SAT Math Study Guide

From Simple Studies: https://simplestudies.edublogs.org \& @ simplestudiesinc on Instagram
SAT Test Information 2
Use of Calculator 3
Linear Equations 9
Solving Equations 11
Solving Inequalities 11
Systems of Equations 12
Nonlinear Equations 14
Solving Quadratic Equations 15
Polynomials 17
Rational Functions 18
Radicals and Exponents 20
Sequences 21
Scientific Notation 22
Scatterplots 22
Linear vs Exponential Growth 23
Probability 23
Center and Distribution 24
Writing Formulas in Terms of Variable 25
Surface Area and Volume Word Problems 26
Angles 26
Trigonometry 27
Complex Numbers 28
Sources 29

SAT Test Information

Given Formulas

REFERENCE

$$
\begin{aligned}
& A=\pi r^{2} \\
& C=2 \pi r
\end{aligned}
$$

$A=\ell w$

$V=\ell w h$

$V=\pi r^{2} h$

$V=\frac{4}{3} \pi r^{3}$

$V=\frac{1}{3} \pi r^{2} h$

$$
V=\frac{1}{3} \ell w h
$$

The number of degrees of arc in a circle is 360.
The number of radians of arc in a circle is 2π.
The sum of the measures in degrees of the angles of a triangle is 180.

Math Test- No Calculator

- 25 Minutes for 20 Questions

Math Test- Calculator

- 55 Minutes for 38 Questions

Use of Calculator

Programming

Programming a graphing calculator can be an easy way to prepare for the test. It allows you to more quickly solve easy problems. Here are a few programs you can create for your calculator:

*If you need any other programs you can download more off of the TI site.

1. Quadratic Formula

Step 1: Press the [PRGM] button and move over to the right twice to Create New.

Step 2: Name the program Quad.

Step 3: Add ClrDraw to the program by going to [2ND] [PRGM].

Step 4: Add Input by going to [PRGM] moving to the Right by one and pressing Input.

Step 5: Type in "A=". The equal sign can be found by going to $[2 \mathrm{ND}][\mathrm{MATH}]$ and pressing $=$.

Step 6: After typing "A=" add a comma and an A.

Step 7: Repeat Steps 4-6 twice more replacing A with B and C as shown.

Step 8: Write the Quadratic formula as follows:
$\left(\left(-B+\sqrt{ }\left(B^{2}-4 A C\right)\right) /(2 A)\right)$

From Simple Studies: https://simplestudies.edublogs.org \& @sim_ideetkey..........tagram

Step 9: Store that equation as P by pressing [STO>].
Then write P.

Step 10: Repeat the process in Steps 9-10 instead writing $\left(\left(-B-\sqrt{ }\left(B^{2}-4 A C\right)\right) /(2 A)\right)$ and storing it as N.

Step 11: Add Disp by going to [PRGM] moving to the Right by one and pressing Disp.

Step 12: Write " $\mathrm{X}=$ ", P .

Step 13: Add Disp and write " $\mathrm{X}=$ ", N .

Example:

$x^{2}+x-6$

Plug in numbers for A, B, and C .
A=1
$B=1$
$C=-6$

After pressing Enter, you should get the following answer:

$\mathrm{X}=2$
And $X=-3$

2. Distance Formula

Step 1: Press the [PRGM] button and move over to the right twice to Create New.

Step 2: Name the Program Distance.

```
    PRGGRAN 
```

Step 3: Add 4 Inputs for $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2$, and Y 2 as shown in the picture.

Step 4: Add the equation as follows:
$\sqrt{ }\left((\mathrm{A}-\mathrm{X})^{2}+(\mathrm{B}-\mathrm{Y})^{2}\right)$

Step 5: Store the equation as D.

Step 6: Add the Disp and write "DIST=", D.

Example:

Find the distance between the points $(3,4)$ and $(-2,5)$.

Plug in the numbers for $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2$, and Y 2 ,
$\mathrm{X} 1=3$
$\mathrm{Y} 1=4$
$\mathrm{X} 2=-2$
$\mathrm{Y} 2=5$

After pressing Enter, you should get the following answer:

DIST $=5.099019514$

3. Slope Formula

From Simple Studies: https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

Step 1: Press the [PRGM] button and move over to the right twice to Create New.

Step 2: Name the Program Slope.

Step 3: Add 4 Inputs for $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2$, and Y 2 as shown in the picture.

Step 4: Add the equation as follows:
(A-X)/(B-Y)

Step 5: Store the equation as S.

PRUGREM
Name=SLOPEM

Example:

Find the slope of a line using the points $(3,4)$ and $(-2,5)$.

Plug in the numbers for $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2$, and Y 2 .
$\mathrm{X} 1=3$
$\mathrm{Y} 1=4$
$\mathrm{X} 2=-2$
$\mathrm{Y} 2=5$

After pressing Enter, you should get the following answer:

SLOPE $=-.2$

Basic Use of Calculator

1. How to Graph an Equation

Step 1: Press [Y=].

Step 2: Enter Equation.

Step 3: Press [GRAPH] to see the graph or [2ND][GRAPH]
to see the table.

2. Analyzing a Graph

a. Calculating a value

Step 1: Press [2ND][TRACE][1: value].

Step 2: Enter a value of X and press [ENTER].
b. Finding zeros

Step 1: Press [2ND][TRACE][2: zero].

Step 2: Move left of the zero and press [ENTER].

Step 3: Move right of the zero and press [ENTER].

c. Finding minimum/maximum

Step 1: Press [2ND][TRACE][3: minimum] or Press [2ND][TRACE][4: maximum].

Step 2: Move left of the minimum/maximum and press [ENTER].

Step 3: Move right of the minimum/maximum and
From Simple Studies: https://simplestudies.edublogs.org \& @ simplestudiesinc on Instagram
press [ENTER].

3. Linear Regression/Line of Best Fit

Step 1: Press [STAT][1: Edit...].

Step 2: Enter X and Y values.

Step 3: Press [STAT][CALC][4: $\operatorname{LinReg}(\mathrm{ax}+\mathrm{b})]$.

Step 4: Add Lists to Xlist and Ylist and press
[Calculate].

From Simple Studies: https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

Linear Equations

- Slope-intercept form
- $y=m x+b$
- m is the slope and b is the y-intercept
- Point slope form
- $y-y_{1}=m\left(x-x_{1}\right)$
- m is the slope and $\left(x_{1}, y_{1}\right)$ is any point on the line
- Standard form
- $\quad a x+b y=c$
- *b in the Standard form is different from b in Slope-intercept form
- Vertical Equation

○ $x=a$

- a is the x-coordinate throughout the whole line
- Horizontal Equation
- $y=b$
- b is the y-coordinate throughout the whole line
- Examples:
- $y=3 x+5$

■ Slope: 3, y-intercept: 5

- $y-5=4(x-2)$
- Slope: 4, Point on Line: $(2,5)$
- $2 x+5 y=12$

■ Slope: - $-2 / 5$, y-intercept: $12 / 5$

- $x=2$
- X-Coordinate: 2
- $y=6$
- Y-Coordinate: 6

Solving Equations

Solving equations for a variable

- Step 1: Move all like terms to the same side of the equation
- Step 2: Combine like terms
- Step 3: Solve for variable
- Example:
- Equation: $4 x+1=x-5$
- Step 1: $4 x-x=-5-1$
- Step 2: $3 \mathrm{x}=-6$
- Step 3: $x=-2$

Solving Inequalities

Solving inequalities for a variable

- Similar to solving equations
- Step 1: Move all like terms to the same side of the equation
- Step 2: Combine like terms
- Step 3: Solve for variable
- Don't forget to change inequality sign when multiplying/dividing by a negative
- Example:
- Equation: $-4 x-2 \geq-3 x+5$
- Step 1: $-4 x+3 x \geq 5+2$
- Step 2: $-x \geq 7$
- Step 3: $x \leq-7$
- *Remember to flip the sign

Systems of Equations

Setting up Systems of Equations from a word problem:

- Example: Julie has $\$ 11.50$ and wants to buy a total of 15 apples and oranges.

Each apple cost $\$ 1.20$ and each orange cost $\$ 0.70$. How many apples and oranges does she have?

- Step 1: Create/Assign variables
- $\quad a=$ apples
- $o=$ oranges
- Step 2: Set up 2 Equations
- $a+o=15$
- Total apples and oranges
- $1.20 a+0.70 o=11.50$
- Total cost of fruit
- Step 3: Choose one of 3 Methods to Solve
- Substitution:
- Plug in one equation into the other to solve for one variable.

$a+o=15$ and $1.2 a+0.7 o=11.5$
$a=15-o$ and $1.2 a+0.7 o=11.5$
$1.2(15-o)+0.7 o=11.5$
$18-1.2 o+0.7 o=11.5$
$18-0.5 o=11.5$
$-0.5 o=-6.5$
$o=13$

From Simple Studies: https://simplestudies.edublogs.org \& @ simplestudiesinc on Instagram

$a+13=15$
$a=2$
$o=13$ and $a=2$

- Elimination:
- Manipulate equations so one variable can be canceled out.

$a+o=15$
$1.2 a+0.7 o=11.5$
$-1.2 *(a+o)=(15) *-1.2$
$1.2 a+0.7 o=11.5$
$-1.2 a-1.2 o=-18$
$1.2 a+0.7 o=11.5$
$-0.5 o=-6.5$
$o=13$
$a+13=15$
$a=2$
$o=13$ and $a=2$

- Graphing:
- Graph both equations and see where they intersect.

- All three methods come out to $a=2$ and .

Nonlinear Equations

- Quadratic Equation

> - $\quad a x^{2}+b x+c=0$
> - $\quad y=a(x-h)^{2}+k$

- Vertex: (h, k)
- If a >0, the parabola opens up
- If a <0, the parabola opens down

- Exponential Equation

$$
\text { ○ } y=e^{x}
$$

- Logarithmic Equation

$$
\text { ○ } y=\ln (x)
$$

- Equation of Circle

- $(x-h)^{2}+(y-k)^{2}=r^{2}$
- r: radius
- (h,k): center

- Equation of Ellipse
- $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
- (h,k): center
- a: horizontal distance from center to vertex
- b: vertical distance from center to vertex
- Equation of Hyperbola
- $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

- Hyperbolas open to the right/left
- $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
- Hyperbolas open up/down
- (h,k): center
- a: the distance from the center to the vertex

Solving Quadratic Equations

- Example: Solve for $x^{2}+4 x-12=0$.

Completing the Square

- Step 1: Move the constant to the other side

$$
\text { ■ } x^{2}+4 x=12
$$

- Step 2: Complete the square by using $\left(\frac{b}{2}\right)^{2}$
- $x^{2}+4 x+4=16$
- Step 3: Factor the expression
- $(x+2)^{2}=16$
- Step 4: Square root both sides
- $\sqrt{(x+2)^{2}}=\sqrt{16}=x+2= \pm 4$

From Simple Studies: https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

- Step 5: Solve for x
- $x=-2 \pm 4=-6$ or 2

Factoring

- Step 1: Multiply the constants of the first and last term
- $1 *-12=-12$
- Step 2: Find 2 terms that multiply to get the previous step and that add to get the middle term
- $6 *-2=-12$ and $6+(-2)=4$
- Step 3: Factor
- $(x+6)(x-2)$
- Step 4: Solve for each factor

$$
\text { ■ } x=-6,2
$$

Quadratic Formula

- $a x^{2}+b x+c=0$
- $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- $x=\frac{-4 \pm \sqrt{4^{2}-4(1)(-12)}}{2(1)}$
- $x=\frac{-4 \pm \sqrt{16+48}}{2}$
- $x=-2 \pm 4=-6,2$

From Simple Studies: https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

Polynomials

- Binomials have two terms.
- Trinomials have three terms.
- Polynomials have four or more terms.

Adding/Subtracting Polynomials

- Add or subtract like terms.
- Example:
- $\left(3 x^{2}+2 x-6\right)-\left(2 x^{2}-6 x+3\right)$
- $x^{2}+8 x-9$

Multiplying Polynomials

- FOIL- First, Outside, Inside, Last
- Example:
- $(3 \mathrm{x}+2)(4 \mathrm{x}-1)$

First
$(3 x+2)(4 x-1)$

Outside $(3 x+2)(4 x-1)$

Inside $\quad \underset{(3 x+2)(4 x-1)}{ }$

Last
$(3 x+2)(4 x-1)$

- $12 x^{2}-3 x+6 x-2=12 x^{2}+3 x-2$

Dividing Polynomials

- Example:
- $\frac{2 x^{2}-6 x+4}{x-2}$
- Polynomial Division

- Synthetic Division

Rational Functions

Adding/Subtracting Rational Functions

- Add or subtract like terms.
- They have to have the same denominator.
- Example:
- $\frac{3 x^{2}-2 x+5}{3 x}-\frac{2 x^{2}+5 x-6}{3 x}=\frac{x^{2}-7 x+11}{3 x}$
- $\frac{4 x^{2}+2 x-7}{x}+\frac{3 x^{2}-6 x+4}{2 x}=\frac{2\left(4 x^{2}+2 x-7\right)}{2 x}+\frac{3 x^{2}-6 x+4}{2 x}=\frac{11 x^{2}-2 x-10}{2 x}$

Multiplying Rational Functions

- Multiply denominator and numerator.
- Example:
- $\frac{2 x+3}{4 x^{2}} * \frac{x-4}{2 x^{3}}=\frac{(2 x+3)(x-4)}{8 x^{5}}=\frac{2 x^{2}-5 x-12}{8 x^{5}}$

Dividing Rational Functions

From Simple Studies: https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

- Flip the second rational and change the division sign to a multiplication sign.
- Example:
- $\frac{4 x-5}{2 x^{2}} \div \frac{6 x+1}{4 x^{3}}=\frac{4 x-5}{2 x^{2}} * \frac{4 x^{3}}{6 x+1}=\frac{2 x(4 x-5)}{6 x+1}=\frac{8 x^{2}-10 x}{6 x+1}$

Finding Horizontal and Vertical Asymptotes

- Vertical Asymptotes
- Set the denominator equal to 0 .
- Example:
- $\frac{x^{2}-3 x+1}{x+1}$
- $x+1=0$
- $x=-1$

- Horizontal asymptotes

- If the highest degree of the numerator equals the degree of the denominator, divide the highest degrees to get the horizontal asymptote.
- If the highest degree of the numerator is less than the degree of the denominator, the horizontal asymptote is 0 .
- If the highest degree of the numerator is greater than the degree of the denominator, there are no horizontal asymptotes.

Radicals and Exponents

Exponent and Radical Rules

Product Rule	$x^{m} * x^{n}=x^{m+n}$
Quotient Rule	$\frac{x^{m}}{x^{n}}=x^{m-n}$
Power of Product Rule	$(x * y)^{n}=x^{n} * y^{n}$
Power Rule	$\left(x^{m}\right)^{n}=x^{m * n}$
Zero Exponent Rule	$\left(x^{m}\right)^{0}=1$
Negative Exponents	$x^{-m}=\frac{1}{x^{m}}$
Adding/Subtracting Exponents	$x^{m} \pm x^{n}=x^{m} \pm x^{n}$
	$x^{m}+x^{m}=2 x^{m}$
Fractional Exponents/Radicals	$x^{n}=\sqrt[n]{x^{m}}$
Multiplying Radicals	$\sqrt{x} * \sqrt{y}=\sqrt{x y}$
Dividing Radicals	$\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}$

From Simple Studies: https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

Sequences

Arithmetic Sequences

- Arithmetic sequences are when a common number is added or subtracted from each number.
- Example: 1, 3, 5, 7

■ +2

- Formula: $a_{n}=a_{1}+(n-1) d$
- $a_{n}=$ nth term in sequence
- $a_{1}=$ first term in sequence
- $n=$ number in sequence
- $d=$ common difference
- Example Problem:

The first five terms of an arithmetic sequence are given: $-7,-2,3,8,13, \ldots$
What is the eighth term in the sequence?

- Solution:

$$
\begin{aligned}
& a_{8}=-7+(8-1) * 5 \\
& a_{8}=-7+(7) * 5 \\
& a_{8}=-7+35 \\
& a_{8}=28
\end{aligned}
$$

Geometric Sequences

- Geometric sequences are always multiplied or divided by the same number throughout the sequence.
- Example: 1, 4, 16, 64

■ *4

- Formula: $a_{n}=a_{1} r^{n-1}$
- $a_{n}=$ nth term in sequence
- $a_{1}=$ first term in sequence
- $r=$ common ratio
- $n=$ number in sequence
- Example Problem:

The first term is 2 in the geometric sequence $2,-8,32,-128 \ldots$. What is the eleventh term of the geometric sequence?

- Solution:

$$
\begin{aligned}
& a_{11}=2(-4)^{(11-1)} \\
& a_{11}=2(1048576) \\
& a_{11}=2097152
\end{aligned}
$$

How to Tell the Difference

- Arithmetic Sequences will always go up by the same amount while geometric sequences will go up by multiples.

Scientific Notation

- A way to write large or small numbers using powers of 10 s.
- Large Numbers
- Form: $x * 10^{n}$
- Example: $284,000,000=2.84 * 10^{8}$
- Small Numbers
- Form: $x * 10^{-n}$
- Example: $0.0000000284=2.84 * 10^{-8}$

Scatterplots

Correlation

- Strong Correlation
- The line of best fit is close to most points.
- Weak Correlation

From Simple Studies: https://simplestudies.edublogs.org \&

- The line of best fit is close to some points.
- No Correlation
- The line of best fit is close to a few points.
- Positive Correlation
- The slope of the line of best fit is positive.
- Negative Correlation
- The slope of the line of best fit is negative.

Linear vs Exponential Growth

Linear

- If the y changes by adding the same values, it represents linear growth.
- Changes at a constant rate

Exponential

- If the y changes by multiplying the same values, it represents exponential growth.
- Changes by a\%
- Halves/Doubles

Probability

Probability

- AND Probability
- Probability of multiple things happening.
- $P(A \cap B)=P(A) * P(B)$
- Probability of A and B
- OR Probability
- Probability of one thing OR another thing happening.
- $P(A \cup B)=P(A)+P(B)$
- Probability of A or B
- Conditional Probability
- Probability of something happening GIVEN something else happens.

From Simple Studies: https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

- $\quad P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
- Probability of A given B.

Independent vs Dependent

- Independent Probability
- Probability is NOT affected by another event happening.
- Dependent Probability
- Probability IS affected by another event happening.

Permutations

- Order matters
- ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$
- $n=$ total number of items
- $r=$ selected number of items

Combinations

- Order does not matter
- $\quad{ }_{n} C_{r}=\frac{n!}{r!(n-1)!}$
- $\mathrm{n}=$ total number of items
- $\mathrm{r}=$ selected number of items
- Number of ways of selecting ritems out of n items
- Repetitions are not allowed
\rightarrow Order is important
$\rightarrow \mathrm{nPr}=n!/(n-r)!$
\rightarrow Clue words: arrangement, schedule, order
\rightarrow Order is not important
$\rightarrow n \mathrm{Cr}=n!/[r!(n-r)!]$
\rightarrow Clue words: group, sample, selection

Center and Distribution

Median

- Number in the middle of a set of numbers
- Example:
- $1,3,6,3,7,4,2,8,1,5$
- Step 1: Reorder Numbers.
- $1,1,2,3,3,4,5,6,7,8$
- Step 2: Find the middle number (If there are 2 in the middle find the average of them).
- Median $=\frac{3+4}{2}=3.5$

Mean

- The average of all of the numbers

From Simple Studies: https://simplestudies.edublogs.org \& @ simplestudiesinc on Instagram

- Add all of the numbers and divide by the amount of numbers there are.
- Example:
- $1,3,6,3,7,4,2,8,1,5$
- Step 1: Add all numbers together.

$$
\text { - } 1+3+6+3+7+4+2+8+1+5=40
$$

- Step 2: Find out how many numbers there are in the set.
- There are 10 numbers.
- Step 3: Divide the sum by the amount of numbers.
- Mean $=\frac{40}{10}=4$

Mode

- The number that shows up the most in the set
- Example:

■ $1,3,6,3,7,4,2,8,1,5$

- Mode $=3$ and 1

Standard Deviation

- Standard deviation shows the spread of the data
- The more spread out the data is, the greater the standard deviation is.
- The less spread out the data is, the smaller the standard deviation is.

Range

- The difference between the largest and smallest number
- Example:
- $1,3,6,3,7,4,2,8,1,5$
- Step 1: Find the largest and smallest number.
- Largest $=8$ and Smallest $=1$
- Step 2: Subtract the smallest number from the largest number.
- Range $=8-1=7$

Writing Formulas in Terms of Variable

Solving to get a variable alone on one side

- Example:
- $V=\pi r^{2} h$

The formula gives the volume V with a radius r and height h. Write r in terms of V and h.

- Step 1: Get r alone on one side.

From Simple Studies: https://simplestudies.edublogs.org \& @ simplestudiesinc on Instagram

- $\frac{V}{\pi h}=r^{2}$
- Step 2: Solve for r.
- $r=\sqrt{\frac{V}{\pi h}}$

Surface Area and Volume Word Problems

- Most formulas for solids are given to you in the formula area of the math section.
- Always draw a Picture.
- Rectangular Prism
- Volume $=l w h$
- Surface Area $=2 l w+2 l h+2 w h$
- Diagonal $=\sqrt{\left(l^{2}+w^{2}+h^{2}\right)}$

Angles

- Parallel Lines
- Lines that point the same direction and will never meet.
- Perpendicular Lines
- Lines that meet at a 90° angle.
- Supplementary Angles
- Angles that add up to 180°.
- Complementary Angles
- Angles that add up to 90°.
- Opposite Angles
- Angles opposite of each other when two lines intersect are equal.
- Remember that the interior angles of a triangle equal 180°.
- Example:

What is the value of y

From Simple Studies: https://simplestudies.edublogs.org \& @ simplestudiesinc on Instagram

- Step 1: Find the value of x
- X is the third value in the triangle, so you can use the equation $180=102+36+x$
- $180=138+x$
- $x=42$
- Step 2: Find the value of y using x
- The angle y is opposite the angle x , so the value of y will be the same as x
- $\mathrm{y}=42$

Trigonometry

Right Triangle

- Remember Soh Cah Toa to remember how to get sine, cosine, and tangent from a triangle.

■ Soh:

$$
\text { Sine }=\frac{\text { opposite }}{\text { hypotenuse }}
$$

- Cah:

$$
\text { Cosine }=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

- Toa:

Tangent $=\frac{\text { opposite }}{\text { adjacent }}$

- $\sin \left(x^{\circ}\right)=\cos \left(90^{\circ}-x^{\circ}\right)$

Radians

- Unit Circle
- Angles to Radians
- Multiply by $\frac{\pi}{180^{\circ}}$
- Example:

$$
\text { - } \quad 270 \circ * \frac{\pi}{180^{\circ}}=\frac{3 \pi}{2}
$$

- Radians to Angles
- Multiply by $\frac{180 \circ}{\pi}$
- Example:

SOHCAHTOA

From Simple Studies: https://simplestudies.edublogs.org \& @ simplestudiesinc on Instagram

- $\frac{3 \pi}{2} * \frac{1800}{\pi}=270$

Complex Numbers

- $\quad i$ is a complex number that equals $\sqrt{-1}$.
- $i^{2}=-1$
- $i^{3}=-\sqrt{-1}$ or $-i$
- $i^{4}=1$
- Multiplying by the conjugate
- Example:
- $\frac{3+2 i}{4-i}$
- $\frac{3+2 i}{4-i} * \frac{4+i}{4+i}$
- $\frac{(3+2 i)(4+i)}{16-i^{2}}$
- $\frac{12+11 i+2 i^{2}}{16+1}$
- $\frac{10+11 i}{17}$

Sources

- SAT Test Information
- https://www.khanacademy.org/test-prep/sat/new-sat-tips-planning/about-the-sat-math-test/a/the-sat-math-test
- https://collegereadiness.collegeboard.org/pdf/official-sat-study-guide-about-mathtest.pdf
- Polynomials
- https://www.onlinemathlearning.com/introduction-polynomial.html
- Scatterplots
- https://www.onlinemathlearning.com/scatter-plots.html
- Probability
- https://mrscottmathclass.weebly.com/unit-4---permutations-and-combinations.ht ml

- Trigonometry

- https://en.wikipedia.org/wiki/Unit circle

