123	\$1.31	\$161	
June,19	51	\$1.32	\$67	
Total/average	3,790	\$1.32	\$5,008	




4.3. Water and Sewer

The City of Sacramento satisfies the water requirements for the facility. The primary end use of water is the plumbing fixtures such as staff showers, water closets, and lavatories. The table below provides the twelve continuous months' worth of consumption and cost for water in kGal for the facility.

Water and Sewer Consumption and Cost Data

Billing Month	Consumption (Kgal)	Unit Cost/Kgal	Total Cost	
July,18	46	\$0.15	\$7,134	
August,18	31	\$0.17	\$5,170	
September,18	93	\$11.27	\$1,052	
October,18	86	\$12.45	\$1,073	
November,18	58	\$17.96	\$1,038	
December,18	48	\$20.77	\$994	
January,19	34	\$26.60	\$906	
February,19	31	\$26.85	\$826	
March,19	March,19 35 \$29.11		\$1,025	
April,19	41	\$24.10	\$994	
May,19	81	\$13.05	\$1,059	
June,19	63	\$20.66	\$1,298	
Total/average	78,115	\$34.86	\$22,569	

Renewable Energy Discussions

5.1. Rooftop Solar Photovoltaic Feasibility

Solar Energy Feasibility

A photovoltaic array is a linked collection of photovoltaic modules, which are in turn made of multiple interconnected solar cells. The cells convert solar energy into direct current electricity via the photovoltaic effect. The power that one module can produce is seldom enough to meet requirements of a home or a business, so the modules are linked together to form an array. Most PV arrays use an inverter to convert the DC power produced by the modules into alternating current that can plug into the existing infrastructure to power lights, motors, and other loads. The modules in a PV array are usually first connected in series to obtain the desired voltage; the individual strings are then connected in parallel to allow the system to produce more current. Solar arrays are typically measured by the peak electrical power they produce, in watts, kilowatts, or even megawatts.

When determining if a site is suitable for a solar application, two basic considerations must be evaluated:

- At minimum, the sun should shine upon the solar collectors from 9 AM to 3 PM. If less, the application may still be worthwhile, but the benefit will be less.
- The array should face south and be free of any shading from buildings, trees, rooftop equipment, etc. If the array is not facing directly south, there will be a penalty in transfer efficiency, reducing the overall efficiency of the system.

Solar Pv Questionnaire	Response
Does the property have a south, east, or west facing roof or available land of more than 250 square feet per required Solar Array Panel?	Yes
Is the area free from any shading such as trees, buildings, equipment etc. throughout the whole day?	Yes
Can the panels be mounted at an incline of roughly 25-45 degrees? (equal to latitude of property)	Yes
Is the property in an area with acceptable average monthly sunlight levels?	Yes
Has the roofing been replaced within the past 3-5 years?	No
Is the roof structure sufficient to hold solar panels?	Additional Study is Required
Is the property located in a state eligible for net metering?	Yes

A solar feasibility analysis of the XXX site has resulted in the building containing more than sufficient amount of roof area for solar electricity generation. The analysis through the use of National Renewable Energy Laboratory's solar photovoltaic software assisted in calculating the potential electricity generated from the allocated land and roof area set for solar photovoltaic installment. The allocated roof area was through looking at the roof and surrounding areas at a bird's eye view. Also detailed in the report are incentives and rebates that can potentially bring down the installation cost of the ECMs and result in a higher return on investment and quicker payback period.

The approach taken in the solar photovoltaic (PV) roof analysis begins with surveying the roof and determine areas on the roof where solar PV panels can potentially be installed.

- 1) Conducting a preliminary sizing of solar PV panels on the roofs and on the ground and its potential electricity production for its first year of installment using the National Renewable Energy Laboratory (NREL) PV WATTS Version 2 Software.
- Calculate energy and cost savings for the site as a sole proprietor of the system capable of collecting state, local, and federal tax
 credits and incentives and interconnecting and selling the renewable energy electrical production to the building.

Solar Rooftop Photovoltaic Analysis				
Estimated Number of Panels	273			
Estimated KW Rating	86	KW		
Potential Annual kWh Produced	331,884	kWh		
% of Current Electricity Uses	61.8%			
Financial Summary				
Investment Cost	\$301,000			
Estimated Energy Cost Savings	\$24,422			
Payback without Incentives	12.3	Years		
Incentive Payback but without SRECs	7.4	Years		
Payback with All Incentives	7.4	Years		

A photovoltaic array is a linked collection of photovoltaic modules, which are in turn made of multiple interconnected solar cells. The cells convert solar energy into direct current. Modules of cells are linked together to form an array. Most PV arrays use an inverter to convert the DC power produced by the modules into alternating current that can connect to existing AC infrastructure to power lights, motors, and other loads.

Cost of production has fallen years with increasing demand and through production and technological advances. The cost dropped from \$8–10/watt in 1996 to \$4–7/watt in 2006. The market is diversifying with new types of panels suited to unique installation methods including stick on sheets and PV spray coating. The solar PV cost used in the analysis was set at \$7.0/Watt which includes design, construction, administration, and installation and maintenance cost throughout the life of the solar panels.

One breakthrough for PV is "Net Metering". When more PV electric power is generated than is consumed on site, the electric service meter reverses to "sell" the excess power directly back onto the power grid. The economics of PV for commercial industrial installations become attractive when coupled with incentives from Federal and state agencies, as well utility companies.

A kilowatt-hour costing \$0.15 might be valued at \$0.30 when produced by PV and sent to the grid. The economics of PV for commercial industrial installations become attractive when coupled with incentives from Federal and state agencies, as well utility companies.

The low payback period is highly dependent on the marketing potential of selling Solar Renewable Certificates to electricity generated providers who are under state regulations to contain a certain percentage of their electricity generation derived from renewable energy such as wind and solar.

Solar facilities are encouraged to sell their SRECs on the market (either spot market or through long-term contracts). Utilities may use SRECs for compliance under the state RPS for the year in which they are generated. Utilities may purchase up to 10% more SRECs than they require for compliance and "bank" those surplus SRECs for compliance during the following two years. Any SRECs pricing can range from \$300 - \$450/MWh and can be sold across state borders to other utility providers looking to purchase SRECs. EMG has selected to use the market value of \$300/MWh minus 5% administrative fee in the analysis.

A number of states and corresponding electrical utility supplier are required under regulation to have a certain percentage of its electricity be produced by solar energy. To offset that they allow other utility companies to buy Renewable Energy Credits (REC) credit off their customers and facilities that produce their own solar energy. Typically, the national market, the utility market is \$400 per MWh to Utility Suppliers for not meeting this standard percentage so these REC credits are sold for \$350 per MWH. (1 REC credit = 1 MWH).

State charges these utility companies to meet their state compliance of 0.2% of the entire electricity consumption from solar energy by 2022 (from.005% in 2008 aggregated up to 0.2% by 2022). The REC credits correspond to these percentages as they aggregate each year.

6. Operations and Maintenance Plan

The quality of the maintenance and the operation of the facility's energy systems have a direct effect on its overall energy efficiency. Energy-efficiency needs to be a consideration when implementing facility modifications, equipment replacements, and general corrective actions. The following is a list of activities that should be performed as part of the routine maintenance program for the property.

Building Envelope

- Ensure that the building envelope has proper caulking and weather stripping.
- Patch holes in the building envelope with foam insulation and fire rated caulk around combustion vents
- ✓ Inspect building vents semiannually for bird infestation
- ✓ Inspect windows monthly for damaged panes and failed thermal seals
- ✓ Repair and adjust automatic door closing mechanisms as needed.

Heating and Cooling

- ✓ Pilots lights on furnaces and boilers be turned off in summer
- X All preventive maintenance should be performed on all furnaces and boilers, which would include cleaning of burners and heat exchanger tubes.
- Ensure that the combustion vents exhaust outside the conditioned space and the vent dampers are functional
- Ensure that the control valves are functioning properly before start of every season
- **x** Ensure steam traps are functional before start of each heating season
- Ensure use of chemical treatment for boiler make up water
- Ensure boiler outside temperature re-set is set to 55F
- Ensure use of chemical treatment for Colling tower water to prevent corrosion
- Ensure the duct work in unconditioned space is un-compromised and well insulated
- Duct cleaning is recommended every 10 years. This should include sealing of ducts using products similar to 'aero-seal'
- Ensure use of economizer mode is functional and used
- Ensure that the outside air dampers actuators are operating correctly
- Ensure air coils in the AHU and FCA's are pressure washed annually
- ✓ Return vents should remain un-obstructed and be located centrally
- Temperature settings reduced in unoccupied areas and set points seasonally adjusted.
- Evaporator coils and condenser coils should be regularly cleaned to improve heat transfer
- Refrigerant pipes should be insulated with a minimum of 3/4" thick Elastomeric Rubber Pipe Insulation
- Ensure refrigerant pressure is maintained in the condensers
- Change air filters on return vents seasonally. Use only filters with 'Minimum Efficiency Rating Value' (MERV) of 8

Central Domestic Hot Water Heater

- √ Never place gas fired water heaters adjacent to return vents so as to prevent flame roll outs.
- **x** Ensure the circulation system is on timer to reduce the losses through re-circulation
- Ensure all hot water pipes are insulated with fiberglass insulation at all times
- √ Replacement water heater should have Energy Factor (EF)>0.9
- √ Tank-type water heaters flushed monthly

Lighting Improvements

- Utilize bi-level lighting controls in stairwells and hallways.
- ✓ Use LED replacement lamps
- ✓ Clean lighting fixture reflective surfaces and translucent covers.
- ✓ Ensure that timers and/or photocells are operating correctly on exterior lighting
- ✓ Use occupancy sensors for offices and other rooms with infrequent occupancy

Existing Equipment and Replacements

- Ensure that refrigerator and freezer doors close and seal correctly
- \checkmark Ensure kitchen and bathroom exhaust outside the building and the internal damper operates properly
- ✓ Ensure that bathroom vents exhaust out
- ✓ Office/ computer equipment either in the "sleep" or "off" mode when not used

7. Appendices

APPENDIX A: Glossary of Terms

APPENDIX B: Mechanical Equipment Inventory

APPENDIX C: Lighting System Schedule

APPENDIX D: ECM Checklist

APPENDIX E: ECM Calculations

APPENDIX F: Solar PV

APPENDIX A: Glossary of Terms

Glossary of Terms and Acronyms

<u>ECM</u> – Energy Conservation Measures are projects recommended to reduce energy consumption. These can be No/Low cost items implemented as part of routine maintenance or Capital Cost items to be implemented as a capital improvement project.

Initial Investment – The estimated cost of implementing an ECM project. Estimates typically are based on R.S. Means Construction cost data and Industry Standards.

<u>Annual Energy Savings</u> – The reduction in energy consumption attributable to the implementation of a particular ECM. These savings values do not include the interactive effects of other ECMs.

<u>Cost Savings</u> – The expected reduction in utility or energy costs achieved through the corresponding reduction in energy consumption by implementation of an ECM.

<u>Simple Payback Period</u> –The number of years required for the cumulative value of energy or water cost savings less future non-fuel or non-water costs to equal the investment costs of the building energy or water system, without consideration of discount rates.

EUL - Expected Useful Life is the estimated lifespan of a typical piece of equipment based on industry accepted standards.

<u>RUL</u> – Remaining Useful Life is the EUL minus the effective age of the equipment and reflects the estimated number of operating years remaining for the item.

SIR - The savings-to-investment ratio is the ratio of the present value savings to the present value costs of an energy or water conservation measure. The numerator of the ratio is the present value of net savings in energy or water and non-fuel or non-water operation and maintenance costs attributable to the proposed energy or water conservation measure. The denominator of the ratio is the present value of the net increase in investment and replacement costs less salvage value attributable to the proposed energy or water conservation measure. It is recommended that energy-efficiency recommendations be based on a calculated SIR, with larger SIRs receiving a higher priority. A project typically is recommended only if the SIR is greater than or equal to 1.0, unless other factors outweigh the financial benefit.

<u>Life Cycle Cost</u> - The sum of the present values of (a) Investment costs, less salvage values at the end of the study period; (b) Non-fuel operation and maintenance costs: (c) Replacement costs less salvage costs of replaced building systems; and (d) Energy and/or water costs.

<u>Life Cycle Savings</u> – The sum of the estimated annual cost savings over the EUL of the recommended ECM, expressed in present value dollars.

<u>Building Site Energy Use Intensity</u> - The sum of the total site energy use in thousands of Btu per unit of gross building area. Site energy accounts for all energy consumed at the building location only not the energy consumed during generation and transmission of the energy to the site.

<u>Building Source Energy Use Intensity</u> – The sum of the total source energy use in thousands of Btu per unit of gross building area. Source energy is the energy consumed during generation and transmission in supplying the energy to your site.

Building Cost Intensity - This metric is the sum of all energy use costs in dollars per unit of gross building area.

<u>Greenhouse Gas Emissions</u> - Although there are numerous gases that are classified as contributors to the total for Greenhouse Emissions, the scope of this energy audit focuses on carbon dioxide (CO₂). Carbon dioxide enters the atmosphere through the burning of fossil fuels (oil, natural gas, and coal), solid waste, trees and wood products, and also as a result of other chemical reactions (e.g., manufacture of cement).

APPENDIX B: Mechanical Equipment Inventory

Mechanical Inventory								
System	Make	Model	Serial Number	Input Capacity	Output Capacity	Room Number	Space Served	Quantity
Central Split System Condensing Unit	Carrier	38CKC060570	1003E40928	5 TON	-	Roof	002 Classrooms 3-7	1
Central Split System Condensing Unit	Carrier	38CKC060570	4302E13804	5 TON	-	Roof	003 Classrooms 9-12	1
Central Split System Condensing Unit	Carrier	38CKC060570	4302E13801	5 TON	-	Roof	003 Classrooms 9-12	1
Central Split System Condensing Unit	Carrier	38CKC060570	0503E25332	5 TON	-	Roof	003 Classrooms 9-12	1
Central Split System Condensing Unit	Carrier	38CKCO24340	1603E10644	2 TON	-	Roof	003 Classrooms 9-12	1
Central Split System Condensing Unit	Carrier	38CKC060570	1003E40929	5 TON	-	Roof	003 Classrooms 9-12	1
Central Split System Condensing Unit	Carrier	38CKCO6O570	4302E13813	5 TON	-	Roof	001 Main Building	1
Central Split System Condensing Unit	Carrier	38CKC060570	1603E18312	5 TON	-	Roof	002 Classrooms 3-7	1
Central Split System Condensing Unit	Carrier	38CKCO60570	1903E09393	5 TON	-	Roof	002 Classrooms 3-7	1
Central Split System Condensing Unit	Carrier	38CKC060570	1903E49711	5 TON	-	Roof	002 Classrooms 3-7	1
Central Split System Condensing Unit	Carrier	38CKC060570	1903E09417	5 TON	-	Roof	003 Classrooms 9-12	1
Central Split System Condensing Unit	Carrier	38CKC060570	1603E18306	5 TON	-	Roof	002 Classrooms 3-7	1
Central Split System Condensing Unit	Carrier	38CKC060570	1903E49714	5 TON	-	Roof	001 Main Building	1
Central Split System Condensing Unit	Carrier	38CKC060570	903E09419	5 TON	-	Roof	003 Classrooms 9-12	1
Central Split System Furnace	Carrier	ZI58DLX11010122	S1903A42896	110 MBH	89 MBH	Utility closet - 1	001 Main Building	1
Central Split System Furnace	Carrier	ZI58DLX04510108	S2803A27819	110 MBH	89 MBH	Utility closet - 0020	003 Classrooms 9-12	1
Central Split System Furnace	Carrier	ZI58DLX11010122	S2403A42819	110 MBH	89 MBH	Utility closet - 6	002 Classrooms 3-7	1
Central Split System Furnace	Carrier	ZI58DLX11010122	S2403A42830	110 MBH	89 MBH	Utility closet - X008	003 Classrooms 9-12	1
Central Split System Furnace	Carrier	ZI58DLX11010122	S1903A42903	110 MBH	89 MBH	Utility closet - 0010	003 Classrooms 9-12	1
Central Split System Furnace	Carrier	ZI58DLX11010122	S2403A42810	110 MBH	89 MBH	Utility closet - 0009	003 Classrooms 9-12	1
Central Split System Furnace	Carrier	ZI58DLX11010122	S2403A42823	110 MBH	89 MBH	Utility closet - 0012	003 Classrooms 9-12	1
Central Split System Furnace	Carrier	ZI58DLX11010122	S1903A42904	110 MBH	89 MBH	Utility closet - 4	002 Classrooms 3-7	1
Central Split System Furnace	Carrier	ZI58DLX11010122	S2403A42833	110 MBH	89 MBH	Utility closet - 7	002 Classrooms 3-7	1
Central Split System Furnace	Carrier	ZI58DLX11010122	S2403A42824	110 MBH	89 MBH	Utility closet - 2	001 Main Building	1
Central Split System Furnace	Carrier	ZI58DLX11010122	5002A41452	110 MBH	89 MBH	Utility closet - 5	002 Classrooms 3-7	1
Central Split System Furnace	Carrier	ZI58DLX11010122	0403A40217	110 MBH	89 MBH	Utility closet - X008	003 Classrooms 9-12	1
Central Split System Furnace	Carrier	ZI58DLX11010122	S2403A42828	110 MBH	89 MBH	Utility closet - 3	002 Classrooms 3-7	1
Exhaust Fan	Greenheck	GB-071-4X- QD- R2	-	1000 CFM	-	Roof	001 Main Building	1
Exhaust Fan	PennBarry	DX13R	-	500 CFM	-	Roof	003 Classrooms 9-12	1
Exhaust Fan	Jenn-Aire	242CKA	-	1500 CFM	-	Roof - Kitchen	001 Main Building	1
Exhaust Fan	PennBarry	DX13R	-	500 CFM	-	Roof	002 Classrooms 3-7	1
Packaged Unit (RTU)	Trane	YCC060F3MOBE	M235PJ02H	125 MBH	100 MBH	Roof	001 Main Building	1
		RK-16-2-E0-212:						
Packaged Unit (RTU)	AAON, Inc.	FOCED0E0H00S0X	200308-AKGM50937	270 MBH	219 MBH	Building exterior	001 Main Building	1
Packaged Unit (RTU)	Trane	YCC036F3LOBD	M215TJB1H	50 MBH	40 MBH	Roof - Kitchen	001 Main Building	1
Packaged Unit (RTU)	AAON, Inc.	Illegible	Illegible	270 MBH	219 MBH	Building exterior	001 Main Building	1
Wall Mounted Gas/ Electric Package Unit	Bard Manufacturin g Company	WG422-ANBVX4XXX	253H031818614-1	75 MBH	59 MBH	Building Exterior - P-	P08-P11 Classrooms P- 12 to P-17	1
Wall Mounted Gas/ Electric Package Unit	Bard Manufacturin g Company	WG422-ANBVX4XXX	253H031818613-1	75 MBH	59 MBH	Building Exterior - P- 12	P08-P11 Classrooms P- 12 to P-17	1

	Inand	T		1	1	1	T T	
	Bard						D02 Cl D 4 I .	
	Manufacturin		050110040406504				P03 Classrooms P-1 to	1
Wall Mounted Gas/ Electric Package Unit	g Company	WG422-ANBVX4XXX	253H031818659-1	75 MBH	59 MBH	Building Exterior - P-6	P-/	
	Bard							
	Manufacturin						P03 Classrooms P-1 to	1
Wall Mounted Gas/ Electric Package Unit	g Company	WG422-ANBVX4XXX	253H031818631-1	75 MBH	59 MBH	Building Exterior - P-4	P-7	
	Bard							
	Manufacturin						P03 Classrooms P-1 to	1
Wall Mounted Gas/ Electric Package Unit	g Company	WG422-ANBVX4XXX	253H031818638-1	75 MBH	59 MBH	Building Exterior - P-2	P-7	
	Bard							
	Manufacturin						P03 Classrooms P-1 to	1
Wall Mounted Gas/ Electric Package Unit	g Company	WG422-ANBVX4XXX	253H031818612-1	75 MBH	59 MBH	Building Exterior - P-3	P-7	
	Bard							
	Manufacturin						P03 Classrooms P-1 to	1
Wall Mounted Gas/ Electric Package Unit	g Company	WG422-ANBVX4XXX	253H031818654-1	75 MBH	59 MBH	Building Exterior - P-1	P-7	
	Bard							
	Manufacturin						P03 Classrooms P-1 to	1
Wall Mounted Gas/ Electric Package Unit	g Company	WG422-ANBVX4XXX	253H031818630-1	75 MBH	59 MBH	Building Exterior - P-5	P-7	
·	Bard					<u> </u>		
	Manufacturin							1
Wall Mounted Gas/ Electric Package Unit	g Company	WG422-ANBVX4XXX	253H031818618-1	75 MBH	59 MBH	Building exterior	P01 Classroom K-3	-
Transitionited edgy Electrics delicage come	Bard		25011001010010 1	75	33	Dunamy exterior	1 01 010001 00111 K 0	
	Manufacturin							1
Wall Mounted Gas/ Electric Package Unit	g Company	WG422-ANBX4XXX	253H031818620-1	75 MBH	59 MBH	Building exterior	P02 Classroom P-18	_
Wall Woulded das/ Electric Fackage Offic	Bard	VVG422-AIVDX4XXX	25511051818020-1	75 141511	JJ WIBIT	Dulluling exterior	1 02 Classi 00111 1 -10	
		WH431-A0ZCX4XXB				Building Exterior - P-	P08-P11 Classrooms P-	1
 Wall Mounted Heat Pump	g Company	WMCB-08A	176L981277076-02	3.5 TON		16	12 to P-17	1
wali Mounted Heat Pump	Bard	WIVICB-08A	1/6L9812//0/6-02	3.5 1010	+	10	12 t0 P-17	
	1 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				Duilding Futuring D	D00 D11 Classes D	4
NA/all Na contact Llast Dones	1	WH431-A0ZCX4XXB	4761004277072.02	2.5. TON		Building Exterior - P-	P08-P11 Classrooms P-	1
Wall Mounted Heat Pump	g Company	WMCB-08A	176L981277073-02	3.5 TON	-	15	12 to P-17	
	Bard						200 244 0	
	1	WH431-A0ZCX4XXX				Building Exterior - P-	P08-P11 Classrooms P-	1
Wall Mounted Heat Pump	g Company	WMCB-08A	176D991339423-02	3.5 TON	-	14	12 to P-17	
	Bard							
	1	WH431-A0ZCX4XXX				Building Exterior - P-	P08-P11 Classrooms P-	1
Wall Mounted Heat Pump	g Company	WMCB-08A	176D991339427-02	3.5 TON	-	13	12 to P-17	
	Bard							
	Manufacturin					Building Exterior - P-	P04-P07 Classrooms P-	1
Wall Mounted Heat Pump	g Company	36WH7-A05C	058M890621370	3 TON		10	08 to P-11	
	Bard							
	Manufacturin					Building Exterior - P-	P04-P07 Classrooms P-	1
Wall Mounted Heat Pump	g Company	36WH7-A05C	058M890621372	3 TON	-	11	08 to P-11	
	Bard							
	Manufacturin						P03 Classrooms P-1 to	1
Wall Mounted Heat Pump	g Company	36WH7-A05C	058N890626335	з том	-	Building Exterior - P-7		
- P	Bard				1	<u> </u>		
	Manufacturin						P04-P07 Classrooms P-	1
Wall Mounted Heat Pump	1	Illegible	Illegible	з том	<u> </u> _	Building Exterior - P-8		-
Transferounced freue Fullip	IP combany	Imeginic	megioie	13 1014		Daniania Exterior - F-0	00 10 1 11	

	Bard Manufacturir						P04-P07 Classrooms P-	1
Wall Mounted Heat Pump	g Company	Illegible	Illegible	3 ТОМ	-	Building Exterior - P-9	08 to P-11	
Water Heater	Rheem	81VP6S	RH 0304213491	6 GAL, 2kW	-	Under Sink	P01 Classroom K-3	1
				30 GAL, 30				1
Water Heater	Rheem	22V30-30F	RHLN 0204V05801	МВН	-	Electrical room	003 Classrooms 9-12	1

APPENDIX C: Lighting System Schedule

	A Street Victor Street Street									Lamp Details				Fixture Details				Existing C	Consumption
Line No.	Building Name	Interior/ Exterior	Floor	Space Type	Room No.	Additional Area Description	LUX	Control		Technology	Sub-Technology	Lamp Type	Total Lamps	Fixture Type	Fixture Quantity	24x7 Fixture Count	Fixture Height	Annual Hours	Existing Annual kWh
	Nicholas Elementary School	Interior		CLASSROOM	2000 Portables	18 dual only swit	730	28	Light Switch	Linear Fluorescent	T8	4' 32W T8	756	2x4 Prism Troffer	252	0		2.160	52,255
	Nicholas Elementary School	Interior	1	CLASSROOM	1991 Portables	and 6 lamp 2 bu	150	10	Light Switch	Linear Fluorescent	18 T8	4 32W 18 4' 32W T8	60	2x4 Prism Troffer	30	0	8	2,160	4,147
	Nicholas Elementary School	Interior		CLASSROOM	1991 Portables	and 6 lamp 2 bu	150	10	Light Switch	Linear Fluorescent	T8	4' 32W T8	70	2x4 Prism Troffer	35	0	8	2,160	4,838
_	Nicholas Elementary School	Interior		ESTROOM - PRIVAT	P12	and 6 famp 2 bu	600	10	Light Switch	Linear Fluorescent	T8	4' 32W T8	70 4	2x4 Prism Troffer	33	0	8	900	115
	Nicholas Elementary School	Interior		ESTROOM - PRIVAT	P12		600	1	Light Switch	Linear Fluorescent	T8	4' 32W T8	- 4	2x4 Prism Troffer	2	0	-	900	173
	Nicholas Elementary School	Interior		ESTROOM - PRIVAT	P12		600	1	Light Switch	Linear Fluorescent	18 T8	4 32W 18 4' 32W T8	6	2x4 Prism Troffer	3	0	8	900	173
	Nicholas Elementary School	Interior		CLASSROOM	003		320	16	Light Switch	Linear Fluorescent	T8	4' 32W T8	144	2x4 Prism Troffer	48	0	12	2,160	9,953
	Nicholas Elementary School	Interior		STORAGE	003	003 storage 1f	150	5	Light Switch	Linear Fluorescent	T8	4' 32W T8	10	2x4 Prism Troffer	40	0	12	684	219
	Nicholas Elementary School	Interior		CLASSROOM	003 library	Library	460	4	Light Switch	Linear Fluorescent	T8	4' 32W T8	36	2x4 Prism Troffer	12	0	12	2,160	2,488
	Nicholas Elementary School	Interior		CLASSROOM	003 library	Library	460	4	Light Switch	Linear Fluorescent	T8	4' 32W T8	27	2x4 Prism Troffer	9	0	12	2,160	1,866
	Nicholas Elementary School	Interior		KITCHEN	001 KITCHEN	LIUI di y	280	5	Light Switch	Linear Fluorescent	T8	4' 32W T8	Δ	2x4 Prism Troffer	3	0	0	1,800	230
	Nicholas Elementary School	Interior		KITCHEN	001 KITCHEN		280	5	Light Switch	Linear Fluorescent	T8	4' 32W T8	22	2x4 Prism Troffer	11	0	8	1,800	1,267
	Nicholas Elementary School	Interior		KITCHEN	001 KITCHEN		280	5	Light Switch	Linear Fluorescent	T8	4' 32W T8	2	2x4 Prism Troffer	1	0		1,800	115
	Nicholas Elementary School	Interior		KITCHEN	001 KITCHEN		280	5	Light Switch	Linear Fluorescent	T8	4' 32W T8	12	2x4 Prism Troffer	1	0		1,800	691
	Nicholas Elementary School	Interior		KITCHEN	001 KITCHEN		280	5	Light Switch	Linear Fluorescent	T8	4' 32W T8	- 6	2x4 Prism Troffer	2	0	8	1,800	346
	Nicholas Elementary School	Interior		CLASSROOM	001 multipurpose	Multipurpose	480	2	Light Switch	Linear Fluorescent	T8	4' 32W T8	54	2x4 Prism Troffer	18	0	15	2,160	3,732
	Nicholas Elementary School	Interior		CLASSROOM	001 multipurpose	Multipurpose	480	2	Light Switch	Linear Fluorescent	T8	4' 32W T8	54	2x4 Prism Troffer	18	0	15	2,160	3,732
	Nicholas Elementary School	Interior		CLASSROOM	001-3	Kindergarten	380	15	Light Switch	CFL	CFL - Screw-in	CFL18	6	Surface Mount Can	6	0	8	2,160	233
	Nicholas Elementary School	Interior		CLASSROOM	001-3	Kindergarten	380	15	Light Switch	Linear Fluorescent	T8	4' 32W T8	108	2x4 Prism Troffer	36	0	11	2,160	7,465
20	Nicholas Elementary School	Interior		CLASSROOM	001-3	Kindergarten	380	15	Light Switch	CFL	CFL - Screw-in	CFL18	3	Surface Mount Can	3	0	12	2,160	117
	Nicholas Elementary School	Interior		CLASSROOM	001-3	Kindergarten	380	15	Light Switch	CFL	CFL - Screw-in	CFL18	3	Surface Mount Can	3	0	12	2,160	117
	Nicholas Elementary School	Interior		OFFICE	001 lobby		500	7	Light Switch	Linear Fluorescent	T8	4' 32W T8	24	2x4 Prism Troffer	6	0	12	2,160	1,659
	Nicholas Elementary School	Interior		OFFICE	001 lobby		500	7	Light Switch	Linear Fluorescent	T8	4' 32W T8	8	2x4 Prism Troffer	2	0	12	2,160	553
	Nicholas Elementary School	Interior		OFFICE	001 lobby		500	7	Light Switch	Linear Fluorescent	T8	4' 32W T8	8	2x4 Prism Troffer	2	0	8	2,160	553
	Nicholas Elementary School	Interior		OFFICE	001 lobby		500	7	Light Switch	Linear Fluorescent	T8	4' 32W T8	20	2x4 Prism Troffer	5	0	8	2,160	1,382
	Nicholas Elementary School	Interior		OFFICE	001 lobby		500	7	Light Switch	Linear Fluorescent	T8	4' 32W T8	12	2x4 Prism Troffer	4	0	8	2,160	829
	Nicholas Elementary School	Interior		OFFICE	001 lobby		500	7	Light Switch	Linear Fluorescent	T8	4' 32W T8	8	2x4 Prism Troffer	2	0	8	2,160	553
	Nicholas Elementary School	Interior		OFFICE	001 lobby		500	7	Light Switch	Linear Fluorescent	T8	4' 32W T8	6	Industrial	3	0	8	2,160	415
	Totals								V	100000000000000000000000000000000000000			1,479		527			53,424	100,218

APPENDIX D: ECM Checklist

NA	In Place	Evaluate	ECM Description
✓			Add Reflective Coating To Exterior Windows
		\checkmark	Replace External Windows
	\checkmark		Upgrade Insulation
	\checkmark		Control External Air Leakage In Commercial Buildings
√			Install Reflective Insulation Between Radiators And External Wall
√			Replace Existing Motors With High Efficiency Motors
✓			Install On-Demand Ventilation on Air Handlers
		✓	Reduce HVAC Hours of Operation
✓			Install Variable Frequency Drives (VFD)
✓			Install Outside Air Temperature Reset Controls For Hot Water Boilers
✓			Install Chilled Water Reset Control
		✓	Install Timers On Exhaust Fans
√			Install Energy Savers on Vending, Snack Machines
		✓	Install Building Energy Management System and Replace Terminal Units
		✓	Re-Commission The Building & Its Control Systems
✓			Replace Inefficient Heating Plant
✓			Replace Inefficient Cooling Plant
	\checkmark		Replace Existing Air Conditioners with Energy Star Air Conditioners
✓			Replace Unit Electric Heaters with Natural Gas Fired Unit Heaters
	\checkmark		Convert From Gas Pilot to Electronic Ignition for Boilers
✓			Insulate Hot Water Pipes
	\checkmark		Insulate Refrigerant Lines
	\checkmark		Insulate Hot Surfaces And Tanks
	\checkmark		Insulate Air Ducts
\			Replace Defective Steam Traps
\			Upgrade Electric Heating System To Heat Pumps
	\checkmark		Replace Inefficient Furnace System
√			Replace Rooftop Package Unit
	✓		Install Energy Recovery Wheel on Air Handling Unit
		\checkmark	Replace Existing Water Heater With New Energy Efficient Units
√			Replace Incandescent/Halogen Lamps With Energy Efficient Lamps
✓			Upgrade Inefficient Linear Fluorescent Lamps And Fixtures
√			Upgrade EXIT SIGNS With LED EXIT Signs
✓			Bilevel and Tandem Linear Fluorescent Lighting ECM
		✓	Replace High Intensity Discharge (HID) Lamps With Energy Efficienct Lamps
✓			Replace Existing Refrigerator(s) With Energy Star Certified Refrigerator(s)
	✓		Replace Existing Freezers With High Efficiency Freezers
√			Install Low Flow Shower Heads
		✓	Install Low Flow Faucet Aerators
		√	Install Low Flow Restroom Flush Tank Toilets
		✓	Install Low Flow Tankless Restroom Fixtures

APPENDIX F: ECM Calculations

UIC		Install Low Fl	ow Faucet Aerators				
EAP2-b	Location: Restrooms and Classrooms						
Property Ty	rpe:	Commercial	Estimated No. of Operational Weeks	36			
			Number of Occupied Days/Week (Max 7)	5			
	KITCHEN FAUCETS		BATHROOM FAUCETS				
Number of	Occupants Affected By Retrofit	800	Number of Occupants Affected by Retrofit	800			
Do You Wa	nt To Replace Kitchen Faucets Aerators	Yes (Select)	Do You Want To Replace Bathroom Faucets Aerators	Yes (Select)			
Total Numb	per of Faucet Aerators To Be Replaced	32	Total Number of Faucet Aerators To Be Replaced	4			
Total Numb	per of Faucets To Be Replaced:	0	Total Number of Faucets To Be Replaced:	0			
GPM of Exi	sting Faucet Aerators	2.2 GPM	GPM of Existing Faucet Aerators	2.2 GPM			
GPM of Pro	posed Faucet Aerator	0.5 GPM	GPM of Proposed Faucet Aerator	0.5 GPM			
Estimated N	Number of Uses Per Day	2	Estimated Number of Uses Per Day	4			
	Annual Water Savings From Insta	alling Low Flow Aerators:	141.00 kGal				
	WATER & ENERGY SAVING CALCU	JLATION	COST SAVING CALCULATION				
Select Type	e of Water Heater Fuel:	Natural Gas (Select)	Property Location in United States North	Central Localities			
Energy Fact	or of Domestic Hot Water Heater:	0.70 EF	Heating Fuel Tariff	\$1.32 \$/Therm			
Hot Water	Discharge Temperature at Faucet	110.00 °F	Water Tariff (\$/1000 Gal)	\$34.86 \$/kGal			
	Heating Fuel Savings: nted by 15% to Account For Cold Water Use	857 Therms	Annual Cost Savings In Form of Water	\$4,915			
Annual Wa		141.00 kGal	Annual Energy Savings From Water Heater	\$1,132 \$			
		COST BENEF	IT ANALYSIS				
Estimated 1	Total Annual Cost Savings	\$6,047 \$\$	Estimated Total Installation Cost	\$548 \$\$			
Simple Payl	pack Period	0.09 Years	Type of Recommendation No/Low Cos	t ECM Recommendation			

Disclaimer: PREPARED BY EMG. May 2016, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

ECM EXPLANATION:

By reducing the flow of water coming from the restroom faucets, aerators can generate energy savings at low cost and with easy installation. The savings generated would be in the form of reduced water and sewer costs and at the same time aerators would save energy by reducing the demand for hot water. The average faucet has a flow rate of about 2 to 4 GPM. Adding a screw-in faucet aerator reduces the flow to 0.5 to 1.5 GPM in the bathroom and 2.2 GPM in the kitchen. In addition to saving energy and water, the "foamier" water that comes from faucet aerators wets objects better than water from a faucet with no aerator, which tends to bounce off the object rather than thoroughly wetting it.

EMG recommends replacing the proposed faucet aerators with new low flow aerators as mentioned above. The proposed ECM shall also result in an annual energy saving in form of reduction in water heating bills.

Summary:

Initial Investment: \$548 Estimated Annual Cost Savings: \$6,047 Simple Payback Period (Yrs): 0.09

UIC		Install Timer	s On Exhaust Fans	
EAC7A	Location: Throughout			
	Type of Exhaust Fan:	Rooftop Exhaust Fans		
		EXISTING CO	NDITION	
No. o	f Timers to Be Installed:	3 Qty	HP of Individual Fan Motor:	0.25 HP
No. o	f Exhaust Fans:	8	Total kW:	1.49 kW
Existir	ng Daily Hours of Operation/Exhau	ıst Fan:	Annual kWh For All Fans:	8,169 kWh
		PROPOSED CO	ONDITION	
New I	Daily Hours With Timers/Exhaust F	an: 12.00 Hrs/Day	New Annual kWh For All Fans:	6,535 kWh
Туре	of Heating Fuel:	Natural Gas	Is The Property Cooled?	Yes
	Only For Apt. Bathroor	n Exhaust Fans	Only For Roof Top Exhaust Fans- C	ommerical Spaces
(For ba	for Individual Bathroom Exhaust Fa athrooms<100Sqft) Exhuast CFM From All Fans	90 CFM	No. of Water Closets In Building No. of Urinals In Building Total CFM for All Restroom Exhaust	44 21 3,250 CFM
Annua	al Heating Energy Savings	0 kbtu	Annual Heating Energy Savings	42,120 kbtu
Annua	al Cooling Energy Savings	0 kbtu	Annual Cooling Energy Savings	21,060 kbtu
		Energy & Cos	t Savings	
Estima	ated Annual Heating Plant Efficien	79.00 %	Estimated Annual Cooling Plant Efficiency	7.00 EER
Annua	al Heating Energy Savings	533 Therms	Annual Cooling Energy Savings	3,009 kWh
Annua	al Electric Fan Motor Savings	1,634 kWh		
		COST ANA	LYSIS	
Electr	ic Rate:	\$0.19 \$/kWh	Total Annual Electric Savings	4,642 kWh
Mater	rial Cost For Timers:	\$508 \$	Total Annual Non Electric Savings	533 Therms
Total	Cost for Installing Timers	\$1,062	Annual Cost savings:	\$1,564
Simple	e Payback:	0.68 Yrs		
Type of Re	commendation	Capital Cost ECM Recommen	dation	

Disclaimer: PREPARED BY EMG. May 2016, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG Corp. THIS

MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

ECM DESCRIPTION:

Exhaust fans are generally used in areas with high concentrations of pollutants generated from occupants' activities. These exhaust requirements are rarely continuous, and the fans should operate only as needed. Continuous operations of bathroom exhaust fans results in exhausting conditioned air out. This causes low pressures in the conditioned space, which is filled up by infiltrated air from unconditioned spaces. Air infiltration leads to increase loads on heating and cooling system increasing the energy consumed to condition the space. In addition to this the fan motor is also consumes energy to operate, though insignificant as compared to the HVAC losses.

In case of the residential properties with individual exhaust fans in the bathrooms, EMG recommends installing timer switches on each bathroom fan to control the fan operations. Bathroom fans are essential to exhaust out the excess humidity and odor control. The timer switch will limit the operation time to 20 mins.

In case of central exhaust systems that have roof top or side wall mounted exhaust fans, EMG recommends a single electronic timer control to restrict the exhaust fan operations to typical building occupancy hours +/- 2 hrs. A single electronic timer would be able to control all the exhaust fans.

Summary:

Initial Investment: \$508 Simple Payback: 0.68 Years

Energy Cost Savings: \$1,564

UIC		Reduce I	HVAC Ho	urs of Operation		
EAC3	Location: Throughout					
No of Progr	ammable Thermostats To Be Installed :		8	Qty.		
	of Programmable Thermostat Recommended: on Type of Property)		Centrally Cont	crolled Thermostats For Multi-Unit Property -(BMS)	(Select)	
	Heating Load Calculation			Cooling Load Calculation		
Select Type	of Heating Fuel Nat	tural Gas	(Select)	Select Type of Cooling Fuel	Electric	Default)
Estimated Co Heating	urrent Annual Energy Consumption For Winter	3,114	Therms	Estimated Current Annual Energy Consumption For Summer Cooling	42,481 k	kWh
•	Weekdays t Back Hours 6.00 eet Back Hours 8.00 out Set Back 10.00	Weekends 6.00 8.00 10.00		Day Time Set Back Hours 6.00 Night Time Set Back Hours 8.00 Hours Without Set Back 10.00	6.00 8.00 10.00	
	or Temp int With Set Back During Day Time int With Set Back During Night Time	69.00 53.00 65.00	°F °F °F	Typical Indoor Temp Temp Set Point With Set Back During Day Time Temp Set Point With Set Back During Night Time	93.00 °I	'F 'F
Average Hea	iting Set Point	63.67	°F	Average Cooling Set Point	79.67 °	'F
Savings Per [Degree Set Back For Heating Season rd, 2004)	3%		Savings Per Degree Set Back For Cooling Season (Industry Standard, 2004)	6%	
Estimated A	nnual Heating Energy Consumption	311,400	kBtu	Estimated Annual Cooling Energy Consumption	144,945 k	kBtu
Estimated N	ew Annual Heating Energy Consumption	261,576	kBtu	Estimated New Annual Cooling Energy Consumption	86,967 k	kbtu
Estimated A	nnual Heating Energy Savings	498	Therms	Estimated Annual Cooling Energy Savings	16,992 k	kWh
			Cost Analysis	S.		
Average Ann	ual Cost of Heating Fuel:	\$1.32	\$/Therm	Estimated Installation Cost Per Thermostats: (Includes Material, Labor & Installation Costs)	\$1,070 \$	\$\$
Average Ann	ual Cost of Electricity:	\$0.19	\$/kWh		\$12,776 \$	\$\$
Estimated A	nnual Heating Cost Savings:	\$658	\$\$	Total Estimated Cost For All Programmable Thermostats Total Estimated Cost Savings From All Programmable Thermostats	\$3,805	
Estimated A	nnual Cooling Cost Savings:	\$3,147	\$\$	Estimated Simple Pay Back Period	3.36 Y	Yrs
	Type of Recommendation	Capital Cost	: ECM Recomr	mendation		

Disclaimer: PREPARED BY EMG. May 2016, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

ECM DESCRIPTION:

Turning off energy-consuming systems when they are not needed is the most basic energy conservation technique. When a building is occupied intermittently, energy savings can be realized by minimizing the time the heating or cooling system is operated when the building is closed. Building control algorithms should be implemented to delay startup until the last moment and to shut down as early as possible.

Because of the thermal inertia of both the building structure and its heating and cooling equipment, preheat or precool time is almost always required to raise or lower the space temperature to the desired level before the occupants return. This start-up time depends on the outdoor environment, the thermal response of the building, and the thermal performance of the space conditioning equipment. Similarly, the thermal inertia of the building maintains the indoor temperature at a comfortable level for a short period of time after the equipment is shut off. It allows the system to be turned off before the end of an occupied period. An optimum start/stop control accounts for these factors.

SUMMARY

Initial Investment: \$12,776 Simple Payback Period: 3.36 Yrs

Annual Energy Cost Saving: \$3,805

UIC	Replace Existing Water Heater With New Energy Efficient Units							
EAD3	Location: P01							
Step 1	Existing Water Heater Details	P01 - Under Sink	003 Electrical Room (not ECM)	Specify Location Here	Specify <mark>Location</mark> Here			
	Number of Water Heaters Being Replaced:	1	0					
	Select Existing Hot Water Heater Fuel	Electric	Natural Gas	Natural Gas	Electric			
	Insert Energy Factor of Existing Water Heater	0.77 EF	0.70 EF	EF	EF			
	Input Existing Water Heater Input Rating	2.00 kw	30.00 kBtus	kBtus	kW			
	Select One Method For Calculation	Annual DWH Load	Annual DWH Load	Annual DWH Load	Annual DWH Load			
	Insert Annual Water Heater Energy Consumption/Heater	6,404 kWh	523 Therms	Therms	kWh			
	Annual Hours of Operation	3,202 hrs	1,743 hrs	#DIV/0! hrs	#DIV/0! hrs			
	Total Estimated Annual Energy Consumption For all Heaters	6,404 kWh	0 Therms	0 Therms	0 kWh			
	Total Estimated Annual Operating Energy Costs For all Heaters	\$1,186	\$0 \$	\$0 \$	\$0 \$			
Step 2	Proposed New Water Heater							
	Proposed Hot Water Heater Fuel	Electric	Natural Gas	Electric	Natural Gas			
	Capacity of the Proposed New Water Heater	10-Gal,1.6-kW	29-Gal,40-kBtu					
	Energy Factor of Proposed Water Heater	0.89 EF	0.61 EF	0.00 EF	0.00 EF			
	Proposed Water Heater Input Rating	1.60 kW	40.00 kBtuh	0.00 kw	0.00 kBtuh			
	Annual kBtuh Consumption For All The Proposed Water Heaters	18,904 kBtuh	0 kBtuh	#DIV/0! kBtuh	#DIV/0! kBtuh			
	Estimated Annual Water Heater Fuel Consumption (All Heaters)	5,541 kWh	0 Therms	0 kWh	0 Therms			
	Estimated Total Annual Energy Costs	\$1,026	\$0	\$0	\$0			
Step 3	Energy & Cost Saving Calculation							
	Estimated Cost of New Water Heater/Unit	\$672	\$1,029	\$0 \$	\$0 \$			
	Total Estimated Installation Cost	\$1,002	\$0 \$	\$0 \$	\$0 \$			
	Total Estimated Annual Cost Savings	\$160	\$0 \$	\$0 \$	\$0 s			
	Total Annual Cost Savings:	\$160	Total Initial Investment::	\$1,002				
	Simple Pay Back Period	6.27						
	Type of Recommendation Capital Cost ECM R	ecommendation						

Disclaimer: PREPARED BY EMG. DECEMBER 2016, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

ECM SUMMARY:

Electric resistance is the most expensive method for heating domestic hot water. A natural gas or propane fired water system provide more units of heat with direct burning of fuel while high wattage draw is required for electric water heaters to create resistance heat. This electric usage can be seen with the increase power demand for the site and the additional kWh consumption. The installation process of the gas/propane fired water heater requires additional measures with tying a gas line or fuel tank to the system along with installing an exhaust gas vent. This process is not a costly retrofit if a current gas line or tank is at the site. The hot water exhaust duct can be tied to the existing gas fired furnaces or boilers for an easy retrofit.

SUMMARY:

Initial Investment: \$1,002 Simple Payback: 6.27 yrs

Annual Cost Savings: \$160

UIC	Upg	rade Buildi	ng Lighting	g to LED and	Install Auto	matic Lightii	ng Control
EAL10	Location: Buil	ding Interior	and Exterio	or			
		No. of ECMs	No. of Fixtures	No. of Lamps	KWh Saved	Energy Cost Saving	O & M Savings
Jpgrade Lighting to	LED	28	527	1,479	46,940	\$8,692.31	\$5,766.76
Existing Technology	Sub- Technolog Y	No. of ECMs	No. of Fixtures	No. of Lamps	KWh Saved	Energy Cost Saving	O & M Savings
CFL	CFL - 2 Pin	0	0	0	0	\$0	\$0
CFL	CFL - 4 Pin	0	0	0	0	\$0	\$0
CFL	CFL - Screw-in	3	12	12	181	\$34	\$2,017
Circiline	Т9	0	0	0	0	\$0	\$0
ncan/H/MR	Н	0	0	0	0	\$0	\$0
ncan/H/MR	Incan	0	0	0	0	\$0	\$0
ncan/H/MR	MR	0	0	0	0	\$0	\$0
ID	HPS	0	0	0	0	\$0	\$0
HID	МН	0	0	0	0	\$0	\$0
HID	MV	0	0	0	0	\$0	\$0
HID	QL	0	0	0	0	\$0	\$0
inear Fluorescent	T8	25	515	515	46,759	\$8,659	\$3,750
inear Fluorescent	T12	0	0	0	0	\$0	\$0
inear Fluorescent	T8 U	0	0	0	0	\$0	\$0
inear Fluorescent	T12 U	0	0	0	0	\$0	\$0
inear Fluorescent	T5	0	0	0	0	\$0	\$0
inear Fluorescent	T6	0	0	0	0	\$0	\$0
inear Fluorescent	T10	0	0	0	0	\$0	\$0
Proposed		No. of				İ	No. of
Controls		Controls					Controls
Photo Sensor 0					Ceiling Mounted	۱ ا	218
Wall Mounted		0			Coming Modified	1	210
nitial Investment				Equipment Rer	ntals		
Material Cost		\$35,322.00			' - Interior Spac	:	\$0.00
abor Cost		\$60,310.11		Bucket Truck -	Exterior Space	×	\$0.00

Estimated Annual Energy Savings:

Estimated Annual Energy Cost Savings:

Estimated Annual O&M Cost Savings:

Estimated Annual Cost Savings:

46,940

\$8,692

\$5,767

\$14,459

\$0.17 \$/kWh

6.61 Years

\$72.40

\$95,632

Local Electric Rate:

(Including O&M Savings)

Hourly Labor Rate For Electrician:

Estimated Return on Investment:

Budgeted Initial Investment:

UIC	Re-Commission The Building & Its Con	trol Systems					
EAC10	Location: Throughout						
Enter the	Total Area of The Facility	43,474 SqFt					
Select the	Type of Heating Fuel:	Natural Gas (Select)					
Estimated	Annual Heating Fuel Consumption:	3,114 Therms					
Is the Prop	Is the Property Cooled?						
Estimated	Annual Electrical Energy Consumed For Cooling:	42,481 kWh					
Estimated	Energy Savings From Re-Commissioning on Building Systems:	15% (Select)					
Estimated	Heating Energy Saving Post Re-Commissioning:	467 Therms					
Estimated	Cooling Energy Saving Post Re-Commissioning:	6,372 kWh					
Average H	eating Fuel Rate Paid By The Property:	\$1.32 \$/Therm					
Average E	ectrical Rate Paid By The Property:	\$0.19 \$/kWh					
Annual En	ergy Cost Savings:	\$1,797					
	Cost For Re-Commissioning The Facility: eport on Building Commissioning)	\$19,466					
Simple Pa	back Period:	10.83 Yrs					
Type of R	ecommendation Capital Cost ECM Recommendation	1					

Disclaimer: PREPARED BY EMG.May 2016, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

ECM DESCRIPTION

The goal of commissioning of a facility is to ensure that the equipments in the facility are performing as per the desired standards or as per design standards. The role of commissioning in existing buildings is to identify the almost inevitable "drift" from where things should be and puts the things back on track. Based on the LBNL 2009 Report on Building Commissioning the average re-commissioning of existing buildings yielded atleast 16% of energy savings across the facility. This average has been developed based on over 643 buildings that were commissioned across United States in different climatic zones.

Thus EMG strongly recommends re-commissioning of all existing buildings in order to ensure that all the sensors, equipments and control systems are working as per the design conditions.

SUMMARY:

Initial Investment: \$19,466 Simple Payback: 10.83 Years

Energy Cost Savings: \$1,797

UIC	Install Low Flow Restroom Flush T	ank Toilets						
EAP3	Location: Restrooms and Locker Rooms							
	EXISTING CONDITION							
Total Occu	upants:	800						
Number of	f Water Closets To Be Replaced	2						
Number of	f Occupied Days Per Week (Max 7)	5						
Number of	Number of Occupied Weeks/Year (Max 52)							
	Estimated Restroom Usage/Individual/Day 5.05 flushes/person/day@American Water Works Association (AWWA) (Select)							
	PROPOSED RETROFIT/REPLACEMENT							
Existing Ga	allons Per Flush Ratings For Water Closet Flushes	1.60 GPF						
Replace or	Retrofit Toilets With Dual Flush Toilets	Replace						
Proposed ⁻	Toilet 0.8GPF -Floor Mount,	, 10" Rough-In						
GPF of Pro	posed New Low Flow Water Closet Fixture*	0.80 GPF						
	- Retrofit Setup Valve for Flush Tank Toilet Solid Wa Requires All Flushes Not To Exceed 1.6 GPF) Liquid Wa							
	Water & Cost Saving Calculations							
Water Savi	ings By The Use of Low Flow Water Closet Flush Valves/Day	2,560.00 gal						
	ual Water Savings in gallons ogs Calculations	460.80 kgal						
Enter Wate	er Tariff Rate (\$/1000GaI)	\$34.86 \$\$						
	Cost Savings From Water Cost of Retrofit	\$16,063 \$\$						
Estimated	Total Cost For Retrofit	\$1,897 \$\$						
Simple Pay	Simple Pay Back Period 0.12 Yrs							
Type of Re	commendation Capital Cost ECM Recomme	endation						

Disdaimer: PREPARED BY EMG. May 2016, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

ECM EXPLANATION:

The highest water utilization at any home/office occurs in the restrooms. It is estimated that on an average a normal human being uses the restroom at least four times a day. Keeping with the global water conservation objectives, federal law prohibits use of any new water closet flushes over 1.6 GPF.

Existing toilets can be retrofitted with pressure-assisted flush technology to reduce the flush rate to 1.0 GPF or less. Though water efficient these toilets make considerable amount of noise as this involves release of pressurized air during the course of flushing. Thus making them unpopular among residential properties.

Thus EMG recommends replacing the existing high flow toilets with new low flow 1.28GPF rated flush tank toilets, which are comparatively more water efficient at the same time considerably quiter as compared to the pressure assisted technology retrofitted toilets.

Summary:

Initial Investment: \$1,897

Simple Payback: 0.12 Years

Annual Cost Savings \$16,063

	UIC		-	Replace Ext	ternal Windows	
	EAE2	Location: Throughout				
	1110			ENTER EXISTING		
Existing and Pro	posea Wind	low Properties			Existing & Proposed Air Leakage Through Windows	
Total Sq.Ft window a			4,416	sq.ft	Insert Existing Estimated Air Change Rate/Hr (ACH 1): (Existing Air Changes Per Hour, 1.5 is very leaky and 0.35 ideal)	1.00
Total existing window			4,416	Sq.Ft	Insert Proposed Estimated Air Change Rate/Hr (ACH 2):	0.70
Select The Existing W Existing U-value of w			1.31	Btu/ ft²·°F·h	Estimated Space Volume Under Consideration (Select)	391,266.00 Cu. Ft
ASHRAE Climatic Zone New U-value with Double pane Low E window: (1/R) RAE 90.1 Recommended Value Btu/ ft².*F-h				Is the Property Cooled ?	Yes (Select)	
	WINTER					
Select Type of Heatin	g Fuel		Natural Gas	(Select)	Select Type of Cooling Fuel:	Electric (Default
Net heating plant & d	istribution syst	em efficiency:	79.00	%	Cooling Plant Efficiency (EER):	7.00 EER
Annual Heating Hours	s:		2,943	HDD	Annual Cooling Hours:	1,407 CDD
Estimated Total Annu Windows	al Input Heatir	ng Energy Savings By Replacing	37.90	Therms	Annual Total Input Cooling Fuel Savings During Summer Season By Replacing Windows	20,451 kWh
Estimated Total Annu Controlling Air Leaka	-	ng Energy Savings Achieved By Indows	1,889	Therms	Estimated Total Annual Input Cooling Energy Savings Achieved By Controlling Air Leakage Through Windows	10,192 kWh
Estimated Total Input Windows	t Heating Fuel S	Savings From Replacing	1,927	Therms	Estimated Total Input Cooling Fuel Savings From Replacing Windows	30,643 kWh
				ENERGY & COS	ST ANALYSIS	
Insert Cost of Heating Insert Cost of Cooling	_		\$1.32 \$0.19	\$/Therm \$/kWh	Annual Heating Cost Savings: Annual Cooling Cost Savings:	\$2,546.17 \$\$ \$5,674.44 \$\$
Total Annual Cost Sa	vings		\$8,303]	Total Annual Cost Savings From Heating & Cooling:	\$8,221 \$\$
Cost of window upgi	rade:		\$224,930]	Estimated Annual O&M Savings	\$82 \$
Simple payback:			27.09	Yrs	Type of Recommendation Capital Cost ECM Recor	nmendation
Disclaimer: PREPARED BY CONFIDENTIAL BY ALL PAI		NFORMATION CONTAINED IN THIS DO	DCUMENT IS PRIVILEGED A	AND CONFIDENTIAL "T	TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP, THIS MATERIAL MUST BE CONS	DERED PRIVELEDGED AND

ECM DESCRIPTION:

Windows play a major role in the energy use and comfort of an interior space. In the winter, heat in a room is lost when cold outside air infiltrates around the edges of windows. Heat also can be lost by conduction directly through the pane, even if the window fits tightly. Windows with insulated panes, such as those filled with Argon address this issue, while proper caulking and sealant address the infiltration issue. The cold drafts and the chilly windowpane make the room uncomfortable. Windows also can help to heat a room by letting the sun's rays enter. While this solar radiation is beneficial in the winter, it can be a major source of discomfort in hot, summer climates. Energy Star rated windows with Low-E glazing are designed to keep the solar heat gain minimized during the summer months. Choosing a replacement window that fits properly has the desired U-value, and proper glazing characteristics is critical to energy conservation through window upgrades.

Summary:

Initial Investment: \$224,930 Simple Payback 27.09 Yrs

Annual Energy Cost Savings: \$8,303

ECM FOR DETERMINING WATER SAVINGS IN COMMERCIAL PROPERTIES Number of Males Number of Males Number of Occupied Days Per Week (Max 7) Number of Occupied Weeks/Year (Max 52) Number of Occupied Weeks/Year (Max 52) Number of Occupied Weeks/Year (Max 52) Number of Urinals To Be Retrofitted Number of Water Closets With Separate Flush Tank (**peical Residence Trype) **Estimated Restroom Usage/Individual/Day Defoult as 4 teac/bay for Residence/Office **Urinal Water Savings** **Do you Want To Make Any Changes To The Urinals?** **Do you Want To Make Any Changes To The Urinals?** **Do you Want To Make Any Changes To The Urinals?** **Do you Want To Make Any Changes To The Urinals?** **Do you Want To Make Any Changes To The Urinals?** **Do You Want To Make Any Changes To The Urinals Flushes **Existing Gallons Per Flush Ratings For Urinal Flushes **Do The Proposed Urinal Flush Valve*** ***Institute of Proposed Urinal Flush Valve** ***Institute Of Urinal Flush Valve** ***I	uic	Install Low Flow Tankless Restroom Fi	ktures
Number of Males Number of Females Number of Females Number of Occupied Days Per Week (Max 7) Number of Occupied Weeks/Year (Max 52) Number of Urinals To Be Retrofitted No. of Water Closets to Be Retrofitted No. of Water Closets With Separate Flush Tank (Typical Residented Type) Estimated Restroom Usage/Individual/Day Joplant of Jenarica for Predictional Colors Statistic Gallons Per Bush Ratings For Urinal Flush Valves (Select) Proposed Urinal Flush Water Savings Do you Want To Make Any Changes To The Urinals? Bestimated Existing Use of Urinal/Day/Man Estimated Existing Use of Urinal Flush Valves Estimated Existing Use of Urinal Flush Valves Proposed Urinal Flush Valves Estimated Annual Water Savings For Urinal Flush Water Closet Water Savings Tankless Water Closets Do The Water Closet Need To Be Retrofitted? Select) Water Closet Water Savings Tankless Water Closet Being Replaced? Fellow Flush Valves Water Closet Being Replaced? Fellow Flush Valves Water Closet Being Replaced? Water Closet Water Savings From Water Closet Flushes Are The Existing Water Closet Being Replaced? GPF of Proposed Dual Flush Water To Exceed 1.6 GPF) Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Female Users Estimated Annual Water Savings From Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings Calculation Water Savings From Water Closets Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water Cost For Replacing Existing Urinal Fixture With A Low Flow - Dual Flush Valves (\$80 Sci.2381 Sci.	EAP4	Location: Restrooms	
Number of Occupied Days Per Week (Max 7) Number of Occupied Days Per Week (Max 52) Number of Occupied Weeks/Year (Max 52) Number of Water Closets To Be Retrofitted No. of Water Closets To Be Retrofitted No. of Water Closets To Be Retrofitted No. of Water Closets With Separate Flush Tank (***rpicul Recidented Type) Estimated Restroom Usage/Individual/Day Option of Control (***Policy Per Recidented Control (**		ECM FOR DETERMINING WATER SAVINGS IN COMMERCIAL PRO	PERTIES
Number of Occupied Weeks/Year (Max 52) Number of Urinals To Be Retrofitted Number of Water Closets To Be Retrofitted Number of Water Closets To Be Retrofitted No. of Water Closets With Separate Flush Tank (Typsical Residence In Type) Estimated Restroom Usage/Individual/Day Defoult is 4 toac/Day for Residence/Close Urinal Water Savings Do you Want To Make Any Changes To The Urinals? No Estimated Existing Use of Urinal/Day/Man Existing Gallons Per Flush Ratings For Urinal Flushes Proposed Urinal Flush Valve** 1.00 GPF Proposed Urinal Flush Valve** 1.0125 GPF Select July Select Theory Act Nacideas I DGPF Max on Urinal Estimated Annual Water Savings From Urinal Water Closet Water Savings Tankless Water Closet Seling Replaced? Existing Gallons Per Flush Ratings For Water Closet Flushes Are The Existing Water Closet Being Replaced? [Select] Ves Existing Gallons Per Flush Ratings For Water Closet Flushes Are The Existing Water Closet Being Replaced? [Select] No (If Inches In Water Ratings In The Water Closet Flush Resolute In The Water Closet		100	
Number of Water Closets To Be Retrofitted No. of Water Closets With Separate Flush Tank (**Pipital Residential Tyte) Estimated Restroom Usage/Individual/Day Defoult a d User/Day For Residential/Office Urinal Water Savings Do you Want To Make Any Changes To The Urinals? No Estimated Existing Use of Urinal/Day/Man Existing Gallons Per Flush Ratings For Urinal Flushes Proposed Urinal GPF of Proposed Urinal Flush Valve* "11992 Epach Timery At Mandates 1 DOPF Max on Usinals] Estimated Annual Water Savings From Urinal Water Closet Water Savings Tankless Water Closet Need To Be Retrofitted? Existing Gallons Per Flush Ratings For Water Closet Flushes Do The Water Closet Need To Be Retrofitted? Existing Gallons Per Flush Ratings For Water Closet Flushes Are The Existing Water Closet Being Replaced? (**Journal Office Theory Office O			
Do you Want To Make Any Changes To The Urinals? Do you Want To Make Any Changes To The Urinals? Estimated Existing Use of Urinal/Day/Man Existing Gallons Per Flush Ratings For Urinal Flushes Proposed Urinal Flush Valve** **1992 EpACT Energy Act Mandates 1 JOPP Max on Unital GPF of Proposed Urinal Flush Valve** **1992 EpACT Energy Act Mandates 1 JOPP Max on Unital Estimated Annual Water Savings From Urinal Water Closet Water Savings Tankless Water Closet Need To Be Retrofitted? Existing Gallons Per Flush Ratings For Water Closet Flushes Are The Existing Water Closet Being Replaced? (Select) Incomply the Flush valve would be Replaced With Doub Flush Revofit Rat) No. of Tankless Water Closet Seing Replaced? (Select) Incomply the Flush valve would be Replaced With Doub Flush Revofit Rat) No. of Tankless Water Closet Seing Replaced? (Select) Incomply the Flush valve would be Replaced With Doub Flush Revofit Rat) No. of Tankless Water Closet Seing Replaced? (Select) Incomply the Flush valve would be Replaced Valve* Solid Waster (2004) Incomply the Flush Valve Water Closet Valve* Solid Waster (2004) Incomply the Flush Valve Water Closet Valve* Viredwal law Requires All Plushes Not To Exceed 1.6 GPT) Liquid Waster (2004) Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Water Closets Water & Cost Saving Calculations Water Savings Calculation Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Ood kgal Cost Savings Calculations Enter Water Tariff Rate (S/1000Gal) Estimated Cost Savings From Water Sol. 76 Kgal Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Sol. 76 (Includes Labor) Sol. 76 (Number of No. of Wa	Water Closets To Be Retrofitted ter Closets With Separate Flush Tank	20
Estimated Existing Use of Urinal/Day/Man Existing Gallons Per Flush Ratings For Urinal Flushes Proposed Urinal GFP of Proposed Urinal Flush Valve* 1.00 GFF Proposed Urinal Flush Valve* 1.125 GFF 1.1292 [pACT Energy Act Mendadus 1.06]* Macon Lifenals) Estimated Annual Water Savings From Urinal Water Closet Water Savings Tankless Water Closet Need To Be Retrofitted? Existing Gallons Per Flush Ratings For Water Closet Flushes The Existing Water Closet Being Replaced? (If No. Then Only The Flush Volve Would be Replaced With Dual Flush Recognism) No. of Tankless Water Closets GPF or Proposed Dual Flush- Water Closet Valve* 1/2 (No. Then Only The Flush Volve Would be Replaced 1.6 GP) Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Female Users Estimated Annual Water Savings From Female Users Total Water Savings From Water Closets Water & Cost Saving Calculations Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tariff Rate (S/1000Gal) Estimated Cost Savings From Water Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 Estimated Total Cost For Retrofit Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 S12,381 S5 Per Unit) (Ipe For upped Wasse And Down For Solid Wasse) Estimated Total Cost For Retrofit S12,381 S5 S5 Simple Pay Back Period S5 Simple Pay Back Period Solid Water Savings First Page Pay Back Period S0 First Page Page Page Page Page Page Page Page		es/Day For Residential/Office	(Select)
Estimated Existing Use of Urinal/Day/Man Existing Gallons Per Flush Ratings For Urinal Flushes Estimated Annual Water Savings From Urinal Water Closet Water Savings Tankless Water Closet Need To Be Retrofitted? Existing Gallons Per Flush Ratings For Water Closet Flushes Tankless Water Closet Need To Be Retrofitted? Existing Gallons Per Flush Ratings For Water Closet Flushes Do The Water Closet Need To Be Retrofitted? Existing Gallons Per Flush Ratings For Water Closet Flushes Are The Existing Water Closet Being Replaced? If No. The Only The Flush Valve Would be Replaced With Dual Flush Retrofit Kit) No. of Tankless Water Closets GPF of Proposed Dual Flush-Water Closet Valve* Solid Waster (20x) 1.60 GPF *If Indicated Law Requires All Flushes Not To Exceed 1.6 GPF) Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Pemale Users Total Water Savings Form Water Closet Saving Calculations Water Savings SQ Lakulation Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Solid Waster Rad Down For Solid Waster) Estimated Cost of Retrofit Cost For Replacing Existing Urinal Fixture With Low Flow - Dual Flush Valves (\$80) [Includes Labor] Includes Labor] Includes Labor] Includes Labor] Includes Labor] Includes Labor] Solid Waster And Down For Solid Waster) Estimated Total Cost For Retrofit Solid Waster And Down For Solid Waster) Estimated Total Cost For Retrofit Solid Waster And Down For Solid Waster) Estimated Total Cost For Retrofit Solid Waster And Down For Solid Waster)		Urinal Water Savings	
Proposed Urinal Flush Valve** "1/1992 EpACT Energy Act Mandates 1.0 GPF Mass on Uninals) Estimated Annual Water Savings From Urinal Water Closet Water Savings Tankless Water Closets Do The Water Closet Need To Be Retrofitted? Existing Gallons Per Flush Ratings For Water Closet Flushes Are The Existing Water Closet Being Replaced? (// No; Then Only The Flush Valve Would Be Replaced With Dual Flush Retrofit Kit) No. of Tankless Water Closets GPF of Proposed Dual Flush - Water Closet Valve* "redered Law Requires Mil Flushes Not To Exceed 1.6 GPF) Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Female Users Estimated Annual Water Savings From Water Closets Water & Cost Saving Calculation Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Sol. 29 SS (reducte Labor) Cost For Replacing Existing Urinal Fixture With A Low Flow - Dual Flush Valves (\$80) S12,381 (reducte Labor) (Lip For Linguid Waster And Down For Solid Waste) Estimated Total Cost For Retrofit S12,381 SS (Imple Pay Back Period)			
GPF of Proposed Urinal Flush Valve** "1992 EpACT Energy Act Mondales 1.0 GPF Meav on Urinals' Estimated Annual Water Savings From Urinal Water Closet Water Savings Tankless Water Closets Do The Water Closet Need To Be Retrofitted? Existing Gallons Per Flush Ratings For Water Closet Flushes Are The Existing Water Closet Being Replaced? (If No. Then Only The Flush Valve Would be Replaced With Dual Flush Retrofit KIZ) No. of Tankless Water Closets GPF of Proposed Dual Flush- Water Closet Valve* "If Pederal Law Requires All Flushes Not To Exceed 1.6 GPF) Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Water Closets Water & Cost Saving Calculations Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Sol Of Retrofit Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80) \$12,381 \$5 (Redudes Lobor) (Redudes Lobor			
Tankless Water Closets Do The Water Closet Need To Be Retrofitted? Existing Gallons Per Flush Ratings For Water Closet Flushes Are The Existing Water Closet Being Replaced? (If Not Then Only The Flush Volve Would Be Replaced With Dual Flush Retrofit Ktt) No. of Tankless Water Closets GPF of Proposed Dual Flush- Water Closet Valve* **Feederal Law Requires All Flushes Not To Exceed 1.6 GPF) Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Hemale Users Estimated Annual Water Savings From Female Users Total Water Savings Calculation Water & Cost Saving Calculations Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 \$5	GPF of Pro	posed Urinal Flush Valve**	
Tankless Water Closets Do The Water Closet Need To Be Retrofitted? Existing Gallons Per Flush Ratings For Water Closet Flushes Are The Existing Water Closet Being Replaced? If No. Then Only The Flush Voive Would Be Replaced With Dual Flush Retrofit Rit) No. of Tankless Water Closets GPF of Proposed Dual Flush- Water Closet Valve* Tederal Iam Requires All Flushes Not To Exceed 1.6 GPF) Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Female Users Total Water Savings From Water Closets Water & Cost Saving Calculations Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80	Estimated	Annual Water Savings From Urinal	0.00 kGal
Do The Water Closet Need To Be Retrofitted? Existing Gallons Per Flush Ratings For Water Closet Flushes Are The Existing Water Closet Being Replaced? (If Not. Then Only The Flush Valve Woold Be Replaced With Dual Flush Retrofit Rti) No. of Tankless Water Closets By GPF of Proposed Dual Flush- Water Closet Valve* GPF of Proposed Dual Flush- Water Closet Valve* Solid Waste (2000) GPF *Ifederal Law Requires All Flushes Not To Exceed 1.6 GPF) Liquid Waste (2000) Liquid Waste (2000) Liquid Waste (2000) Agal Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Female Users Total Water Savings From Water Closets Water Savings Calculations Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tariff Rate (5/1000Gal) Estimated Cost Savings From Water Sol. 76 Estimated Cost Savings From Water Sol. 76 Estimated Cost Gretrofit Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture (10) Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80) (10) For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80) Sol. 78 Simple Pay Back Period Proposed Parks Parcolaid			
Existing Gallons Per Flush Ratings For Water Closet Flushes Are The Existing Water Closet Being Replaced? (If No. Then Only The Flush Valve Would Be Replaced With Dual Flush Retrofit Kit) No. of Tankless Water Closets GPF of Proposed Dual Flush- Water Closet Valve* "frederal Law Requires All Flushes Not To Exceed 1.6 GPF] Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Female Users Estimated Annual Water Savings From Female Users Water Savings From Water Closets Water Savings Galculation Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 \$5 (Includes Laboo) \$12,281 \$5 (Yes
If No. Then Only The Flush volve Would Be Replaced With Dual Flush Revolft Rit) No. of Tankless Water Closets 18	Existing Ga		
GPF of Proposed Dual Flush- Water Closet Valve* ***Irederal Law Requires All Flushes Not To Exceed 1.6 GPF]* Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Female Users Estimated Annual Water Savings From Female Users **Sold Waster (2004)* Estimated Annual Water Savings From Female Users **Water Savings From Water Closets **Water Savings Calculation* Water Savings Calculation Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal **Cost Savings Calculations* Enter Water Tarriff Rate (\$/1000Gal) Estimated Cost Savings From Water **Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 \$50.00 \$10.00 \$	(If No; Then On	ly The Flush Valve Would Be Replaced With Dual Flush Retrofit Kit)	
**Irederal Law Requires All Flushes Not To Exceed 1.6 GPF) Estimated Annual Water Savings From Male Users Estimated Annual Water Savings From Female Users Estimated Annual Water Savings From Female Users Total Water Savings From Water Closets Water & Cost Saving Calculation Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculation Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Urinal Fixture With Low Flow - Dual Flush Valves (\$80 \$12,381 \$50 \$12,381 \$50 \$12,381 \$50 \$12,381 \$50 \$12,381 \$50	No. of Tan	kless Water Closets	18
Estimated Annual Water Savings From Female Users Total Water Savings From Water Closets Water & Cost Saving Calculations Water Savings Calculation Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 (Includes Labor) (Use For Unity) (Use For Unity) (Use For Unity) Estimated Total Cost For Retrofit \$12,381 \$\$ Simple Pay Back Period			
Water Savings Calculation Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 \$50 \$100	Estimated	Annual Water Savings From Male Users	250.88 kGal
Water Savings Calculation Water Savings Calculation Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tarriff Rate (\$/1000Gal) Estimated Cost Savings From Water Stimated Cost of Retrofit Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 \$500 \$12,381	Estimated	Annual Water Savings From Female Users	250.88 kGal
Water Savings Calculation Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/Yr Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water S146 S5 Estimated Cost of Retrofit Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 (Includes Labor) (Up For Upgally Waster And Down For Solid Waster) Estimated Total Cost For Retrofit Simple Pay Back Period 85.09 Yrs	Total Wate	er Savings From Water Closets	501.76 kGal
Water Savings By The Use of Low Flow Water Closet Flush Valves/Yr Water Savings By The Use of Low Flow Urinal Flush Valves/ Yr 0.00 kgal Total Annual Water Savings in kgal Cost Savings Cakculations Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water 5146 \$\$ Estimated Cost Savings From Water South For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture (South For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 \$10000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000	Water Say		
Total Annual Water Savings in kgal Cost Savings Calculations Enter Water Tariff Rate (\$/1000Gal) \$5.29 \$\$ Estimated Cost Savings From Water \$146 \$\$ Estimated Cost of Retrofit Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture \$0 (Includes Laboo) \$\$ Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 (Includes Laboo) \$\$ (Includes Laboo) \$\$ Estimated Total Cost For Retrofit \$\$ Simple Pay Back Period \$\$ 85.09 Yrs		-	501.76 kgal
Cost Savings Calculations Enter Water Tariff Rate (\$/1000Gal) \$50.29 \$\$ Estimated Cost Savings From Water \$146 \$\$ Estimated Cost of Retrofit Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture \$0 \$(Redudes Labor)\$ Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12.381 \$(Includes Labor)\$ (Tup For Lippul Waster And Down For Solid Waster) Estimated Total Cost For Retrofit \$12.381 \$\$ Simple Pay Back Period \$85.09 \$\text{Yrs}\$	Water Sav	ings By The Use of Low Flow Urinal Flush Valves/ Yr	0.00 kgal
Enter Water Tariff Rate (\$/1000Gal) Estimated Cost Savings From Water S146 S\$ Estimated Cost of Retrofit Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 \$10 flooders Lobor) (Includes Lobor) (Up For Uppul Woster And Down For Solid Woster) Estimated Total Cost For Retrofit \$12,381 \$\$ Simple Pay Back Period			501.76 kgal
Estimated Cost Savings From Water Statimated Cost of Retrofit Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 \$5 \$12,381 \$5 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10	Cost Savin	gs Calculations	
Estimated Cost of Retrofit Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 \$55 Per Unit) (Up For Uquid Waste And Down For Solid Waste) Estimated Total Cost For Retrofit \$12,381 \$55 Simple Pay Back Period			
Cost For Replacing Existing Urinal Fixture With A Low Flow Fixture Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (S80 \$12,381 (Includes Labod) For Unit) (Up For Liquid Waster And Down For Solid Waster) Estimated Total Cost For Retrofit \$12,381 \$\$ Simple Pay Back Period \$85.09 Yrs	Estimated	Cost Savings From Water	\$146 \$\$
Cost For Replacing Existing Flush Valves With Low Flow - Dual Flush Valves (\$80 \$12,381 \$55 Per Unit) (Up For Upuid Waste And Down For Solid Waste) Estimated Total Cost For Retrofit \$12,381 \$55 Simple Pay Back Period	Estimated	Cost of Retrofit	
Per Unit) (Indudes Labor) (Up For Liquid Waste And Down For Solid Waste) Estimated Total Cost For Retrofit \$12,381 \$\$ Simple Pay Back Period \$85.09 Yrs	Cost For R	eplacing Existing Urinal Fixture With A Low Flow Fixture	(Includes Labor)
Estimated Total Cost For Retrofit \$12,381 \$\$ Simple Pay Back Period 85.09 Yrs	Per Unit)		
Simple Pay Back Period 85.09 Yrs			\$12,381 \$\$
Type of Recommendation Capital Cost ECM Recommendation			
	Type of Re	commendation Capital Cost ECM Recommendat	ion

Disclaimer: PREPARED BY EMG. May 2016, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

ECM EXPLANATION:

The highest water utilization at any home/office occurs in the restrooms. It is estimated that on an average a normal human being uses the restroom at least four times a day. Keeping with the global water conservation objectives, federal law prohibits use of any new water closet flushes over 1.6 GPF. At the same time the '1992 EpACT' mandates all new Urinals to have a maximum 1.0 GPF flush returns on the control of the con valves on urinals.

EMG recommends replacing all urinals above 1.0 GPF with a new 0.5 GPF or lesser urinals. At the same time EMG also recommends replacing all the water closets having a GPF rating of 1.6 and ove with low flow water closet fixtures equipped with dual flush valves.

In case the property doesn't wish to replace the entire water closet fixtures, EMG recommends retrofitting all the tankless water closet flush fixtures with new dual flush fixtures that would result in a 30% water savings per flush for liquid wastes, while retaining the same flush rate for solid wastes.

SUMMARY:

Initial Investment: Annual Cost Savings: \$146 Simple Payback Period:

85.09 Yrs

APPENDIX G: Solar PV

Property of EMG Corp. All Rights Reserved UIC Install Fixed Tilt Solar Photovoltaic System Details: EAR-2 Northern California \$0.19 \$/KWH Annual Electric Consumption: 213,472 KWh Select State: Electric Rate: Total Estimated Estimated Number **Total Estimated** Simple Pay Back One Time Simple Pay Back Annual Potential Incentives and DC System Size Per PV System Sizing Installation Cost: One Time Potential Electricity Roof No. Description Number of Roofs of 315 Watt PV Annual Electricity **Total Cost Savings** Period without Potential Utility or Period with All For All Roofs Generated (\$3.5/Watt) Federal Incentives Rebates Panels: Generated/Roof Incentives State Incentives Incentives (All Roofs) Solar Renewable Dept. of Treasury kW kW kWh kWh Yrs Certificates (SRECS)-Years Renewable Grant (30%) (~\$0/MWH) \$0.02 Building 4 11 34 16,409 16,409 \$3,039 \$37,450 \$11,235 \$361 \$0 \$0 \$0 \$0 Building 6 179 86,491 \$16,016 \$197,400 \$1,903 Building 8 19 60 28,984 28,984 \$5,367 \$66,150 \$19,845 \$638 \$0 7.4 3 4 0 0 0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 5 0 0 \$0 \$0 \$0 \$0 \$0 6 \$0 \$0 \$0 \$0 0 0 0 \$0 7 0 0 0 \$0 \$0 \$0 \$0 \$0 8 \$0 \$0 \$0 \$0 \$0 \$0 0 0 0 9 \$0 \$0 \$0 \$0 \$0 \$0

Solar Rooftop Photovoltaic Analysis				
Total Number of Roofs	3	1		
Estimated Number of Panels	273	1		
Estimated KW Rating	86	KW		
Potential Annual KWh Produced	131,884	KWh		
% of Current Electricity Load	61.8%	7		

\$24,422

\$301,000

12.32

\$0

\$90,300

\$2,901

\$0

7.44

131,884

131,884.0

86

273

Financial Analysis				
Investment Cost	\$301,000			
Estimated Energy Cost Savings	\$24,422			
Potential Rebates	\$90,300			
Potential Annual Incentives	\$2,901			
Payback without Incentives	12.3	year		
Incentive Payback but without SRECS	7.4	year		
Payback with All Incentives	7.4	year		

Disclaimer: PREPARED BY EMG. JANUARY 2017, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.