Simplestudies.org

Linguistics Study Guide

unfortunately created by Sarah Frank (LOL)

Notes- Phonology and Phonetics

IPA Chart:

	Bildeal	abicekental	Dental	Aloclar	Pataluelar	Retrotex	Pabal	Velar	Uvular	Pharyugen	Gletal
Plosive	p b			$t \mathrm{~d}$		t d	c \ddagger	k g	q G		$?$
Neal	m	m		n		η	n	!	N		
Trill	B			r					R		
Tap cer lap				r		¢					
Fricative	$\phi \beta$	f v	θ ठ	s z	$\int 3$	¢ z	ç j	x 8	X \quad b	ち $¢$	h fi
literal				4 B							
Approximans		v		1		t	j	u_{1}			
${ }^{\text {Lateral }}$ appromant				1		l	κ	L			

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

Phonology \& Phonetics Vocab

- Phonology: the study of how sounds pattern
- Phonetics: the study of the properties of sounds
- Sonorant- any of the nasal, liquid, and glide consonants that are marked by a continuing resonant sound
- English sonorants: y, w, 1, r, m, n, and η.
- Obstruents- plosive sounds (the stops, the fricatives, and the affricates)
- English obstruents: p, t, k, b, d, g, f, s, f, x, v, z, 3, 子, and affricates
- allomorph: variations of things with the same meaning (same concept as an allophone but for morphemes)
- ex: $s \rightarrow z$ for pluralization
- allophones - different representation of a sound

$$
\circ \text { ex: }[\mathrm{t}] \rightarrow\left[\mathrm{t}^{\wedge} \mathrm{h}\right]
$$

- fricatives: a type of consonant made by the friction of breath in a narrow opening, producing a turbulent air flow.
- you can hold it

Simplestudies.org

- sibilants: a subclass of fricatives and affricates that make a hiss sound
- s, z, etc
- flap: tongue quickly pulls backwards hitting quickly the alvealor ridge
- ex: the middle sound in "writer"
- the difference is in the vowels
- glides: consonants sometimes called semi-vowels because they have very little closure
- ex: w (voiced bilabial)
- nasal sound: sound flows out of the nose because your mouth is closed
- oral sound: sound you use your mouth for
- manner of articulation: relates to the degree of mouth closure
- stops are made with complete closure
- spoonerism: switching consonants between words
- ex: spill the milk \rightarrow mill the spilk

Symbols in Phonology

- squiggly boy is nasal
- $\wedge \mathrm{h}=$ aspiration
- little circle underneath $=$ voiceless
- slashes $=$ phonemes (ex: /t/)
- brackets $=$ actual sounds [ex: $\mathrm{t}^{\wedge} \mathrm{h}=$ aspirated $/ \mathrm{t} /$ sound]

Place of articulation

- bilabial: both lips (ex: p, b, m)
- labiodental: lower lip and upper teeth (ex: f)
- dental: teeth (ex: t)
- Alveolar: right behind your teeth (ex: d s z)
- Post-alveolar: behind the alveolar ridge, usually sibilants (ex: $\widehat{d 3}$)
- Palatal: ???
- Velar: far back in mouth (ex: kuh and guh)

Simplestudies.org

Classifications

- Stops/plosives: PBTDKG (peanut butter toast doesn't kill germs)
- Nasal: m, n, n
- Liquids: $\mathrm{r}, 1$

Vowels

- $\quad \mathrm{i}$ - ee (as in need)
- I - ih (as in ring)
- $\mathrm{e}-$ eh (went)
- eI - ay (as in skate)
- $\varepsilon-$ eh (epsilon)
- $3-\mathrm{eh} / \mathrm{uh}$ (as in nurse or her)

- $\mathfrak{x}-\mathrm{eh} / \mathrm{ah}$ (as in hand)
- $\quad \Lambda$ - uh (as in love) - stressed
- \quad - uh (as in mother) - unstressed
- a-aw (as in father)
- $\quad \mathrm{a}$ - ah (as in ahhhh idk this)
- $0-\mathrm{aw}$ (as in not)
- $\mathrm{u}-\mathrm{oo}$ (as in boot)
- $\mathrm{o}-\mathrm{oh}$ (as in clothing) / or ou
- y - [i] pronounced with your lips rounded (non-

English, sounds French)

- $\mathrm{j}-\mathrm{y}$
- $\quad u-$ uh (as in book)
- av-ow (as in out)

Natural Classes

- height: top vs bottom of mouth
- backness: front vs back of mouth

- tenseness: amount of effort (must know it)
- regular-looking vowels are tense, weird vowels are lax
- roundness: roundness of lips (French vowels sound round)
- voiced/voiceless

Solving Phonology Problems

- Steps:
- 1) Look at similarities in each data set
- 2) Establish roots/stems
- 3) Look at changes to roots/stems and what might be causing them
- 4) Test the rule to see if it works

Misc Phonology

- close means high and open means low
- a is further back, a is further up
- coronal: uses flexible part of tongue (middle section of the IPA)
- ex:stf θ
- dorsal: uses the blade of your tongue (right section of the IPA)
- ex: k, g, etc
- word finally: at the end of a word
- Obstruent --> - voice/ __ \# (obstruents devoice word finally)

Notes- Morphology

The Basics of Morphology

- Morphology: system of word formation
- Morpheme: smallest unit of meaning
- Words are words because of common usage, not the dictionary

Morphological Processes

- Suffix: addition to the end
- Prefix: addition to the beginning
- Infix: addition to the middle
- Circumfixes: an infix in a specific environment
- Reduplication: part or all of a word is doubled
- sometimes with phonological changes
- Suppletion: change to a completely different stem
- ex: is \rightarrow was or go \rightarrow went
- Compounding: formally, a kind of prefixation but in actually, it just combines two independent words
- ex: blackboard
- 0 Derivation: change in grammatical category and meaning with no phonological change
- "google" went from noun to verb
- Reversative: applies to something in order to undo an action or meaning
- ex: "un"
- Coercion: forcing things into simpler/neighboring/applicable meanings
- Recursive: a rule can apply to its own output

Units of Morphology

- Transitive verb: a verb with an object
- ex: "I placed the book"
- Scalar adjectives: adjectives that describe a point on or in a range
- ex: happy

Simplestudies.org

- Binary adjectives: adjectives that either apply fully or not at all
- ex: true
- Telic verb: a verb that is a process with an end state
- ex: build

Productivity

- A productive process: a process that applies to all words that fit the input description and the effect is predictable
- ex: suffixation of $/ z /$ in English to pluralize
- Blocking effect: if there is already a word for something, it's blocked from a process applying
- Reproductive morphology: cases where we can break things into morphemes BUT:
- the semantic effect is not entirely predictable and/or
- not all words in the relevant class allow this (exceptions)

The Wug Test

- Jean Berko Gleason did it
- "This is a wug. Now there is another one." \rightarrow asks for plural word
- Kids knew to say "wugz"
- steps of language acquisition:
- children first learn irregular forms as irregular (ex: go \rightarrow went)
- children overgeneralize (ex: go \rightarrow goed)
- they then retreat from overgeneralizing and relearn irregularities
- the blocking effect is used

Parts of Morphological Rules

- Three parts:
- formal part: actual rule
- ex: suffixes
- syntactic part: the grammatical categories
- ex: -able makes a verb into an adjective
- semantic part: applications to word meanings

The case of "un"

- Negative "un": as in lower on an adjective's scale - ex: unhappy
- Reversative "un": as in to reverse a verb's action
- ex: undo

Recursive Processes

- Recursive processes: a process that can apply to its own output
- ex: rereredecorate or the reversative un

Misc Morphology

- Agglutinative languages: languages with very productive morphology
- lots of suffixes and prefixes, packs lots of meaning into single words
- Turkish is an example
- Object incorporation: incorporating an object into a verb
- ex: deer hunt
- Lingua franka: someone's second learned language
- Agentive construction: a noun that denotes the do-er of the action
- Born: created, not predictable

Notes- Syntax

The Basics of Syntax

- Syntax: how words combine to give larger phrases and how the phrases pair with meanings
- Syntactic Categories: grammatical categories like noun and verb
- Distributional properties: influences syntactic categories
- A " \rightarrow " in a rule means "may consist of" or "can be"
- Adj-bar: adjectives with additional characterization/more than one word

$$
\bigcirc \quad \text { Adj-bar } \rightarrow \text { Adj }
$$

Phrase Structure Grammar

- Phrase structure grammar: a series of rules specifying how basic expressions of various categories combine to form larger expressions
- like prefixes/suffixes together one before another
- if it's a PSG, you can always draw rule trees

Phrase Recursion

- Example of phrase recursion:
- S1: Roses are red
- S2: Violets are blue
- $\mathrm{S} 1+\mathrm{S} 2$: Roses are red and violets are blue (S3)
- $S \rightarrow S$ and S (a sentence may consist of sentences)

Verbs

- Transitive verb: a verb that happens to something
- Ex: she places the book
- Intransitive: a verb with no object
- Ex: she walks
- Ditransitive verb: a verb with 2 objects
- ex: she walks the dog and the cat

Simplestudies.org

Phrases

$\mathrm{NP}=$ noun phrase

- Noun phrase: words that collectively act as an object or subject
- Ex: the big word
- it's a category

$\mathrm{CP}=$ complementizer phrase

- complementizer: words that can be used to turn a clause into the subject or object of a sentence
- For example, the word that may be called a complementizer in English sentences like Mary believes that it is raining.

$\mathrm{PP}=$ Prepositional phrase

- a modifying phrase consisting of a preposition and its object.
- At a minimum, a prepositional phrase consists of one preposition and the object it governs. The object can be a noun, a gerund (a verb form ending in "-ing" that acts as a noun), or a clause.
- Example: the cat in the middle is cute

VP Rules

- VP \rightarrow V1 (often called IV: elapse, die, etc)
- VP \rightarrow V2 NP (often called TV: devour the pizza, etc)
- VP \rightarrow V3 NP NP (often called DTV: give the dog the bone, etc)
- $\quad \mathrm{VP} \rightarrow \mathrm{V} 4 \mathrm{NP}$ PP (pit the book on the shelf, etc)
- Maybe category labels themselves are actually feature bundles
- They all have one feature ' V ' but different subcategory features

Distributional Facts vs Meaning

- Not all distributional facts seem to follow from meaning
- Example: eat vs devour

Simplestudies.org

- Eat can be a transitive verb (ex: I eat pizza) or a verb on its own (ex: I have to eat)
- Devour can be a transitive verb (ex: I devour pizza) but NOT a verb on its own (ex: I have to devour... no)
- Example: like vs dislike
- Like can occur with infinitival VP complements (ex: I like to play poker), gerundive VPs (ex: I like playing poker), and NPs (ex: I like poker)
- Dislike can't work with VP complements (ex: I dislike to play poker) but can work with gerundive VPs (ex: I dislike playing poker) and NPs (ex: I dislike poker)
- Not all facts about syntax follow from meaning

Complements + Arguments

- the things a verb combines with in the VP are complements
- complements and arguments are obligatory generally
- Ex: I put the book ("the book" is needed for the verb)
- Adjuncts: a thing added to something else as a supplementary rather than an essential part.
- they are optional
- are recursive
- used to amplify or modify the meaning of another word or words

Elaborating on English Recursion / Branching

- English is primarily right branching, meaning trees usually expand from the bottom right up to the left
- "Right branching": something takes complements on the right, such as verbs because verb complements are put on their right
- this is very common in English
- VP \rightarrow V5 S
- Ex: "Sally said Lee thinks Mary knows Loki howls" can be expanded to "Sally said Lee thinks Mary hopes Sandy knows Loki howls"
- S can be a complement of the right sorts of verbs
- since S itself can contain a VP with this same type of verb, we get these recursion chains
- right daughter is expanded on (daughter being on of the things at the bottom of the triangle)
- "Left branching": something takes complements on the left
- VP \rightarrow VP PP
- $\mathrm{N} \rightarrow \mathrm{NRC}$
- In English, modifiers (Adjuncts) tend to follow what they modify (so recursion occurs on the left)
- two exceptions: Adj \rightarrow very Adj and N \rightarrow Adj N lead to recursion on the right
- Center embedding

- can also have recursion in the middle
- ex: $\mathrm{a}^{\wedge} \mathrm{n} \mathrm{b}^{\wedge} \mathrm{n}$ wit the rule $\mathrm{S} \rightarrow$ a $\mathrm{S} A$
- ex: mirror image languages
- ex: $S \rightarrow$ if S then S
- ex: "The rat ate the cheese." \rightarrow modify rat with a relative clause: "The rat [that the cat chased] ate the cheese."
- You could not modify the relative clause, though. "The rat that the cat [that the dog loves] chased ate the cheese."
- left and right are metaphors for temporality $)$ because of course they are \odot

PS grammars

- PS grammars CAN do mirror image languages
- $a^{\wedge} n b^{\wedge} n$
- PS grammars CAN'T do copy languages

$$
\bigcirc \mathrm{a}^{\wedge} \mathrm{n} \mathrm{~b}^{\wedge} \mathrm{nc}^{\wedge} \mathrm{n}
$$

- Essentially, no cross dependencies

Crossed dependencies

- there are instances of crossed dependencies in natural language
- classic case is Dutch embeds
- common in germanic languages

Rule Summary

- $\mathrm{S} \rightarrow \mathrm{NP}$ VP
- NP \rightarrow Det N
- Adj \rightarrow very Adj
- $\mathrm{N} \rightarrow \operatorname{Adj} \mathrm{N}$
- $\mathrm{N} \rightarrow \mathrm{N} R \mathrm{C}$
- $\mathrm{PP} \rightarrow \mathrm{P}$ NP

Rules that can be on trees

- $\quad \mathrm{S} \rightarrow \mathrm{NP}$ VP
- $\mathrm{VP} \rightarrow \mathrm{VP}$ PP
- $\mathrm{VP} \rightarrow \mathrm{VP}$ Adv
- VP \rightarrow TV NP (said)
- VP \rightarrow DTV NP NP (gave)
- $\mathrm{VP} \rightarrow \mathrm{SV}$ S (believe, think, feel)
- $\quad \mathrm{NP} \rightarrow \operatorname{Det} \mathrm{N}$
- $\mathrm{PP} \rightarrow \mathrm{P}$ NP
- $\mathrm{N} \rightarrow \operatorname{Adj} \mathrm{N}$
- $\mathrm{N} \rightarrow \mathrm{N}$ PP
- $\mathrm{N} \rightarrow \mathrm{NRC}$ (RC example: that is on the reading list)

Misc Syntax

- $\mathrm{X} \rightarrow \mathrm{X} \mathrm{Y}$ or $\mathrm{X} \rightarrow \mathrm{YX}$
- ex: Adj \rightarrow very adj, $\mathrm{N} \rightarrow$ Adj N
- In syntax, there are layers
- movement rule: there can be a tree for the underlying structure and one for the true meaning
- ex: "I looked the information up" vs "I looked up the information"
- Center embedding: recursion in the middle of a sentence
- $\mathrm{RC}=$ relative clause
- triangles in trees avoid depicting internal structure
- If you can swap two things in a sentence, they are likely the same grammatical category - ex: taylor sees the rabbit \rightarrow taylor and "the rabbit" are both noun phrases

Simplestudies.org

Notes- Pragmatics

Gricean Maxims / Principles of cooperative conversation

- Quality: "be truthful"
- it is true to the best of your knowledge
- Example of using:
- Person A: "Why are you late?"
- Person B: "I'm late because the laundry machines were broken."
- Example of breaking:
- Person A: "You are so short." (to a tall
 person)
- OR
- Person B: "Donald Trump is so young."
- Quantity: "be as informative as possible" (up to what is necessary) and "don't be overinformative"
- first part \rightarrow scalar implicatures (ex: "warm" = "not hot")
- requires computation of competing utterances
- Example of using:
- Person A: "Hey, how are you doing?"
- Person B: "Well it all started when I was $7 \ldots .$. . *insert whole monologue about life story*
- Example of breaking:
- Person A: "Go pick up the vegetarian tomatoes."
- OR "Clean up that sticky glue you just spilled."
- Relevance: "be relevant"
- Example of using:
- Person A: "I want to go get hot chocolate tonight"
- Person B: "I have a paper due"
- Example of breaking:
- Person A: "Is it rainy out?"

Simplestudies.org

- Person B: "I like the color grey."
- Manner: don't say things weirdly/out of order
- "most of the time when you flout Grice's Maxim of Manner (be brief but unambiguous), you create an implicature about something else."
- Example of using:
- Person A: "Last night I ate chicken, did homework, and watched TV."
- Person B: *assumes it took place in that order*
- Example of breaking:
- Person A: "Yesterday, I ate dinner, did laundry, and went out to lunch."

Scalar Implicatures

- scalar implicatures: an implicature that attributes an implicit meaning beyond the explicit or literal meaning of an utterance
- ex: "warm" = "not hot"
- requires computation of competing utterances

The case of "some"

- Ex 1: Jack says "How are your classes?" and Jill says "Some of them are really interesting."
- If Jack is rational, he will assume that not all of Jill's classes are interesting to her
- [[some]] = A B if and only if $\mathrm{A} \cap \mathrm{B}=/=\varnothing$ and $\mathrm{A} \not \subset \mathrm{B} \ldots$ but this isn't the only meaning
- Ex 2: Jack says "How are your classes?" and Jill says "Some but not all of my courses are interesting." (or "Some of my courses are interesting but not all")
- No feeling of redundancy even though "some" includes the meaning of "not all"
- Test of re-enforceability
- Some = ambiguous ??
- some1 / excSome = some and not all
- some2 / incSome = at least some (possibly all)
- Cancellation or reinforcing (like ex2) would be some2, the exclusive one (like ex1) would be some1

Simplestudies.org

- The unlikeliness of ambiguity
- Doesn't explain Jill's original response always being understood as excsome without additional context - would theoretically be ambiguous if the word is
- We would need the same ambiguity with many, most, or, etc
- All languages with words like this would have the same accidental homophony
- The exclusive reading systematically goes away in certain contexts (for instance in contexts where the exclusive reading is plausible but absent)
- ex: "In order to enroll in the course, you must have studied 2 years of some language offered at Purple U."
- We read this to mean "some" as in at least one but if you read it as only one, a student might have studied more than one and wouldn't be allowed in.
- Means an amount, does not mean "not all"
- Ex: "Every student who handed in some of the homeworks passed the course." - This includes students that did all of the homeworks, making it clear that "some" doesn't mean "not all"

The case of "or"

- A or B
- exclusive or: A and B are mutually exclusive
- inclusive or:
- Ex: "Lee is going to Hawaii or to Paris"
- reinforceable without redundancy: "Lee is going to Hawaii or to Paris but not both" shows that if "or" meant not both, it would be redundant
- Ex: In a prix fixe menu: "For desert you can have the flan or the chocolate cake..."
- "...but not both." (no feeling of redundancy)
- "...tonight is special, though, so you can have both" (no contradiction)
- ^^ the above two additions show the meaning is not built into "or"
- "Or" is not actually ambiguous
- "Or" implicates that the "and" case is not true because the "and" case is stronger
- "Or" implicates not
- "And/or" means the same as "or" because "or" doesn't mean that they are mutually exclusive

The case of "either"

- Same as "either" - either has an stronger exclusive feel but doesn't always have to be
- Ex: "If you've eaten either all your peas or all your carrots you may have dessert." doesn't mean you can only have dessert if you had just one or the other

The case of "if/then"

- The same as "every"
- $[$ if S1 then S2] $=1$ if in all situations where $[[S 1]]=1$ then $[[S 2]]=1$
- S1 situations are a subset of S2 situations
- Ex: If you climb the mountain, you will see sleet. // Every person who climbs the mountain will see sleet.
- They mean the same thing

Environments

- Under "every"
- Ex: Every student who handed in some of the homework passed.
- Doesn't exclude those who handed in all of it
- Under "no"
- Ex: No one who hands in some of the homeworks will fall the course.
- those who hand in all are still guaranteed to pass
- Ex: No one who passed either the midterm or the final failed the course.
- Xor implicature is not there-people who passed both can still pass

Simple reversal under negation

- Ex: "Not everyone left the party at midnight." implies "Some people left the party at midnight."
- It implies but not entails. We know that because we can add to the sentence and make it change the meaning while maintaining truth value.

Simplestudies.org

- If it's not true that no one left, some had to have left
- "Every" under a "not" = "some" / some = not every (???)

Classifying sentences

- Entailment vs implicature
- entailment: definitely means something else
- presupposition: type of entailment where a thing is assumed beforehand
- ex: "My Ferrari is red" presupposes "I have a Ferrari"
- test with "hey wait?"
- at-issue: if A is true, then B is also true
- can't be cancelled without sounding dumb
- implicature: seems to mean something
- cancellable/reinforceable
- maxims
- Simple alt explanation
- Entailment $=$ "includes the fact that:"
- Ex: I ate apples and bananas \rightarrow I ate apples
- can't be restated without being redundant
- Presupposition = "relies on this fact being true:"
- Ex: "I went to Disney last week" \rightarrow Disney was open last week
- Implicature = "gives us the idea that:"
- Ex: "I ate 3 cinnamon rolls." \rightarrow I only ate 3 cinnamon rolls
- can be cancelled
- sentence 2 can be repeated without being redundant

Symbols

- $\subseteq=$ subset
- $\not \subset=$ not a subset
- $\cap=$ intersection between 2 sets
- \# = deviant

Sentence Strength

- If A entails B, A is stronger
- Stronger $=$ more info, harder to be true (aka truer in less scenarios)
- Temporal window $=$ specific time in which a meaning is understood to be true
- If there is a smaller temporal window, the sentence is stronger
- "Ever" is only allowed when it strengthens a sentence
- Ex: "Mitka ever ate" = not a good sentence because it doesn't add anything
- Downward entailing environments - strength is reversed
- Implicatures disappear in downward entailing environments because DE environments reverse strength
- Gricean story: If there is a competing utterance which is stronger and that utterance is not said, there has to be a reason it wasn't said
- Stronger $=$ gives more info

Misc Pragmatics

- If A entails B then not B entails not A
- Usually the "and" sentence entails the "or" but not always

Notes- Semantics

Structural Ambiguity

Structural ambiguity = different meanings of a sentence depending on how you construct it

- Ex: "I saw the spy with the binoculars"
- N attachment: "with the binoculars" attaches to "spy", modifying that noun to mean the spy has the binoculars
- VP attachment: "with the binoculars" attaches to "saw the spy" and modifies that VP

How semantics works

- Assume simpler view with PS rules, meaning any well-formed expression can be a tree
- tree just represents how syntax proves something well-formed: each PS rule is paired with a semantic rules
- Sense vs reference
- reference: what is picked out from the actual world
- sense: meaning = the recipe for going from way the world might be to the individual (what you imagine, basically)
- if you were omniscient, you would know what it really means
- NPs can pick out the same individual but the meaning/context is different
- ex: "the tallest man in the world right now" - we know what it means but not who it is referencing
- VPs pick out sets of individuals
- ex: dance is a subset of move because all dancers move
- Sentences
- they tell us something about the world and are thus either true or false
- we can say that their referent (or extension) is a truth value
- set if truth values $\{$ true, false $\}$ or $\{1,0\}$
- intension: a set of ways the world might be
- Internal structure of NPs
- "dog" = a set of individuals vs "a dog" = an individual
- "disobedient husky" = intersection of [[disobedient]] and [[husky]]
- $\mathrm{N} \rightarrow \operatorname{Adj} \mathrm{N}$
- Adjectives
- not all adjectives intersect with nouns
- ex: "the big flea" vs "the big elephant" shows that "big" means different things: they are subjective adjectives
- size is always relative but need not be determined by the noun
- relative/subjective adjectives
- uses comparison classes

Picking it out

- NPs- proper names, pronouns, and things pick out individuals
- VPs pick out sets
- Ss pick out truth values

Truth values

- Opinions have a truth value based on subjective parameters
- Things are true or false with reference to a judge or a subject
- Sentences pick out truth values
- $0=$ false, $1=$ true
- $\mathrm{S} 1 \rightarrow \mathrm{~S} 2$ and S 3
- $[[\mathrm{S} 1]]=1$ if and only if $[[\mathrm{S} 2]]=1$ and $[[\mathrm{S} 3]]=1$
- not circular-distinguish between object language vs metalanguage
- $\mathrm{S} 1 \rightarrow \mathrm{~S} 2$ or S 3
- $[[\mathrm{S} 1]]=0$ if and only if $[[\mathrm{S} 2]]=0$ and $[[\mathrm{S} 3]]=0$
- In prose: S1 is false if both S2 and S3 are false, otherwise it is true

Relative clauses

- Relative clauses can modify N
- $\mathrm{N} \rightarrow \mathrm{N} R \mathrm{C}$
- Recursive rule because RC is a modifier/adjunct (same thing)

Determiners

- "the" and "my" are examples of determiners
- determiners take a set and picks out the unique or most salient member of the set
- the relevant individual of a set
- ex: [[husky]] is a set and [[the husky]] is an individual
- NP \rightarrow Det N, Det \rightarrow the, some, every, many, few
- complex determiner ex: at least three
- quantificational determiners = determiners that specify an amount (such as few)

Domain restriction

- the final output of the linguistic system is usually underspecified and pragmatics come into play to give the final message
- literal meaning: where the semantics leaves off
- final message: interaction with the literal meaning, context, communication, etc
- ex: my dog ate breakfast \rightarrow means that the dog ate breakfast today
- If the domain is widened, it has to also strengthen the sentence
- adapted from Kadmon and Landman, 1993

Negative Polarity Items

- words that only work in a negative sentence
- negative sentence makes a restriction
- Seemingly odd distribution
- ex: any, ever, lift a finger, drink a drop, budge a single inch, give a hoot
- they are idiomatic
- they always occur with negatives
- minimizers are a subclass of negative polarity items
- "no" = empty intersection between phrases
- ex: "no husky howls" = huskies don't howl and howlers don't include huskies
- "every" = implies a subset
- ex: "every husky howls" = huskies are a subset of the howler set

Simplestudies.org

Upward entailing position

- preserves the relation of semantic strength among a set of expressions (maintains truth value)
- smaller to bigger
- switching it to a superset allows it to preserve truth
- ex: "some husky howled" \rightarrow "some husky made noise"
- VP position is upward entailing
- doesn't work the other way because it shrinks the possibilities
- ex: "some husky howled" \rightarrow "some dog howled"
- N position is upward entailing
- doesn't work the other way because it shrinks the possibilities
- the " \rightarrow " should be able to translate to ("could lead us to reasonably believe that")

Downward entailing position

- the opposite of upward-entailing: limits the range of possibilities by going from bigger to smaller
- more common in negative sentences
- a subset subs in and doesn't guarantee the preservation of truth
- Example
- "every dog made noise" \rightarrow "every husky made noise"
- "Lee didn’t move" \rightarrow "Lee didn’t dance"
- "didn't VP" - picks out the complement
- the " \rightarrow " should be able to translate to ("does not necessarily mean that")
- Downward entailing environments are environments where strength/info content is reversed
- Ex: "some husky howled" is stronger than "some dog howled" or "some husky made noise"
- no dog > no husky | every dog > every husky

Past tense and negation

- Restricts the domain
- within a relevant time interval, X did/didn't happen
- In the below example, it's saying that "recently, I didn't turn off the stove" where "recently" likely means that day
- Ex: "Uh oh. I didn't turn off the stove."
- Meaning 1: It's not the case that there is a past time where I turned off the stove
- not correct semantics
- Meaning 2: There is a specific relevant time where I didn't turn off the stove
- translation: there is a past time t where it's not the case that I turned off the stove
- Ex: "I haven't had breakfast"
- Meaning 1: I have never in my life had breakfast
- Meaning 2: I didn't eat breakfast today
- Today is the interval it was restricted to

"Ever"

- Widens the interval - broadens the domain of times under consideration
- Ex: "I haven't eaten breakfast" means no breakfast today \rightarrow "I haven't ever eaten
breakfast" means no breakfast at any point in life
- widened the temporal window
- If "ever" weakens the sentence or doesn't add, it's a bad sentence
- Ex: I have eaten breakfast \rightarrow I have ever eaten breakfast (bad sentence because it's a negative polarity item added to a positive sentence)

Semantics and syntactic categories

- NPs -- pick out individuals (references)
- VPs -- pick out sets
- Adj -- pick out sets
- Ss -- pick out truth values
$\circ \quad \mathrm{S} \rightarrow \mathrm{NP}$ VP, so [[S]] = 1 if and only if [[NP]] is a member of [[VP]]

Misc Semantics

- double brackets = meaning/reference
- metalanguage $=$ language used to describe the semantics, which also happens to be in English
- "Every" is bad in VPs and good in the NPs (?)
- "Exactly 3 " and similar things are not upward or downward entailing
- "not" reverses the entailing patterns
- If (a) is true, (b) is true $\rightarrow a>b$
- lexical semantics: words combining to create meaning
- compositional semantics: phrases combing to create meaning
- https://docs.google.com/document/d/1MGVOiaXh0dsb83pNajv_vAE39oYj4zVFSfwdA HAsYlI/edit?usp=sharing

Notes- Linguistic Relativity

The Basics

- Linguistic relativity: one's native language influences the way people think
- Linguistic relativity is aka the Sapir-Wharf hypothesis

Problems with the theory

- What does it mean by think?
- Categorize? Perceive? Remember? Notice?
- Translation mistakes - seeing one language through the lens of the other
- Negative Concord dialects - double negatives is just one negative spread out with a marker (ex: "I didn't see nothing" = I didn't see anything)
- Vocabulary differences do not always mean thought differences
- There's the myth about there being hundreds of Eskimo words for snow
- It's more about culture than language
- Many languages don't use ego-oriented (based on people) directions like left/right but rather, use cardinal directions
- If your language forces you to make certain distinctions do you think about them differently?
- Ex: Would a Chinese speaker be more aware of sibling ages than an English speaker?
- Ex 2: Would a dual language speaker be more aware of two vs three objects?
- Dual language $=$ a language with words meaning two (like pair, couple, duo, etc)
- Do speakers of path languages vs manner languages see motion differently?
- Speakers of path languages are forced to encode path
- Ex: The snake slithered \rightarrow The snake slithered through the garden
- Manner is optional for path languages
- English generally has both
- Tests were performed with 3 conditions:
- linguistic encoding - asked to describe the event
- free encoding - could think about whatever they wanted
- blocking of linguistic encoding - used shadowing to make sure they couldn't be thinking about it linguistically (repeating nonsense syllables)
- The only difference in testing was that Spanish speakers were more entuned to the path and English speakers were more focused on manner

Conclusion on linguistic relativity

- The different linguistic patterns do play a role when speakers definitely encode the events linguistically
- There are no deep perceptual differences: speakers are not always attuned to seeing path vs manner since in free encoding and shadowing conditions, there were no effects of the language

Evidentials

- Many languages require verbs in main clause declaritives to be marked with a marker (like as suffix) that specifies the source of evidence
- Do speakers of such languages pay more attention to the source of evidence?
- Some languages distinguish direct vs indirect evidence
- Ex: Quechua in Purvian Andes
- For languages which mark direct evidence, occasionally visual evidence is marked differently
- so there is direct visual and sirect other
- Often, direct evidence is bit explicitly marked, indirect evidence is
- Direct evidence: personal experience/knowledge
- Indirect evidence: inferential or reportative

Notes- Language Change and History

Why languages change

- Contact with other languages \rightarrow borrowing
- languages borrow whole sounds or sound sequences \rightarrow can change the phonological systems
- can also have syntactic borrowings
- Ex: English borrowed Romance syntax
- Norman Conquest \rightarrow Old French became widely spoken amongst nobility and influence spread throughout English
- as different groups spread, so do their languages
- Cases of internal instability
- Similarly- changes can cause some parts to have irregularities which can then regularize over time
- Language play
- ex: teen slang
- users are conscious of the language play but not necessarily aware of what is being manipulated and its regularity

Velar Softening

- K --- S / V__ V
- certain forms in modern English
- ex: public \rightarrow publicity, critic \rightarrow criticism, medic \rightarrow medicine
- productive phonological rule restricted to a small domain of cases

Grim's Law

- Proto-Indo-European sound rule about how PIE sounds translate to Proto-Germanic sounds
- "unvoiced IE stops became Germanic unvoiced continuants, that voiced IE stops became Germanic unvoiced stops, and that unvoiced IE continuants became Germanic voiced stops"
- PIE voiceless stops became corresponding voiceless fricatives in proto-Germanic
- The changes:
- p in PIE $\rightarrow \mathrm{f}$ in Germanic
- t in PIE $\rightarrow \Theta$ in Germanic (thuh)
- k in PIE $\rightarrow \mathrm{x}$ in Germanic $\rightarrow \mathrm{h}$
$\bigcirc \quad \mathrm{b}$ in PIE $\rightarrow \mathrm{p}$ in Germanic (?)
- d in PIE $\rightarrow \mathrm{t}$ in Germanic
- g in PIE $\rightarrow \mathrm{k}$ in Germanic
- PIE voiced stops became voiceless and affects the whole class
- Ex: dental \rightarrow tooth

The Great Vowel Shift

- Roughly 1350-1600, many vowels shifted to other vowels but not in all positions
- Happened gradually
- Shifts:
- High vowels \rightarrow corresponding dipthongs
- Mid (tensed) vowels \rightarrow corresponding high vowels
- $a \rightarrow$ e
- $\mathrm{a}=$ the ah sound became ay (ex. "make")
- $\mathrm{e}=$ the eh sound became ee ("we")
- $\mathrm{i}=$ the ee sound became eye ("night")
- $\mathrm{o}=$ the oh sound of some words became oo ("boot")
- $\mathrm{o}=$ the aw sound of some words became oh ("boat")
- $\mathrm{u}=$ the oo sound of some words became ow ("out")
- Chaucer is pre-shift, Shakespeare is post-shift

Simplestudies.org

ME		1300	1400	1500	1600	1700	ModE
[i:]	rise(n)	\longrightarrow	[ii]	[\wedge i]	-	-	rise
[u:]	mouth	\rightarrow	[0u]			-	mouth
[e]]	feet			[i]			feet
[O]	goos			[u:]			goose
[$¢$:]	beeme				[e:]		beam
[0]	ston				[0]	[ou]	stone
[a:]	name			[æ:]	[E :]	[e.]	name

