IB Physics SL/HL 1 Study Guide

From Simple Studies: https://simplestudies.edublogs.org and @ simplestudiesinc on Instagram
Fundamental Constants: Quantity / Symbol

- Acceleration of free fall / g
- Gravitational constant / G
- Avogadro's constant / N_{A}
- Gas constant / R
- Boltzmann's constant / k_{B}
- Stefan-Boltzmann constant / σ
- Coulomb constant / k
- Permittivity of free space $/ \epsilon_{0}$
- Permeability of free space / μ_{0}
- Speed of light in vacuum / c
- Planck's constant / h
- Elementary charge / e
- Electron rest mass / m_{e}
- Proton rest mass / m_{p}
- Neutron rest mass / m_{n}
- Unified atomic mass unit / u
- Solar Constant / S
- Fermi radius / R_{0}

Measurement

- SI Units- Standard units of measurements consisting of the following:
- Length/ Meter/m
- Time/ Seconds/ s
- Amount of substance/ Mole
- Electric Current/ Ampere/ A
- Temperature/ Kelvin/ K
- Luminous Intensity/ Candela/ cd
- Mass/ Kilogram/ kg
- From here, units are derived, such as Joules, which is force* distance, so $N * m$

Kinematics in One Direction

- Position of a particle is the position in respect to the origin, the unit being " s "
- This is called displacement, different from distance
- Displacement is a vector quantity, if it's positive it has moved in the positive direction, and if it's negative it has moved in the negative direction
- Average Speed $=\frac{\text { total distance }}{\text { Total Time }}$
- Instantaneous Velocity is the velocity at the given moment

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

- Average Acceleration

$$
a_{a v g}=\frac{\Delta v}{\Delta t}
$$

- Average Velocity

$$
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}
$$

- Constant acceleration (more equations to solve)

$$
\begin{gathered}
v=u+a t \\
s=u t+\frac{1}{2} a t^{2} \\
v^{2}=u^{2}+2 a s \\
s=\frac{1}{2}(u+v) t
\end{gathered}
$$

- Free Fall Acceleration
- We refer to motion vertically, and replace acceleration with g, which is the magnitude of the free-fall acceleration

$$
g=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

Vectors

- Scalers only contain magnitude
- Vectors have both magnitude and direction, and obey the rules of algebra
- Components of a Vector
- Components are given by: $a_{x}=a \cos \theta$, and $a_{y}=a \sin \theta$
- We can also find magnitude and orientation of vector a with: $a=\sqrt{a_{x}^{2}+a_{y}^{2}}$

Kinematics in Two and Three Directions

- Projectile Motion is the motion of a particle that is launched with an initial velocity
- During its flight, the particle's horizontal acceleration is 0 , and it's vertical acceleration is -g

$$
\begin{gathered}
s_{x}=(u \cos \theta) t \\
s_{y}=(u \sin \theta) t-\frac{1}{2} g t^{2} \\
v_{y}=u \sin \theta-g t
\end{gathered}
$$

- Uniform Circular Motion
- If a particle travels along a circle or circular arc of radius r at constant speed v, it is in uniform circular motion and has an acceleration of constant magnitude

$$
a=\frac{v^{2}}{r}
$$

- The direction of acceleration is towards the center of the circle or circular arc, and the acceleration is centripetal
- $\quad \mathrm{T}$ is the time for the particle to complete the circle, also called the period of revolution, or period

$$
T=\frac{2 \pi r}{v}
$$

- Relative Motion
- When 2 frames of reference A and B are moving relative to each other at constant velocity, the velocity of particle P as measured by an observer in frame A usually differs from measured from frame B

$$
v_{P A}=v_{P B}+v_{B A}
$$

Force and Motion

- Force is a vector quantity
- Net force is the vector sum of all the forces acting on the body
- Newton's First Law
- An object in motion stays in motion, and an object at rest stays at rest unless acted upon by an external, unbalanced force
- Newton's Second Law
- The rate of change of momentum of a body is directly proportional to the force applied.
- A free body diagram is a stripped down diagram in which only one body is considered, the external forces on the body are drawn
- A gravitational force on a body is a pull by another body, usually the earth

$$
\begin{aligned}
& F_{g}=m g \\
& W=m g
\end{aligned}
$$

- A normal force is the force on a body from the surface against which the body presses, always perpendicular to the surface
- A Frictional force is the force on a body when the body slides along a surface, always parallel to the surface
- Newton's Third Law
- If object A exerts a force F_{A} on a object B, then B simultaneously exerts a equal but opposite force F_{B} on A,
- Friction
- When a force tends to slide a body along a surface, a frictional force acts upon the body
- If the body does not slide, the frictional force is a static friction
- If the body does slide, the frictional force is kinetic
- The magnitude of F_{s} has a maximum value, given by

$$
f_{\operatorname{smax}}=\mu_{s} F_{N}
$$

- Where μ_{s} is the coefficient of static friction

$$
f_{k}=\mu_{k} F_{N}
$$

- Where μ_{k} is the coefficient of kinetic friction

- Uniform Circular Motion

- Net centripetal force

$$
F=\frac{m v^{2}}{R}
$$

Work and Kinetic Energy

- Kinetic Energy

$$
E_{k}=\frac{1}{2} m v^{2}
$$

- Work is the energy transferred from an object from a force acting on the object

$$
W=F d \cos \theta
$$

- For a particle, the change in kinetic energy equals the net work done on the particle
- Spring force
- $F_{s}=-k x$ (hooke's law)
- K is the spring constant, and x is the displacement of the spring
- Work done by the spring

$$
W_{s}=\frac{1}{2} k x^{2}
$$

- Power is the rate at which the force does work on an object

$$
\begin{gathered}
P_{a v g}=\frac{W}{\Delta t} \\
\mathrm{P}=\mathrm{FV}
\end{gathered}
$$

Potential Energy and the Conservation of Energy

- A force is a conservative force is the net work it does on a particle moving around any closed path, from an initial point and then back to the point is zero
- Kinetic frictional force is a non conservative force
- Potential energy is the energy that is associated in which a conservative force acts
- Gravitational potential energy is the potential energy associated with a system consisting of the earth, and a nearby particle is the GPE

$$
E_{p}=m g h
$$

- Where h is the height
- If there is a turning point where the particle reverses its motion, the kinetic energy is equal to 0
- Work done on an external force $W=E_{k}+E_{p}$
- Elastic Potential Energy

$$
E P E=\frac{1}{2} k x^{2}
$$

- Mechanical Energy

$$
E_{m e c}=E_{k}+E_{p}
$$

- Conservation of Energy
- The total energy E of a system can only chance by amounts of energy that are transferred to or from the system

$$
\frac{1}{2} m v^{2}{ }_{i}+m g h_{i}=\frac{1}{2} m v^{2}{ }_{f}+m g h_{f}
$$

- Where i is initial, and f is final

Linear Momentum

- $\quad \mathrm{p}=\mathrm{mv}$
- Impulse

$$
\begin{aligned}
J & =F_{a v g} \Delta t \\
F_{a v g} & =-\frac{\Delta m}{\Delta t} \Delta v
\end{aligned}
$$

- Conservation of Linear Momentum
- If a system is isolated so that no net external force acts on it, the linear momentum of the system remains constant

$$
P_{i}=P_{f}
$$

- Inelastic Collision in One Dimension
- In an inelastic collision of 2 bodies, the kinetic energy of the two-body system is not conserved
- If the system is closed and isolated, the total linear momentum of the system must be conserved

$$
P_{1 i}+P_{2 i}=P_{1 f}+P_{2 f}
$$

- If the motion of the bodies is along a single axis and the collision is one dimensional:

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

- If the bodies stick together, the collision is completely inelastic collision and the bodies have the same final velocity
- Elastic Collisions in One Dimension
- A special type of collision in which the kinetic energy of a system of the colliding bodies is conserved
- If system is closed and isolated, the linear momentum is also conserved
- Collisions in Two Dimensions

$$
P_{1 i}+P_{2 i}=P_{1 f}+P_{2 f}
$$

- If the collision is also elastic, $K_{1 i}+K_{2 i}=K_{1 f}+K_{2 f}$

Rotation

- Angular Position
- To describe the rotation of a rigid body about a fixed axis, called the rotation axis, we assume there is a reference line in the body, perpendicular to the axis and rotating with the body

$$
\theta=\frac{s}{r}
$$

- $\quad 1$ revolution $=360^{\circ}=2 \pi \mathrm{rad}$
- Angular Displacement

$$
\Delta \theta=\theta_{2}-\theta_{1}
$$

- Angular Velocity and Speed
- If a body rotates through an angular displacement in a time interval, its average angular velocity is

$$
\omega_{a v g}=\frac{\Delta \theta}{\Delta t}
$$

- We use the right hand rule to see the direction of the velocity, thumbs up, facing the direction of the current, fingers facing direction of magnetic field

- Another right hand rule is known as the fleming's right hand rule when force is involved

- Angular Acceleration

$$
a_{a v g}=\frac{\Delta \omega}{\Delta t}
$$

- Work and Rotational Kinetic Energy
- If the body rotates through an angle, the point moves along an arc with length s given by: $s=\theta r$
- The linear velocity of the point is tangent to the circle, and the point's linear speed is given by: $v=\omega r$
- The linear acceleration of the point has both tangential and radial components, the tangential component is: $a_{t}=\alpha r$
- The radial component is: $a_{r}=\omega^{2} r$
- If the point moves in uniform circular motion, the period T of the motion for the point and the body is: $T=\frac{2 \pi}{\omega}$

Gravitation

- The Law of Gravitation

$$
\begin{array}{r}
F=G \frac{m_{1} m_{2}}{r^{2}} \\
-\quad \mathrm{G}=6.67 * 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}
\end{array}
$$

- Gravitational Potential Energy
- The gravitational potential energy of a system of two particles with masses M and m separated by a distance of r

$$
-\quad \mathrm{GPE}=-\frac{G M m}{r}
$$

- Gravitational Acceleration

$$
a_{g}=\frac{G M}{r^{2}}
$$

- Kepler's Laws
- The law of orbits
- All planets move in elliptical orbits with the sun at one focus
- The law of areas
- A line joining any planet to the sun sweeps out equal areas in equal time intervals
- The law of periods
- The square of the period T of any planet is proportional to the cube of the semimajor axis a of its orbit

$$
T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r^{3}
$$

Oscillations

- Frequency
- The frequency f is the number of oscillations per second, measured in hertz
- Period
- The period T is the time required for one complete oscillation or cycle

$$
T=\frac{1}{f}
$$

- Angular Frequency is related to the period and frequency of the motion by: $\omega=2 \pi f$
- Linear Oscillator
- A particle with mass m that moves under the influence of a Hooke's law restoring force exhibits simple harmonic motion with
- $\quad \omega=\sqrt{\frac{k}{m}} \quad$ (angular frequency)
- $T=2 \pi \sqrt{\frac{m}{k}} \quad$ (period)
- Pendulums
- Simple Pendulum: $T=2 \pi \sqrt{L / g}$
- Resonance
- The velocity amplitude of the system is greatest in resonance

Waves

- Transverse and Longitudinal waves
- Mechanical Waves can only exist in material media and are governed by Newton's laws of motion
- Transverse mechanical waves are waves in which it oscillates perpendicular to the waves direction of travel
- Longitudinal waves oscillates parallel to the wave's direction of travel
- Sinusoidal waves
- $\quad \mathrm{y}=A \sin (k x-\omega t) *$ Notations may differ from textbook to textbook
- Where A is the amplitude of the wave, k is the angular wave number, ω is the angular frequency, and $\mathrm{kx}-\omega t$ is the phase
- The wavelength is: $k=\frac{2 \pi}{\lambda}$
- The wave speed is: $v=\frac{\omega}{k}=\frac{\lambda}{T}=\lambda f$
- Resonance
- Standing waves on a string can be set up by a reflection of traveling waves from the ends of the string
- If an end is fixed, it must be the position of a node
- This limits the frequencies at which standing waves will occur on a given string
- Each possible frequency is a resonant frequency, and the corresponding standing wave pattern is an oscillation mode

$$
f=\frac{v}{\lambda}=n \frac{v}{2 L}
$$

- Sound intensity
- The intensity I of a sound wave at a surface is the average rate per unit area which energy is transferred by the wave through or onto the surface:

$$
I=\frac{P}{A}
$$

- The intensity at a distance r from a point sources that emits sound waves of power P is:

$$
I=\frac{P}{4 \pi r^{2}}
$$

- Doppler Effect
- The doppler effect is a change in the observed frequency of a wave when the source or the detector moves relative to the transmitting medium

$$
f^{\prime}=f \frac{v \pm v_{D}}{v \pm v_{S}}
$$

- Where v_{D} is the speed of the detector relative to the medium, and v_{S} is that of the sources
- $\quad f^{\prime}$ tends to be greater for motion towards, and less for motion away
- Occurs when something is in its equilibrium point
- Force is proportional to displacement from equilibrium
- Frequency is the number of sound waves
- Sound with single frequency is a pure tone
- Under 20 Hz is infrasonic
- Above 20 Hz is ultrasonic
- The pitch is the brain's interpretation of frequency
- The pressure amplitude is the magnitude of maximum change in pressure measured relatively to undisturbed atmospheric pressure
- Loudness is the amplitude of the wave
- Application in medicine
- Ultrasounds, pulses, doppler flow meter
- The sensitivity of the human ear

- The principle of linear superposition
- When 2 or more waves are present simultaneously at the same place, the resultant disturbance is the sum of the disturbance from the individual waves
- Constructive and destructive interference of sound waves
- Constructive interference is when 2 waves meet condensation-condensation or rare-rare
- Destructive interference is when 2 waves meet rare-condensation
- Diffraction is the bending of waves around obstacles
- Single slit- first medium
- $\operatorname{Sin} \theta=\frac{\lambda}{D}$
- Circular opening
- $\operatorname{Sin} \theta=1.22 \frac{\lambda}{D}$
- Transverse Standing
- Each pattern is a transverse wave pattern
- Nodes = no vibration
- Antinodes = maximum
- Superposition
- When 2 or more waves are at the same place and collide and create a resulting wave

Temperature

- Zeroth Law of Thermodynamics
- If bodies A and B are each in thermal equilibrium with a third body C (the thermometer), then A and B are in thermal equilibrium with each other
- The Kelvin Temperature Scale
- \quad Standard SI unit, where the freezing point of water is 273.16 K
- Heat Capacity
- If heat Q is absorbed by an object, the object's temperature change is related by $Q=C\left(T_{f}-T_{i}\right)$ where T_{f} is the final temperature and Γ_{i} is the initial temperature - If object has mass m, then

$$
Q=c m\left(T_{f}-T_{i}\right)
$$

- Celsius and Fahrenheit Scales
- The celsius temperature scale is defined by: $F_{c}=T-273.15$
- T is in kelvins
- Fahrenheit temperature is defined by: $T_{f}=\frac{9}{5} T_{c}+32$
- Radiation
- Radiation is an energy transfer via the emission of electromagnetic energy

$$
P_{r a d}=\sigma \epsilon A T^{4}
$$

- Everything with temperature gives us thermal radiation
- Above absolute zero is vibrational energy

$$
Q / t=\text { power }=\epsilon \sigma A T^{4}
$$

The Kinetic Theory of Gases

- Average translational kinetic energy per particle

$$
K E=\frac{3}{2} k T
$$

- Internal Energy of a Monatomic ideal gas

$$
U=\frac{3}{2} n R T
$$

- The distribution of molecular speeds
- Particles travel at different speeds, but it's possible to have an average particle speed
- Avogadro's Number
- One Mole of a substance contains N_{A} elementary units

$$
N_{A}=6.02 * 10^{23} \mathrm{~mol}^{-1}
$$

- Ideal Gas
- $\mathrm{pV}=\mathrm{nRT}$
- Can also be written as $\mathrm{pV}=\mathrm{NkT}$
- Where k, the boltzmann constant, is $k=\frac{R}{N_{A}}=1.38 * 10^{-23} \mathrm{~J} / \mathrm{K}$
- The number of moles n contained in a sample of mass consisting of N molecules is given by: $n=\frac{N}{N_{A}}=\frac{M_{\text {sam }}}{M}=\frac{M_{\text {sam }}}{m N_{A}}$

Coulomb's Law

- Conductors
- Materials in which a significant number of electrons are free to move
- Coulomb's Law describes the electrostatic force between two charged particles

$$
F=\frac{1}{4 \pi \epsilon_{0}}=\frac{q_{1} q_{2}}{r^{2}}
$$

- Where ϵ_{0} is the permittivity constant
- Conservation of Charge
- The net electric charge of any isolated system is always conserved
- Like charges repel, opposites attract
- Charged objects can be created by friction

Electric Fields and Electric Forces

- Like mass, electric charge is an intrinsic property $e=1.6 * 10^{-19} \mathrm{C}$
- Law of conservation of electric charge
- During any process, the net electric charge of an isolated system remains constant
- Conductors and Insulators
- Conductors are substances that readily conduct
- Ex. metal
- Insulators are materials that conduct charge poorly
- Ex. plastic, rubber
- Charging by contact and induction
- Contact is directly touching
- Induction is charging without physical contact

$$
E=\frac{F}{q_{0}}
$$

- Electric Field Lines
- Help visualize the direction and magnitude of electric fields
- The field vector at any point is tangent to a field line through that point
- The density of field lines in any region is proportional to the magnitude of the electric field in that region
- From positive charges to negative charges

- Field due to a point charge

$$
E=\frac{1}{4 \pi \epsilon_{0}}=\frac{q}{r^{2}}
$$

- Force on a point charge in an electric field

$$
F=q E
$$

Electric Potential Energy and Electric Potential

- The electric potential v at a given is the EPE of a small test charge q situated at that point divided by the charge itself

$$
v=\frac{E P E}{q}
$$

- Relation between charge and potential difference for a capacitor
- Magnitude q of the charge on each plate of a capacitor is directly proportional to the magnitude v of the potential difference between places

$$
q=c V
$$

- The electric potential difference
- $F=q_{0} E$ is the electric force
- The work depends on charge q_{0}

$$
\frac{W_{A B}}{q_{0}}=\frac{E P E_{A}}{q_{0}}-\frac{E P E_{B}}{q_{0}}
$$

- A positive charge accelerates from a region of higher EPE towards a region of lower EPE
- 1 electron volt is the amount by which the potential energy of an electron changes when the electron moves through the potential difference of 1 volt

$$
1 \mathrm{eV}=1.60 * 10^{-19} \mathrm{~J}
$$

- The EP difference created by point charges

$$
\begin{aligned}
W_{A B}= & \frac{k q q_{0}}{r_{A}}-\frac{k q q_{0}}{r_{B}} \\
V_{B}-V_{A}= & \frac{-W_{A B}}{q}=\frac{k q}{r_{B}}-\frac{k q}{r_{A}}
\end{aligned}
$$

- Potential of a point charge $v=\frac{k q}{r}$
- When 2 or more charges are present, the potential due to all the charges is obtained by adding together the individual potentials
- Equipotential surfaces and their relation to the electric field
- An equipotential surface is a surface where EP is the same everywhere
- The net force does 0 work as charge moves on the equipotential surface
- EF is everywhere perpendicular to associated equipotential surfaces and points in the direction of the decreasing potential
- Capacitors and Dielectrics
- A capacitor: 2 or more conductors, no physical contact
- Dielectric: Electrically insulating material
- Dielectric constant $k=\frac{E_{0}}{E}$

Electric Currents

- Electromotive force and current
- The mas potential difference is the electromotive force (EMF)
- Flow of chart = electric current

$$
I=\frac{\Delta q}{\Delta t}
$$

- If the charge moves in the same direction, the current is direct current
- If the charge mores in 1 direction, then switches directions, it's in an alternating current
- The conventional current is a hypothetical flow of positive charges that would have the same effect in a circuit as the movement of negative charges
- Ohm's Law
- Resistance = voltage $/$ current
- Current is in Ampere A
- Voltage is in Volts V
- Resistance is in Ohms Ω
- Electric Power
- The power is equal to the current multiplied by the voltage
- Alternating current

$$
P=\frac{v^{2}}{R}
$$

- Series Writing
- Devices are connected in a way so that there is same electric current in each device

$$
V=V_{1}+V_{2}=I R_{1}+I R_{2}=I\left(R_{1}+R_{2}\right)=R_{s}
$$

- $\quad R_{S}=$ equivalent resistance
- \quad Series resistor $=R_{S}=R_{1}+R_{2} \ldots$
- Parallel writing
- Devices are connected so that voltage is the same

$$
\begin{gathered}
I=V \frac{I}{R_{p}} \\
\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \ldots
\end{gathered}
$$

(a) Resistors connected in series

(b) Resistors connected in parallel

- Kirchhoff's rules
- Junction rule
- At any junction in the electrical circuit, the sum of the currents flowing into the junction is equal to the sum of the currents flowing out of the junction
- Loop rule
- Around closed circuit loop, the sum of the potential drop is the sum of the potential rise

Magnetic Fields

- North magnetic pole vs south magnetic pole, opposites attract and likes repel
- The force that a magnetic field exerts on a moving charge
- The charge must be moving
- Velocity must have component that is perpendicular to direction of the magnetic field

- The motion charged particle in a field
- Charged particle is perpendicular to the field
- Magnetic force is perpendicular to the velocity and directed towards center

$$
r=\frac{m v}{q B}
$$

Electromagnetic Waves

- The oscillating current I in the antenna wires create magnetic field B at point P that is tangent to the circle centered on the wires
- The field is directed into the page when the current is upward and out of the page when the current is downwards

- As oscillating current changes, the magnetic field changes accordingly
- An electromagnetic field wave is transverse
- Can travel through a vacuum or material substance
- All waves move through vacuum at speed c , which is the speed of light in a vacuum
- $\quad c=3.00 * 10^{8} \mathrm{~m} / \mathrm{s}$
- Electromagnetic spectrum
- Lower frequency waves generally produced by electric oscillator circuits
- Higher frequency waves are generated using electron tubes called klystrons

Wavelength in meters (m)

- The energy carried by electromagnetic waves
- A measure of the energy stored in the electric field E of an electromagnetic wave is provided by the electromagnetic identity
- As electromagnetic waves move through space, it carries energy
- The intensity
- \quad S is the electromagnetic intensity

$$
S=\frac{P}{A}
$$

- The volume of space which the wave passes is ctA
- The total energy in the volume is $S=\frac{c}{\mu_{0}} B^{2}$
- Polarization
- Electromagnetic waves are transverse waves, so they can be polarized
- Wave is linearly polarized
- Vibrations always occur in one direction
- This direction is called the direction of polarization
- Malus' law
- Once light has been polarized with a piece of polarizing material, it's possible to use a second piece to change polarization direction and to adjust to the intensity of light

$$
S=S_{0} \cos ^{2} \theta
$$

The Refraction of Light, Lenses, and Other Optical Instruments

- The index of refraction
- Change in speed as ray of light goes from 1 material to another
- Causes ray to deviate from the "incident direction"
- This change is called refraction

$$
n=\frac{\text { speed of light in vacuum }}{\text { speed of light in material }}=\frac{c}{v}
$$

- Snell's law and the refraction of light
- When light travels from material with refractive index n_{1} into a material with refractive index n_{2}, the refractive ray, the incident ray, and the normal to the interface all lie in the same plane

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

- Apparent Depth
- An object underwater appears closer than it actually is

$$
d^{\prime}=d \frac{n_{2}}{n_{1}}
$$

- Where d^{\prime} is the apparent depth, d is the actual depth
- Total internal reflection
- When the angle of incident reaches a certain value, its critical angle is an angle of refraction, 90 degrees
- The total internal reflection occurs only when light travels from higher to lower medium index
- Critical angle: $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$
- Polarization and the reflection and refraction of light
- For incident angles other than 0 , unpolarized light becomes partially polarized in reflecting from a nonmetallic surface such as water
- There is 1 special angle where reflected light is completely polarized parallel to the surface and the reflected ray is only partially polarized: Brewster's angle θ_{B}
- $\operatorname{Tan} \theta_{B}=\frac{n_{2}}{n_{1}}$
- The spreading of light into color components is dispersion

Thanks for using the Simple Studies study guide! For the official IB physics equation sheet, click here: http://www.iisjaipur.org/International_Wing/physics_Data_booklet.pdf

This is the annotated version: https://ibphysicsnotes.files.wordpress.com/2016/01/annotated-physics-data-booklet-2016.pdf

