SAT Math Study Guide

From Simple Studies: https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

Linear Equation

- An equation that lies on the graph and goes in a continuous straight line
- Slope-intercept form: $y=m x+b$
- m is the slope
- b is the y-intercept

Source:https://www.calculushowto.com/types-of-functions/linear-function/

4 Types of Slopes

- Positive slope: If m is positive, then the line is uphill/upward-sloping
- Negative slope: If m is negative, then the line is downhill/downward-sloping
- Slope $=0$: If m is 0 , then the line is horizontal
- Undefined slope: If m is undefined, then the line is vertical

Source: https://courses.lumenlearning.com/beginalgebra/chapter/read-or-watch-find-slope-from-
a-graph/

From Simple Studies: https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

- To memorize the slope - use VUX HOY
- V: vertical line
- U: undefined
- $\mathrm{X}: \mathrm{x}=$ \#
- H: Horizontal
- O: slope $=0$
- Y: y = \#
- How to find the slope (m) of an equation: $\mathrm{m}=\left(\mathrm{X}_{2}-\mathrm{X}_{1}\right) /\left(\mathrm{Y}_{2}-\mathrm{Y}_{1}\right)$

Quadratic Equations

$$
\begin{aligned}
& \text { Quadratic Formula: } \\
& \text { For } a x^{2}+b x+c=0, \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Quadratic Formula

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

Examples:

$$
\begin{array}{rlrl}
3 & x^{2}+5 x-7=0 & -x^{2}-6 x+8=0 \\
a & =3, b=5, c=-7 & & a=-1, b=-6, c=8 \\
x & =\frac{-5 \pm \sqrt{(5)^{2}-4(3)(-7)}}{2(3)} & x & =\frac{-(-6) \pm \sqrt{(-6)^{2}-4(-1)(8)}}{2(-1)} \\
& =\frac{-5 \pm \sqrt{25+84}}{6} & & =\frac{6 \pm \sqrt{36+32}}{-2} \\
& =\frac{-5 \pm \sqrt{109}}{6} & & =\frac{6 \pm \sqrt{68}}{-2} \\
& =\frac{-5+\sqrt{109}}{6} \text { or } \frac{-5-\sqrt{109}}{6} & & =\frac{6+\sqrt{68}}{-2} \text { or } \frac{6-\sqrt{68}}{-2} \\
& =0.907 \text { or }-2.573 & & =-7.123 \text { or } 1.123
\end{array}
$$

Source: https://www.onlinemathlearning.com/quadratic-formula.html

- Discriminant
- Definition: the discriminant tells us the type of roots the equation has
- Formula: $D=b^{2}-4 a c$
- If $\mathrm{D}<0$, there are 2 imaginary roots (conjugates)
- If $\mathrm{D}>0$, there are 2 real roots
- If $\mathrm{D}=0$, there's 1 real root (twice)

Source:http://herodquadratics.weebly.com/the-discriminant-q18---q27.html

- Vertex Form: $y=a(x-h)^{2}+k$
- (h, k) is the point of the vertex
- How to find "a"
i. Find the point of the vertex
ii. Find the point that passes through the line
iii. Substitute the " h " and " k " into the equation
iv. Substitute the " x " and " y " into the equation
v. Solve the equation in terms of "a"

Graphing Terms

- Maximum - the highest point of " y " in the graph
- Minimum - the lowest point of " y " in the graph
- Domain - all the values "x" for which $f(x)$ is defined
- Range - the set of all " y " values for which $f(x)$ is defined
- Intercepts
- x - intercepts: values that makes $f(x)=0$ and lies on the x-axis
- y - intercepts: values that makes $f(0)=\#$ and lies on the y - axis

Looking at the Graph to make an Equation

- Find the points on the graph that intersect the x - axis, and then make it into factored form
- Example: The graph $g(x)$ crosses the x-axis at $x=1,-2$
- $\mathrm{g}(\mathrm{x})=(\mathrm{x}-1)(\mathrm{x}+2)$
- Look at how many turns does the graph has (turn = when the slope changes)
- To find the number of turns, you look at how many times it curves then subtract by 1 .

Factor Formula to know

- Difference of Squares
- $a^{2}-b^{2}=(a+b)(a-b)$
- Example: $9 \mathrm{x}^{2}-121=(3 \mathrm{x}+11)(3 \mathrm{x}-11)$
- Factor by Grouping
- Example: $2 x^{3}-10 x^{2}+3 x-15$
- $2 \mathrm{x}^{2}(\mathrm{x}-5)+3(\mathrm{x}-5)$
- Answer: $(x-5)\left(2 x^{2}+3\right)$
- Perfect Binomial Squared
- $(x+y)^{2}=x^{2}+2 x y+y^{2}$
- Example: $(3 x+2 y)^{2}=9 x^{2}+12 x y+4 y^{2}$
- $(x-y)^{2}=x^{2}-2 x y+y^{2}$
- Example: $(6 x-3 y)^{2}=36 x^{2}-36 x y+9 y^{2}$
- Complex Numbers
- Definition: numbers that contain a real number and an imaginary number
- Formula: $\mathrm{a}+\mathrm{bi}$
- "a" is a real number

■ "b" is an imaginary number

- $\mathrm{i}=\sqrt{-1}$
- $i^{2}=-1$
- $i^{3}=-\mathrm{i}$
- $i^{4}=1$
- $\mathrm{i}^{5}=\mathrm{i}$
- Conjugate Complex numbers

Given a complex number	Its conjugate
$a+b i$	$a-b i$
$a-b i$	$a+b i$

Source: https://www.chilimath.com/lessons/advanced-algebra/dividing-complex-numbers/

$$
\begin{aligned}
(3+2 i)(1-4 i) & =3-12 i+2 i-8 i^{2} \\
& =3-10 i-8(\sqrt{-1})^{2} \\
& =3-10 i-8(-1) \\
& =3-10 i+8 \\
& =11-10 i
\end{aligned}
$$

Source:https://medium.com/i-math/complex-numbers-explained-fad9a6793019

Absolute Value

- Solving Equations with absolute value
- 1. Isolate the absolute value
- 2. Separate the equation into two, making one solution positive and one negative
- 3. Solve for it in terms of the variable
- 4. Check for extraneous solutions

Source: https://www.veritasprep.com/blog/2013/03/gmat-gurus-speak-out-absolute-value-in-data-sufficiency/

- Graphing
- Formula: $\mathrm{y}=\mathrm{a}|\mathrm{x}-\mathrm{h}|+\mathrm{k}$

From Simple Studies: https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

- "a": stretch or compress the graph by a factor
- (h, k) is the vertex
- Axis of symmetry: vertical line through the vertex, $\mathrm{x}=\mathrm{h}$
- "h": denotes how much the graph shifts to the left or right

■ "k": denotes how much the graph shifts up or down

Exponent

- Product Rule
- Formula: $\mathrm{a}^{\mathrm{m}} \mathrm{x} \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}+\mathrm{n}}$
- Example: $4^{2} \times 4^{6}=4^{8}$
- Quotient Rule
- Formula: $a^{m} / a^{n}=a^{m-n}$
- Example: $4^{12} / 4^{8}=4^{4}$
- Power Rule
- Formula: $\left(a^{m}\right)^{n}=a^{m n}$
- Example: $\left(6^{4}\right)^{2}=6^{8}$
- Zero Rule
- $a^{0}=1$, provided that $a \neq 0$
- Example: $5^{0}=1$
- Negative Exponent
- $a^{-4}=1 / a^{4}$
- Example: $9^{-2}=1 / 9^{2}$
- Power of a Product Rule
- Formula: $(\mathrm{ab})^{\mathrm{n}}=\left(\mathrm{a}^{\mathrm{n}}\right)\left(\mathrm{b}^{\mathrm{n}}\right)$
- Example: $(3(2))^{3}=\left(3^{3}\right)\left(2^{3}\right)$
- Power of a Fraction Rule
- Formula: $(a / b)^{n}=a^{n} / b^{n}$
- Example: $(4 / 5)^{5}=4^{5} / 5^{5}$
- Rational Exponents
- A rational exponent has a base that is raised to the power with a fraction
- Converting rational exponents to radicals
- The denominator goes out of the square root to the index
- The numerator goes inside the square root, becoming the exponent

Rational Exponents
(Fractional Exponents)

$a^{\frac{1}{n}}=\sqrt[n]{a}$
$a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$ or $\sqrt[n]{\left(a^{m}\right)}$

Source: https://www.onlinemathlearning.com/fractional-exponent.html

Radicals

- Definition - An expression that uses a root
- To get rid of the radical in an equation, square both sides

$$
\begin{aligned}
(\sqrt{x-7})^{2} & =(3)^{2} \\
x-7 & =9 \\
x-7+7 & =9+7 \\
x & =16
\end{aligned}
$$

Source: https://www.chilimath.com/lessons/intermediate-algebra/solving-radical-equations/

- Radical in the denominator
- Whenever you see a radical in the denominator, you have to rationalize it
- To get rid of it, multiply the top and bottom with the same term as that in the denominator

$$
\begin{aligned}
& \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{\sqrt{9}}=\frac{\sqrt{3}}{3} \\
& \text { multiplying by } 1 \text { does not change the value }
\end{aligned}
$$

Source: https://mathbitsnotebook.com/Algebra2/Radicals/RDSimplifyingRadicals.html

- Whenever you take the square root of both sides, it ends up being +/-

System of Equations

- Definition - solving two different equations for two or more variables
- Substitution with steps
- 1. Solve for one of the variables by isolating one variable in an equation
- 2. Plug your answer to step 1 into the other equation, and then solve for that equation in terms of the variable (there should only be 1 variable in the equation)
- 3. Plug in the value you got in step 2 into either equation, and then solve for the other variable
- 4. Check your work by plugging in the given values in either equation
- Elimination with steps
- 1. Get one of the variables to have the same coefficient in both equations using multiplication or division
- 2. Add the two equations together (this should leave you with one equation that has only one variable) and then solve the equation in terms of the variable
- 3. Plug your answer to step 2 into either equation and then solve for it in terms of the variable
- 4. Check your work by plugging in the given values in either equation
- Solutions
- One Solution
- The functions intersect at only one point, meaning that they have perpendicular slopes and opposite reciprocals
- No Solutions
- Two equations do not intersect, meaning that they have parallel and equal slopes parallel but different y-intercepts.
- Infinite Solutions
- Two equations overlap, meaning that they have the same slopes and y intercepts (the two equations are essentially the same)

No Solution

Infinite Solutions

Source: https://calcworkshop.com/systems-equations/graphing-method/

Exponential Equations

- Formula: $y=a b^{x}$
- a is not equal to 0
- b and $b>0$ is not equal to 1

(a) Exponential growth $f(x)=a b^{x}$ with $b>1$

(b) Exponential decay
$f(x)=a b^{x}$ with $0<b<1$

Source:https://www.visionlearning.com/en/library/Math-in-Science/62/Exponential-Equations-

- Word Problems
- Formula: $\mathrm{P}=\mathrm{a}(1+\mathrm{r})^{\mathrm{t}}$
- $\mathrm{a}=$ initial amount
- $r=$ rate of increase
- $t=$ time

Inequalities

Source:https://www.crackverbal.com/gre-inequalities/

- Inequalities in Word Problem
- Greater than symbol
- Above
- Greater than
- Exceeding
- More than
- Greater than or equal to symbol
- At minimum
- No less than
- At least
- Less than symbol
- Less than
- Below
- Fewer than
- Less than or equal to symbol
- At most
- No more than

■ Does not exceed

- Graphing
- Greater than symbol
- The line is dashed; the section above the line is shaded
- Greater than or equal to symbol
- The line is solid; the section above the line is shaded
- Less than symbol
- The line is dashed; the section below the line is shaded
- Less than or equal to symbol
- The line is solid; the section below the line is shaded
- Multiplying and dividing by a negative number
- Flip the inequality symbol

Source:https://www.mathsteacher.com.au/year10/ch02_linear_equations/12_dividing_negative/n eg.htm

Function Notation

- How to solve function notation
- Plug the x value into the equation and solve the equation for $\mathrm{f}(\mathrm{x})$
- Examples

$$
\begin{aligned}
\circ \mathrm{f}(\mathrm{x}) & =\mathrm{x}^{2}+2 \mathrm{x}+4 \\
& \text { ■ } \mathrm{f}(-4)=\mathrm{x}^{2}+2 \mathrm{x}+4 \\
& \text { ■ } \mathrm{f}(-4)=(-4)^{2}+2(-4)+4 \\
& \mathrm{f}(-4)=16-8+4 \\
& \square \mathrm{f}(-4)=12
\end{aligned}
$$

$$
\begin{array}{rl}
\circ f(x) & =3 x+2 \\
■ & f(2)=3(2)+2 \\
■ & f(2)=6+2 \\
■ & f(2)=8
\end{array}
$$

Combining Like Terms

- Definition - Terms that have the same variable and are raised to the same power
- Example

$$
\begin{aligned}
& \text { - } x y+2 x y^{2}+3 x y \\
& \quad \text { ■ } 2 x y^{2}+4 x y \\
& \quad\left(x^{2} y-3 y^{2}+5 x y^{2}\right)-\left(-x^{2} y+3 x y^{2}-3 y^{2}\right) \\
& \quad \text { ■ } x^{2} y-3 y^{2}+5 x y^{2}+x^{2} y-3 x y^{2}+3 y^{2} \\
& \quad \text { ■ } 2 x^{2} y+2 x y^{2}
\end{aligned}
$$

Geometry

- Special right triangle

Source: https://www.dummies.com/education/math/geometry/identifying-the-45-45-90-degreetriangle/

- $30^{\circ}-60^{\circ}-90^{\circ}$

Source:https://www.voovers.com/geometry/30-60-90-triangle/

- Pythagorean Theorem
- Definition - Pythagorean Theorem is used to find the length of the third side of a right triangle, given the values of two sides already
- Formula: $a^{2}+b^{2}=c^{2}$
- Pythagorean Theorem triples to know
- $3,4,5$
- $5,12,13$
- $7,24,25$
- $8,15,17$

■ $9,40,41$

- Types of Angles
- Complementary Angles: 2 angles whose sum is 90°
- Supplementary Angles: 2 angles whose sum is 180°
- Vertical Angles: 2 angles opposite of each other and are made by intersecting lines
- Alternate Interior Angles: 2 angles that are equal in measure if two parallel lines are intersected by a transversal; lie within the two parallel lines
- Alternate Exterior Angles: 2 angles that are equal in measure if two parallel lines are intersected by a transversal; lie outside the two parallel lines
- Same-side Interior Angles: 2 angles that are supplementary if two parallel lines are intersected by a transversal; lie within the two parallel lines
- Same-side Exterior Angles: 2 angles that are supplementary if two parallel lines are intersected by a transversal; lie outside the two parallel lines

Source:https://www.chegg.com/homework-help/definitions/angle-theorems-63

- Equation of a Circle
- Formula: $(x-h)^{2}+(y-k)^{2}=r^{2}$
- (h, k) is the center point of the circle
- r is the radius

Sources:https://www.google.com/url?sa=i\&url=https\%3A\%2F\%2Fwww.mathwarehouse.com\% 2Fgeometry\%2Fcircle\%2Fequation-of-a-
circle.php\&psig=AOvVaw3tNjMBujenjVGF8yVp ZWD\&ust=1606671916208000\&source=im ages\&cd=vfe\&ved=0CAMQjB1qFwoTCJj6yfvlpe0CFQAAAAAdAAAAABAL

From Simple Studies: https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

- Converting into Standard Form of the Circle Equation
- Standard Form: $(x-h)^{2}+(y-k)^{2}=r^{2}$
- Steps
- 1. Make sure the terms match up with the same variable
- 2. Complete the square
- 3. Add the constant to the right side of the equation
- 4. Factor the variables by making the binomial squared
- 5. To determine the center, use " h " and " k "
- 6. To find the radius square root " r "
- Similar Polygon
- Similar polygons have same shape but different size
- Corresponding angles are congruent
- Corresponding sides are proportional

Calcworkshop.com
Sources: https://calcworkshop.com/similarity/similar-polygons/

- Arc of a Circle
- Formula: $(2 \pi r)$ central angle $/ 360^{\circ}=\operatorname{arc}$ length
- Steps
i. Find the circumference
ii. Find the central angle value
iii. Solve the equation in terms of arc length
- Distance Formula
- Definition: the distance between two points is a straight line
- Formula: $\mathrm{d}=\sqrt{\left(\begin{array}{ll}x_{2} & \left.-x_{1}\right)^{2}+\left(\begin{array}{lll}y & 2\end{array}\right. \\ l^{2}\end{array}\right)^{2}}$
- Midpoint Formula
- Definition: points that lies halfway between two ordered pairs
- Formula: midpoint $=\left(x_{1}+x_{2} / 2, y_{1}+y_{2} / 2\right)$
- Circumference of the Circle
- Definition - The distance around the circle
- Formula: $\mathrm{C}=2 \pi \mathrm{r}$
- "C" is the circumference
- "r" is the radius
- Area of a Circle
- Definition: region inside the circle
- Formula: area $=\pi r^{2}$
- Area of a Sector
- Definition - Portion of the area of a circle
- Formula: $\mathrm{A}=\left(\pi \mathrm{r}^{2}\right)$ measure of the central angle $/ 360^{\circ}$
- Inscribed Angles
- Definition - An angle with its vertex on the circle and two sides that are chords
- Formula: $\angle \mathrm{ABC}=\frac{1}{2}$ * measure of intercepted arc

Source: https://calcworkshop.com/circle/inscribed-angle/

- If the inscribed angle is intercepted with a diameter, then it is a right triangle

Source: http://www.geom.uiuc.edu/~dwiggins/conj44.html

- Finding the Measure of Overlapping Arcs
- When two or more inscribed angles intercept the same arc, an overlapping arc occurs, which means the angles are congruent

Source: http://www.geom.uiuc.edu/~dwiggins/conj44.html

- When you inscribe a quadrilateral into a circle
- A quadrilateral is inscribed in a circle if all four vertices are on the circle; this means the opposite angles in the quadrilateral are supplementary

Source: http://www.geom.uiuc.edu/~dwiggins/conj47.html

Statistics

- Mean
- Definition: the average of the numbers
- Formula: sum of all data/number of data
- Median
- Definition: the middle number in a data set
- How to find the median
i. Order the numbers in ascending order
ii. Find the halfway point of the data set, using the formula: $(\mathrm{n}+1) / 2$
iii. Starting from the smallest number, find the number that is in the middle of the data set, using the value you got in step ii
- Mode
- Definition: the number that shows up the most in a data set
- There can be more than one mode
- How to find the mode
i. Order the numbers in ascending order
ii. Find the number(s) that repeat(s) the most
- Range
- Definition: the difference between the highest and lowest values in a data set
- How to find the range
i. Order the numbers in ascending order
ii. Find the lowest and highest number in the data set and subtract them
- Standard Deviation
- Definition: the measure of variation of the values in a data set from the mean
- How to interpret standard deviation
- Low standard deviation means that the values in the data set are closer to the mean and that the data is not spread out
- High standard deviation means that the values in the data set are far from the mean, or vary a lot from the mean, and the data is spread out
- Correlation
- Definition: the relationship between two variables
- Correlation is known as " r "
- The correlation is positive if $r>0$
- The correlation is negative if $\mathrm{r}<0$
- If $r=0$, there is no correlation

Sources: https://www.onlinemathlearning.com/correlation-coefficient-id8.html

- Problem Solving

- Ratio
- Definition - The number of times the number contains another
- Form: "a : b"
- Order matters based on what the question is ask for
- Ratio needs to be in the simplest form
- Example: In the classroom, 26 of the students are boys and 24 of the students are girls. What is the ratio of girls to boys?
- Ratio of girls to boys is $\mathbf{1 2 : 1 3}$ not 13:12.
- 13:12 would be incorrect because this would mean that there are more girls than boys, which isn't true
- 24:26 would be incorrect because it is not simplified
- Proportion
- Definition - Two fractions that are equal to each other
- Form: $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$
- You can check your work by making sure that the fractions are equal
- Solving for "x"
- 1. Set the proportion up and make sure that the units match up horizontally
- 2. Cross multiply
- 3. Solve the equation in term of " x "
- 4. Check your work by making sure the fractions are equal
- Percentage
- Formula:

Percentage formula
Source: https://www.basic-mathematics.com/formula-for-percentage.html

- Sales tax
- $1+\%$
- Discount
- 1-\%
- \% increases or decrease
Percent Change
Percent Change $=\frac{\text { New Value }- \text { Old Value }}{\text { Old Value }} \times 100 \%$
If the result is positive, it is an increase.
If the result is negative, it is a decrease.

Source: https://www.onlinemathlearning.com/percent-change-algebra.html

Probability

- Definition - The "odds" of any particular event happening
- Formula: Probability = desired outcome / all possible outcomes

Precalculus

- Trigonometry
- $\operatorname{Sin}=$ opposite/hypotenuse
- $\operatorname{Cos}=$ adjacent/hypotenuse
- Tan = opposite/adjacent
- Trick to remembering it
- SOH CAH TOA

$$
\begin{aligned}
\sin \theta & =\frac{\text { Opposite }}{\text { Hypotenuse }} \\
\cos \theta & =\frac{\text { Adjacent }}{\text { Hypotenuse }} \\
\tan \theta & =\frac{\text { Opposite }}{\text { Adjacent }}
\end{aligned}
$$

Source: https://www.mathsisfun.com/sine-cosine-tangent.html

- Converting Radians to Degree and Degree to Radians
- Radians $=\left(\pi / 180^{\circ}\right) x$ degrees
- Degree $=\left(180^{\circ} / \pi\right) \times$ radians

SAT Math Formula Sheet

REFERENCE

$A=\pi r^{2}$ $C=2 \pi r$

$V=\ell w h$

$A=\ell w$

$V=\pi r^{2} h$

$A=\frac{1}{2} b h$

$c^{2}=a^{2}+b^{2}$

Special Right Triangles

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The sum of the measures in degrees of the angles of a triangle is 180 .

Source: https://blog.prepscholar.com/critical-sat-math-formulas-you-must-know

Calculator Tricks

- Use the "Math" button
- Convert a decimal into a fraction
- Find the maximum and minimum
- Take the cube root or another type of root
- Factoring
- Only if the equation is $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$
- Find the simplest form
- Graphing Functions
- Graph the equation to give a visualize
- Can help you find the min and max of an equation
- Graph inequalities and system of inequalities
- System of Equation
- Use the graph to find the solution
- Use the tool to find it

Free Online Practice SAT Math Questions

- Khan Academy
- https://www.khanacademy.org/sat
- College Board
- https://collegereadiness.collegeboard.org/sat/practice/full-length-practice-tests
- Top 5 online SAT Math practice
- https://blog.prepscholar.com/complete-list-of-free-sat-math-practice
- Free SAT Math Problems
- https://www.freesatmath.com/

Best SAT Books

- College Board
- https://www.amazon.com/Official-SAT-Study-Guide$\underline{2020 / \mathrm{dp} / 1457312190 / \text { ref=sr_1_3?crid=3BYIRDQBWXSJ2\&dchild=1\&keywords }}$ =sat+book\&qid=1607034919\&sprefix=sat+boo\%2Caps\%2C209\&sr=8-3
- The Princeton Review
- https://www.amazon.com/Princeton-Review-Premium-Prep2021/dp/0525569340/ref=sr_1_4?crid=3BYIRDQBWXSJ2\&dchild=1\&keywords =sat+book\&qid=1607035042\&sprefix=sat+boo\%2Caps\%2C209\&sr=8-4
- The College Panda
- https://www.amazon.com/College-Pandas-SAT-MathAdvanced/dp/1733192727/ref=sr_1_8?crid=3BYIRDQBWXSJ2\&dchild=1\&key $\underline{\text { words }=\text { sat+book\&qid }=1607035042 \& s p r e f i x=s a t+b o o \% 2 C a p s \% 2 C 209 \& s r=8-8}$

From Simple Studies: https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

- Barron's
- https://www.amazon.com/Premium-Study-Guide-Practice-

Tests/dp/1438012225/ref=sr_1_3?crid=3D4ZKXJ51BQYM\&dchild=1\&keyword $\underline{s=s a t+b o o k+b a r r o n s \& q i d=1607035164 \& s p r e f i x=s a t+b o o k+b a \% 2 C a p s \% 2 C 175 \& ~}$ sr=8-3

