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Electricity 

Chapter 21 - The Electric Field I: Discrete Charge 

Distributions 

● Coulomb ( ) - SI unit of charge [elemental charge,   , is the 

smallest unit of charge (i.e. - proton or electron) and it indicates that CHARGE IS 

QUANTIZED].  More commonly used units are the microcoulomb  

 ( ) or nanocoulomb ( ) 

● Law of Charges: opposite charges attract & like charges repel 

●  = electric force (electromagnetic analog of gravity - force exerted from one 

charged particle on another) 

●  = electrostatic constant ( ).  Alternate form:  

o  = The permittivity of vacuum.  How easily the electric force can go 

through a certain substance.  in a vacuum. 

● Coulomb's Law -    (i.e.- the electric force is the electrostatic 

constant ( ) times the product of charge 1 ( ) and charge 2 ( ) divided by the 

distance ( ) between the two charges).  Same form as the Gravity formula. 

 ( ).  Expanded form: . 

o Applies to POINT CHARGES.  Uniformly charged spherical objects 

behave like point charges from their surface. 

● Field Strength (  ) - electromagnetic analog of  in 

.  Measured in .  Thus,  .  For point masses.  Thus:    



 

 

● Electric field diagrams - Lines representing the direction of the electric 

force acting on a positively charged particle are placed at that 

location.  Near the source, the field lines are closer, meaning that the force 

is stronger.  Since , then     (where  is the 

charge of the source of the field, not of the positively charged particle at 

that location).  This is the electric field around a point charge with charge 

.  Generally, field lines point from positive to negative.  Field lines can 

never cross; they only interact to create new, averaged, field lines. 

 

o Dipoles - A dipole is the force tangent to the curved 

lines.  Remember, it's the direction of the force, not necessarily 

where it will spread out.  Uneven charges will cause the arrows to 

lean towards the larger charge. 

 

  

  

o Two like charges - an uncharged spot exists in the center:  any test 

charge will remain stationary if placed in the direct center as the 

forces exerted by the two charges are equal and opposite. 

 

o Uniform Field Strength - This occurs between two parallel and 

oppositely charged plates.  Field lines are parallel so thus the field 

strength stays constant.  For a sample problem, click here. 

 

  

● Electric Dipole Moment -charges  &  separated by distance . In 

an  field, dipole experiences torque:   

o Dipole Moment -    where  points from  to . Thus 

torque:    

Chapter 22 - The Electric Field II: Continuous Charge 

Distributions 

https://docs.google.com/a/calculushumor.co.cc/View?id=dc4hrcfx_103gbcp58hp


 

 

● Point charges:  

● By analogy for a charged solid,    

● Consider the solid as a collection of an infinite number of point 

charges, . 

  

      

● Charge Density - a charge distributed across an object 

o Linear Charge Density -    

o Area Charge Density -    

o Volume Charge Density -    

● Two major cases for use of Linear Charge Density ( ) IMPORTANT STUFF - 

know these two proofs!!! 

CASE 1 - Electric field at the center of a 

charged arc 

CASE 2 - Electric field along the central 

axis of a charged ring 

 

   

A charged rod has charge  and has been 

bent into a circular  arc of radius 

.  Find electric field  at center of curve P. 

 

Note that due to the symmetry, all of 

the  values cancel out.  We only need 

 

Given radius  and ring of charge , 

find  so that point  has maximum 

electric field  from the ring. 

 

In order to solve this problem, we must 

figure out an expression that expresses  in 

terms of , then find the maximum on the 

resulting graph.  The x components 



 

 

to sum up 

the  values.   

  

 

  

As stated by the equation , we 

must integrate over , or charge.  It is 

more favorable to integrate over angle , so 

we will use linear charge density  to 

put  in terms of . 

 in  
Electric Field 

  

 

(note: we must use 

radians for this to be 

true) 

  

  

  

 

  

 

Only in the  x direction 

As we stated before: 

  

 

Mushing all of these three results together 

yields: 

  

of  will cancel out, due to the symmetry 

of the setup.  We only want .  We don't 

want to integrate around , we want to 

integrate around the plane of the 

circle.  We'll name this angle . 

 

As we go around the circle,  will go 

from  to .  It is important to note 

that  is a constant in this situation.  As 

stated by the equation , we 

must integrate over , or charge.  It is 

more favorable to integrate over angle , so 

we will use linear charge density  to 

put  in terms of . 

 in terms of  
Electric Field 

  

 

  

  

  

  

  

 

Only in the y 

direction 

Length  



 

 

 

  

 

  

In order to take advantage of the symmetry, 

we must set the horizontal as  and the top 

end as  and then double the resulting 

force. 

  

 

  

 

  

Because of the nature by which we derived 

the above equation, we must start using 

radians.    Also, since , , 

and  are all constants, we can move 

the  in order to simplify the integral. 

  

 

  

  

Ah...much simpler!  Now we simplify, plug, 

and chug. 

  

As we stated before: 

  

Pythagorean 

theorem: 

  

  

Combine everything! 

 

  

 

  

 

 

As complicated as this integral may appear 

to be at first glance, one must note that 

every variable presented here is a constant, 

of course except for , so we can take 

them out of the integral, which leaves us 

with: 

 

It's a bit of a waste of calculus, but hey. 

 

 

Remember ?  Well,  now 

equals  so we can plug in  for . 

 



 

 

 

  

  

 

  

  

 

  

  

Now we substitute in  (previously 

derived in table above) 

  

 

  

  

 

  

 

  

  

, right 

  

Thus: 

, up 

  

From this, there are a few things that we can 

say just by looking at the nature of the 

equation.  When , there is no electric 

field.   also yields no 

electric force.  When , (i.e. - the hoop 

appears like a point mass), , which indicates 

that it will act like a point charge! 

  

Here's a graph of what the 

function  would roughly 

look like: 

  

 

  

  

How do we find that little maximum 

point?  More calculus of course!  We must 

take the derivative of  with respect 

to , set it to zero, and then solve for . 

 

  



 

 

 

  

Rearrange: 

  

 

  

Product & chain rules: 

  

 

  

Rearrange: 

  

 

  

Common denominator: 

  

 

  

 

 

 

The  part doesn't really matter so we can 

eliminate it: 

  

 



 

 

  

Simplify 

  

 

  

Solve for : 

  

   

  

 

● Electric Flux ( ) - number of field lines intersecting a unit 

area.   (dot product) 

o This product is a minimum at and a maximum at  

o  is like the density of field lines intercepting an area, so when you 

multiply it by the amount of area you have, you get the # of field 

lines in that area.  

o The dot product accounts for the decrease in the amount of flux 

attained when the area is angled with respect to the electric 

field.  Vector of  points perpendicular to the surface. 

o It's an abstract number.   

 

●  Gauss' Law is used to calculate  for an extended charge given certain 

symmetries. 

o Flux through a closed surface (box) 

▪ If a closed surface contains no charge, the net flux ( ) 

through it is zero.  The flux entering the surface equals the 

flux exiting the surface so the net flux is zero. 

 



 

 

▪ If surface contains a dipole, the net flux ( ) is also zero since 

all of the field lines eventually loop around and connect 

again.  

 

▪ A net enclosed charge  will create a certain net flux 

.  When charge inside is positive, the flux is positive ( ) 

and when the charge inside is negative, the flux is negative    

( ). 

 

o To calculate net flux: 

   

o Note that for a cube, this is very hard to integrate.  Thus, for our purposes, 

we only actually use this when the symmetries of the problem let us 

get  constant all over the surface so , where  is 

nice and symmetric (thus, this means using the surface area of sphere or a 

cylinder). 

Example 

1: Taking 

point 

charge  

  

  

Consider the point charge q wrapped in the Gaussian surface (the surface 

you integrate across).  , the dot product goes away since 

vectors are always parallel.   

  

 

   



 

 

o This is valid for any enclosed charge in any surface.  Using this, we get 

the definition of Gauss' law (shown below).  Thus, if you know , and the 

charge is arranged symmetrically, you can calculate . 

GAUSS' LAW:     

 

However, there are 7 special cases: (note:  signifies charge enclosed by Gaussian 

surface) 

Case 1: Infinite line charge 

density  

 

  

 

Find  as a function of distance  from wire.  Consider 

segment wrapped in cylinder of length  and radius 

.  Note: no flux is created through ends caps as the area 

and electric field vectors are perpendicular, thus it is 

ignored. 

  

 & , thus 

, so  

, thus 

   

  

Note how is proportional to  and not  since we are 

now dealing with the electric field that originates from a 

line charge and not a point charge.  The strength doesn't 

decrease over time as quickly. 

 Poke a cylinder through it! (Gaussian cylinder).  We only 

obtain the fluxes through the end caps.  The vectors of the 



 

 

*Case 2: infinitely thin 

infinitely large charged 

sheet, charge density  

  

 
 

sides are perpendicular to the vectors of the electric field, 

so we can ignore them. 

  

 

 

  

 

  

   

  

 

*Case 3:  above infinite 

conducting surface, charge 

density  

  

 
 

It is similar to case 2, but we only get flux through top cap 

area . 

  

 

 

   

  

 

**Case 4: Uniform spherical 

charge:  outside.  Sphere 

radius  and 

charge  evenly distributed 

across the surface.   

  

 
 

We must find  at .  To solve, we must wrap the 

object in a Gaussian sphere. 

  

 

 

  



 

 

 

  

 

  

   

  

This should look familiar. 

Case 5: If the sphere is 

conducting,  inside is zero. 

  

 

The Gaussian sphere is placed inside the charged 

conducting sphere. 

 

  

The excess charge inside the object is zero! As it is a 

conducting surface, all of the extra charges repel each 

other and move to the surface of the sphere. 

  , since  

  

**Case 6:  inside non-

conducting sphere radius , 

with evenly distributed 

charge  

  

 

  

 

  

We must use density! (charge density that is).  Note 

that  (volume charge density) is the same for  and . 

 

  

 

Thus... 



 

 

 

  

 

  

And plugging our findings back into the original 

equation... 

 

  

And since  

 

  

   

  

Case 7:  inside non-

conducting sphere radius , 

non uniform charge density. 

  

 

  

 (given charge density -  is not constant) 

  

 

  

  

  

Solve for  in sphere radius .    (  and are 

functions of , so we must use calculus) 

  

  



 

 

 

  

What this means: We take an infinite number of 

concentric spherical shells (all parts of one particular shell 

have the same  since they all have the same r value), 

find  for all of them, and then add all of the s together. 

  

Also, we want to change to  since it's a more 

convenient variable for integration. 

  

 

  

  

( This is now the surface area formula since we are taking 

infinitely thin shell slices, which effectively have a 

volume equivalent to a surface area) 

  

  

Now... 

  

 

  

  

  

  



 

 

Combining with original equation ... 

 

  

  

*notes on cases 2 and 3 

Look at the difference: sheet -  ; conducting surface - .  If we zoom out 

of the sheet by a lot, it begins to look like the conducting surface (remember that 

it does have a third dimension) BUT  is different!  It is double the amount (both sides of 

the sheet). In reality,  is the same for both, but the way  is obtained for both is slightly 

different, thus resulting in different equations. 

 for sheet - total charge on whole disk 

  

 for conducting surface - based on charge on only one surface of a larger object 

**implications from the resulting equations from case 4 and case 

6,  and .    (note:  indicates "proportional to") 

  

 

  

  And now a summary...  

Gauss' Law 7 Cases General Problem Solving Steps:  

1. Find  through charge density ( , , or )* 

*way to find  for case 7 only:  

1. Know  and thus you must use  instead  



 

 

2. Put  in terms of  

3. Substitute given equation for  into equation from steps 1 & 2 

4. Integrate  

2. Find area  of part(s) of Gaussian surface where flux is present. 

3. Plug into Gauss' Law:  and solve for  (note: for all 7 cases, you 

can drop the  and  parts and change the differential  to  thus just making 

it ) 

  



 

 

Enclosed Charges - if you put a charge in a conducting box, you cause a separation of 

charge in the container.  For following examples, assume the shell is neutral. 

 at center   off center  

 

inner surface charge:  

outer surface charge:  

Inside the conductor, , everywhere 

else,  (the conducting shell 

effectively causes a gap in the field of the 

conductor)  

Negative charge is distributed uniformly on 

the inner surface and positive charge is 

distributed uniformly on the outer surface.  

 

Charge density on inner surface is greater 

closer to enclosed .  

Electric field lines are always perpendicular 

to the conducting surface at equilibrium 

(otherwise, the charges would move).  

Inside conducting shell,  

On outer surface, charge  is arranged 

uniformly.  There is no information about 

position of inner .   

In order to obtain the outside charge, just add the charge of the enclosed charge and the 

charge of the shell.  Note that if you have a charge of value  and you have a shell of 

charge ,  outside the shell. 

● Conductor in an  field. - Similar to how sun rays hit the equator with higher 

intensity, the  field lines will hit the equator of the conducting sphere with a 

higher flux, causing more charge to accumulate there.         

  



 

 

● Conducting Sheets 

o 1 thin conducting sheet of area , charge , , so 

thus  

o 2 parallel plates - It is essentially the same as adding the electric field of 

both plates in isolation.  The field on the right is really a combination of 

the rigtwardly headed field lines of the left plate and the right plate, and 

the field on the left is really a combination of the leftwardly headed field 

lines of the left plate and the right plate.  The field lines in the middle are 

heading opposite directions with the same magnitude and thus cancel out. 

Thus the field on the outside is , which is twice as much 

as the field on one side of the plate if it was isolated. 

  



 

 

Chapter 23 - Electric Potential 

● Gravitational Potential 

o Gravitational Potential energy:  

▪ Technically, it is only defined as a difference in energy, since  is 

a relative measurement. 

▪  (there's a negative sign in order to 

make the  and  vectors point in the same direction) 

▪ Energy is stored in the relationship between objects and the electric 

field. 

▪ Increases when an outside force moves an object against the field 

(up). 

▪ No energy change if you move perpendicular to field lines as per 

dot product rules. 

o Gravitational potential (GP) - potential energy per 

mass  (defined at a point in the field) 

▪ Describes how much energy can be stored at that point in the field. 

▪ Objects spontaneously move to lower gp. 

● Electric Potential - we will generate our equations and terms relating to Electric 

Potential by creating analogies to Gravitational Potential 

o Electric Potential energy: a difference between two points in a field. 

▪ By comparing it to , we can say  

▪ Similar to  in the sense that charge is a replacement for mass 

in the formula. 

▪ It is a .  There is no absolute point  for energy. 

▪ For a positive test charge, you increase electric potential energy by 

moving the charge against the  field lines. 



 

 

▪ For a negative charge, reverse it: increase  by moving 

it with the field. 

o Electric Potential ( ) 

▪  - an energy per charge (analogous to GP) 

▪ SI unit - Volt (V) - aka Joule per Coulomb 

▪ Usually, we talk about a difference in potential between two 

points:  

▪ Scalar quantity, although signs must be used due to the signed 

nature of charges. 

▪  decreases in the direction the field points (doesn't depend on the 

sign of ).  Think of using a positive test charge as the standard.  

▪ Positive charges spontaneously move towards lower . 

o Alternative definition of  for uniform field 

since  and , then  

o Two charged parallel plates -  - Voltage changes proportionally 

to the location of a particle between the plates. 

o  - i.e. - Volts per meter (which is really just another way to 

say Newtons per Coulomb).  It can be used to solve for  (magnitude 

of ) between two oppositely charged plates. 

o Electric potential energy often becomes kinetic.  Since , 

then  (kinetic). (must be negative because it's 

moving to a negative change in Voltage that is from higher energy to 

lower energy) (for a positive charge, that is). 



 

 

o Electronvolts (eV) - It is a nonstandard energy 

unit.   (ELEMENTARY CHARGE! - one electron 

moving through one potential difference of one volt causes a transform of 

energy equivalent to one electron volt. 

o Equipotential Diagrams - Essentially a topographic map - showing lines 

of equal potential (V) like a topographic map shows contours of equal 

height.  When you walk on a contour line, your potential energy stays the 

same -- when the lines are close together and you move perpendicular, the 

potential energy changes the fastest.  Downhill is perpendicular to the 

contour line.  No work is done by moving along an equipotential 

line.  Equipotential lines are ALWAYS perpendicular to the electric field. 

▪ Points on the same equipotential line have the same voltage.  Lines 

closer to a positive source indicate a higher voltage.  Lines further 

indicate a lower voltage.  (positive voltage near a positive source 

charge & negative voltage near a negative source charge). 

o Non-Uniform Fields 

▪ Electric potential energy: Between two point charges the uniform 

case .  Now taking as a function of 

position.  Normally, we'd just use Coulomb's law to 

calculate .  Now: 

 

  

  



 

 

▪ For two point charges... 

 

  

  

  

thus, potential energy for a pair of charges... 

  

note how .  Also, because of signums of charge,  is positive for like 

charges and negative for opposite charges. 

  

o Electric Potential: Pair of charges.  Since , for a pair of 

charges,  (where  is the source of the field).  This is like the 

situation above except we disregard the charge of the second particle.  It 

gets cancelled out by division, as you're getting the potential energy per 

charge (i.e. - the definition of Voltage) 

o Generally,  is an integral.  , so 

thus  (this is like the potential energy 

formula, except with no ). 

o WORK: .  Work done by the field is negative.  The 

work that you put on the particle to put it in a location of higher voltage is 

just .  Satisfies conservation of energy. 



 

 

o Conductors - Since electric field is zero inside, and , then  is 

constant everywhere in it. 

 

  

Special Cases for Voltage (4 cases) 

A]Around a line 

charge , radius , 

infinitely long. 

 

Since  (derived from use of Gauss' law), 

 

 

We will simply define the surface of the curve as  (frame 

of reference) so .  (reference at zero (i.e. - lower 

limit) will make  undefined)  

 

 (because ) 

 

 OR  

B]Above infinite thin 

sheet, charge 

density  (and 

potential ) 

Previously derived:  (constant)  

 



 

 

 

 

 

 

Recall that we incorporated  in case A.  This time  

will act like a constant of integration.  

 

   

*C]V at center of charged 

arc  radius   

 

Since all the charge is the same distance away and V isn't a 

vector, the arc acts like a point charge.  All infinitesimal 

elements  are equidistant from the center of the arc. 

 

*D]Find  along central 

axis of charged ring 

radius , charge   

 

All charge is distance  away from point P.  Thus,  

 

 

*D and C are relative to , like the point charge. 

  

  

Dielectric Breakdown - in a strong enough electric field, a nonconductor (like air) can 

be made to conduct.  For air, such a breakdown occurs when   

When two spheres of different radii are connected to each other over a large distance, as 

there is no electric field at equilibrium, the voltage is constant across the surfaces of 

everything. We can use this data to calculate charge, charge density, and electric field 

outside the spheres.  



 

 

  

  



 

 

Chapter 24 - Electrostatic Energy and Capacitance 

● Electric Potential Energy - Occurs due to a collection of point charges 

o Due to work done in assembling the charges - a sum of the  terms 

Q1 - Experiences   (no work needed - comes in 

for free since there are no other charges present) 

Q2 - Experiences  

Q3 - Experiences  

Q4 - Experiences   

  

 

  

o So, system potential is  (sum of all 

works) 

o Note: Each new charge coming in experiences a larger  than the 

previous one. 

o Now consider  - we get a nice summation.  (half of all of 

the  permutations).  For example above, this chart represents all of 

the combinations of , which when added up make , as each 

combination is presented here twice: 

       

  
     

 
 

 
    

 
  

 
   



 

 

 
   

 
  

 
    

 
 

 
     

 

 

o Thus, the resulting summation expression:    

▪ Since this is for an arbitrary collection of charges, for a continuous 

charge distribution (i.e. - charges on a conductor), 

then  where  is the total charge and  is the final 

potential relative to . 

● CAPACITANCE ( ) -It is a property of a conducting object.  .Note 

capacitance is a constant for a certain surface (i.e. - whatever you do 

to  (double, halve, etc.), the same happens to  as well). 

o It measures how much charge an object can hold at a given 

potential.  Generally it's related to the size of the conductor. 

o SI Unit - Farad (F) - huge unit  

  



 

 

MORE CASES!!! 

A spherical capacitor 

 

  

 

 

  

  

   

Parallel Plates Surface area of one side of one of the plates -  

  

 

  

  

  

  

  

Cylindrical Capacitor 

 

  

  

Radii small  and large  

  

 



 

 

  

  

  

note that  

  

  



 

 

Specifically for AP part II problems, be able to link the cases we've done so far using the 

following equations in order: 

    

Capacitors in Circuits - schematic symbol: . 

● In a circuit, typically we use parallel plate 

capacitors. 

● When connecting a capacitor to a 

battery:  Charge will flow until potential is 

equal in both (almost instantly) . Hence, an 

electric field forms between the two plates 

of the capacitor 

● Charge will flow 

until .  At this 

point, we can calculate  on the plate (i.e. 

- amount of  moved around on the 

circuit) using the definition of capacitance. 

Note: red arrows indicate flow of 

electrons 

until  conditi

on is met. 

  

 

● Note total charge on a parallel plate capacitor is always zero (  on one plate 

and  on the other plate). 

● When we combine capacitors in series (i.e. - end to end), the voltage across 

the entire thing will be as if there were one capacitor (i.e. - the voltage of 

the battery). 

● Note how the inside bit is isolated and separate. 

● There is the same amount of charge on each capacitor, regardless of size , as 

when one electron gets bumped off of one capacitor, it goes on to the next 

one, and the charges cause it to continue along the circuit. 

 



 

 

● Energy in a capacitor - combining  (we can do this because it's a 

continuous charge distribution) and  yields  

●  in various circuit setups. 

 

● Capacitors in series "see" less voltage than the battery  offers. 

o The total potential across both capacitors equals the battery  at 

equilibrium.  , but  since the charge lost from 

one capacitor goes on the other. 

o Also, we can express , where , 

thus .  s cancel.  Thus: . 

o i.e. - more capacitors in series yields a smaller equivalent . 

o Each capacitor sees less voltage and thus stores less charge. 

 

● Capacitors in parallel 

o All capacitors see the same amount of voltage 

o So total charge  moved by battery gets distributed across all 

capacitors.  Since , and 

thus  since 

,   and  

  



 

 

Dielectrics 

● Dielectrics are materials that fill the gap in a capacitor. 

● Generally, we use a better insulator than air (so you can apply a higher voltage 

without capacitor plates sparking and discharging (called dielectric 

breakdown)). 

● Air breaks down at . 

● Dielectric Constant - property of a dielectric.  It's a factor by which capacitance 

increases (represented by the Greek letter kappa - ) 

● Replace the original  with  in your expressions. 

● Thus,  and .  Strengthens capacitance and weakens electric 

field. 

o Inside the dielectric, the sum of charges isn't too large, so within the 

volume of the capacitor, the  is less (so thus it is harder to get a 

spark).  Note that this means that the space between the dielectric and one 

of the plates is going to be more.  Charges on plate and dielectric (one 

side) are not equal and opposite. 

o Capacitor + Battery = Constant  

o When an insert dielectric undergoes polarization and is attracted into the 

gap, the work done decreases potential energy of the capacitor (initially at 

least). 

o Battery compensates - battery puts more charges on plates 

o Final result - Goes back to original energy but there is more charge 

(effectively increasing the capacitance). 

  



 

 

● Isolated capacitor at potential  

o  is constant (because of isolation) 

o If you insert a dielectric... 

o System potential energy decreases so across the capacitor decreases. 

● Some dielectrics 

o Air -  

o Oil -  

o Paper -  

o Glass  

  



 

 

Chapter 25 - Electric Current and Direct-Current 

Circuits 

Resistor Circuit Basics 

● Circuit - complete path for current to flow through and consists of : 

o Energy source (battery, wall outlet, etc.) 

o Load - something to do work (light, motor, resistor, etc.) 

o Conducting path joining them. 

● Current ( ) - defined as a flow of charge.   

●  SI Unit - Ampères/ Amps. ( ) 

● D.C. vs. A.C. 

o Direct Current - one-way flow, caused by batteries, power bricks, etc. 

o Alternating Current - charges oscillating  in SHM (simple harmonic 

motion) - created by generators (wall outlets, etc.) 

● Conventional current - fictional but conventional view that current flows from 

positive to negative - it's wrong when it comes to describing the direction that 

electrons flow in a circuit, but we use it anyway because it is a standard and all 

calculations yield the same results. 

● Electron current - opposite of conventional current.  The true picture of how 

electrons flow. 

  



 

 

● Batteries provide a potential difference to cause current flow. 

o Sets up an electric field in the conducting path - causes free charges to 

move ( ).  Charges bang into the lattice as they move, dissipating 

energy as heat. 

o When length of wire  experiences an  field,   

o Energy is dissipated along the wire as a power: 

 

o SI unit for power: Watt ( ) =  (volt-amp) =  

o So energy transfer:  

● Resistance ( ) - for a conductor, defined by Ohm's law:  or  

o  is a property of an object.  

o SI Unit - ohm,  

o resistivity ( ) - material property related to resistance, higher , lowsier 

conduction.  , where  is the length of the wire and  is the 

cross sectional area of the wire. 

o Higher temperature, generally greater resistance.  Temperature resistance 

is material dependent. 

o Power dissipation in a resistor can be represented 

by  and 

.   &  

  

  



 

 

● Series Circuits - devices connected end to end 

o Resistors connected in series: equivalent total 

resistance  

o Current is same everywhere in a series circuit . 

o Potential of the battery is the sum of the resistor potentials.  The resistor 

potentials can be thought of voltage drops that occur as current passes 

through each resistor.     

o More resistors causes a current decrease. 

 

 https://sites.google.com/site/lamsnc2dvella/Home/grade-9e-science/unit-3---

electricity/series-and-parallel-circuit 

● Parallel Circuits - a branching circuit.  All the devices in parallel to each other 

are really connected across the same potential. 

o Any path to and from the ends of the battery are going to "see" the same 

voltage.     (however note that VT may 

not necessarily be the voltage of the battery). 

o Battery current is the sum of currents through each 

branch.  

o Resistance:  applying Ohm's law to the currents in the equation stated 

above, and cancelling out for the fact that all voltages are the same, 

resistance is thus:  



 

 

o More resistors in parallel decreases total resistance, but increases the total 

current.  Causes power source to work harder (reason for circuit breakers). 

 

https://sites.google.com/site/lamsnc2dvella/Home/grade-9e-science/unit-3---

electricity/series-and-parallel-circuit 

● The Gory Details - 

o electron motion 

▪ Electric effects propagate at the speed of light (3×108 km/s) due to 

the electric field. 

▪ Individual electron speeds are high, but 

random.  v ≈ 106 m/s (but net speed is zero without a battery). 

▪ In a circuit with current, the drift speed (average velocity of all the 

moving charges) is very low.  vd ≈ 106 m/s. 

▪ Consider a wire L and cross sectional area A and charge 

density n (# of free charges/m3).  Assuming e is the charge on an 

electron and V is the volume of the wire, drift velocity can be 

estimated: thus    

  



 

 

o Real (as opposed to ideal) batteries: 

▪ Generate free charge by chemical reactions that have limited rates. 

▪ As more current is drawn, reactions struggle to keep up: charges 

have less energy and battery voltage drops. Batteries have internal 

resistance.   

▪ Given a battery with an EMF (ℰ ) as its original potential (the 

voltage when the circuit is off), and a terminal potential VT when 

the circuit is on, then:  (where r is the internal 

resistance of the battery). 

▪ For a real battery, EMF (ℰ ) - the voltage drop of a 

battery.  Batteries in series decrease the magnitude of the internal 

resistance as the total of the internal resistances become 

lower.  When batteries are in series, add ℰs. 

  



 

 

o KIRCHOFF'S LAWS 

▪ Voltage Law - the sum of the potential changes around ANY loop 

in a circuit is zero (a.k.a. - conservation of energy). 

▪ Current Law - at any junction in a circuit, current in = current out 

(a.k.a. - conservation of charge). 

▪ Applying the law: (only necessary if you have more than one 

battery). 

▪ Write an  expression and choose a direction and 

loop to go (using conventional current is easiest).  Subtract 

voltages when you go through resistors in the direction of 

current (add them if going in reverse) and add voltages 

when you go through batteries (subtract them if you go in 

reverse). 

▪ Note how many currents there are and assign random 

directions and variables.  When solved, a negative current 

will tell you if your assigned current is in the wrong 

direction. 

▪ Write expressions according to the current law in 

accordance to the arrows on your drawing. 

▪ If expression is complicated and will take a long time to do 

algebraically, use the matrix function on your graphing 

calculator. 

  



 

 

o Meters - 

▪ Galvanometer - It is denoted by a circle with a G on it in a 

circuit.  It's a very sensitive current meter - needle deflection is 

proportional to current.  (delicate and can't measure big currents). 

▪ Ammeter - denoted by a circle with an A in it.  Must be in series 

with the circuit.  It's a galvanometer with a "shunt" resistor placed 

in parallel so it can handle a larger current. 

▪ Voltmeter  - denoted by a circle with a V in it.  Must be in parallel 

with the circuit (tests are of two points!).  A galvanometer with a 

"shunt" resistor in series.  The shunt resistor needs a high 

resistance so it doesn't affect the current in the device that is being 

measured. 

o RC CIRCUITS  

A] Discharging Capacitor 

  

  

 

Sidenote: finding  from  

  

 

negative because it's decreasing 

(hand-waving argument) 

Thus, by chain rule: 

  

   

or:  

Start off with Kirchoff's voltage law: 

  

 

 

  

 

note, however, that Q and I have time dependencies 

 

Since current is decreasing, we need to flip the sign 

 

 

rearrange so integration with respect to  is possible 

& reasonable 



 

 

also,  

  

so,   

 

Sidenote: 

both are exponential decay to zero 

 

  

both start at  or  at  

 

  

integrate both sides 

 

factor out constants 

 

carry out indefinite integration 

 

  

Constants of integration  and  may be 

combined 

 

  

solve for  

 

  

 

  

Note, how when , , so thus  

   

  

 

B] Charging Capacitor 

 

  

 

 

Kirchoff's voltage law: 

  



 

 

  

 

Sidenote:  

  

 

Since  and C is a constant, 

  

    

 

Since  

  

 

 

recall that  is a constant 

 

 

   

 

  

Exponential decay! 

note that the current formula is the 

same! 

  

And from Ohm's law: 

 

 

  

 

  

 

 

 

 

  

u-substitution! let , thus  

 

 

 

  

 

 

  

 

recall that K is our constant of integration 

 

note that when , , so 

thus  



 

 

, where  is battery 

voltage  

  

 

  

 

note that  

   

 

RC Time Constant ( ) - a measure of how quickly the capacitor discharges.  

,  

-discharging capacitor:  

-charging capacitor:  

  



 

 

Graphs 

Discharging Capacitor Charging Capacitor 

 &  

  

  

 &  

  

 &  

  

   

 &  

 &    &   

  

Behavior of capacitors over extended periods of time: 

● For a capacitor in a battery circuit, (uncharged) when you first turn the circuit on, 

the capacitor acts like a wire (ignore it in the circuit) -- a long time later, it acts 

like a break (take the corresponding branch out of the circuit). 

A preview of magnetism: Inductors! 

Inductor - wire coils in a circuit - schematic symbol is a bunch of connected loops  

● Magnetic analog of a capacitor but they act the opposite 

● Stores energy in a  field (magnetic field). 

● Exerts a "back EMF" when first turned on - stopping the current as the magnetic 

field builds up. 

● A long time later, once the magnetic field is full strength, it just looks like a wire. 

● Inductance ( ) - a measure of strength of magnetic field set up - SI Unit - Henry 

(H) 

  



 

 

● Potential drop across inductor:  

o Maximum reverse voltage when  reaches max. 

● In a circuit containing a battery, resistor, and inductor connected in series, 

Kirchoff's voltage law yields the differential equation  

● NON AP: oscillator - Capacitor and inductor connected in a series loop.  Energy 

goes from capacitor to inductor and back (electric potential to magnetic potential 

and back).  Emits radio waves (a radio transmitter). 

  

  

  



 

 

Magnetism 

Chapter 26 - The Magnetic Field 

● Magnetic Field - caused by moving charges and exerts a force on other moving 

charges.   A vector field, given by direction of the north pole of a compass at a 

given point in space. 

● 3D Vector notation - dots indicate vectors coming out of the page and crosses 

indicate vectors going into the page (perpendicular to the surface). 

● Magnetic Field ( ) around a wire circles the current.  As viewed from above, 

when the current is going into the page, the magnetic field circles clockwise 

around the wire.  When the current is going out of the page, the magnetic field 

circles counterclockwise around the wire. 

● Right hand rule for currents -  thumb goes along the conventional current; fingers 

wrap in the direction of the magnetic field.  Dots and X’s make such diagrams 

clearer by indicating 3D vectors with more specificity. 

 

● Field Strengths -  and  but .  The current length ( ) is 

the source of the magnetic field.  In the case of a wire:  , 

where  (called the permeability of free space -- note that  is 

the permittivity of free space). 

● SI Unit for magnetic field strength - the Tesla (T) -->  

● Bar magnets - certain solids can be magnetic in the absence of an overall current: 

ferromagnetic materials (iron, nickel, cobalt, neodymium) 

● Electrons appear to be little magnets (property of magnetic spin).  "spin up" or 

"spin down" 



 

 

● Domain theory: 1. In some atoms, the electrons have an overall magnetic field, so 

the atom itself "looks" like a magnet.  2.  Domain - a group of atoms magnetically 

aligned 3. Typically, a lump of iron has many small domains randomly aligned - 

weakly magnetized overall.  4. If you put an object in a strong magnetic field, the 

domains get bigger and tend to line up, increasing its magnetic field strength. 

● What do magnetic fields look like? 

 

http://www.coolmagnetman.com/maggallery.htm 

● Breaking a magnet creates two smaller ones (no magnetic monopoles). 

● Magnetic field lines are always closed loops.  They do not begin or end anywhere 

(unlike electric field lines).  There are no magnetic "monopoles" like there are for 

an electric charge. 

● Magnetic force on a current.  Since , we get the direction of the 

magnetic field from   (cross product between the length vector and 

the magnetic field vector). 

● To determine the direction of the force, use the right hand slap rule.  Fingers align 

up with the magnetic field and the thumb aligns along the current-

length.  Perpendicular from your palm is the direction of the force. 



 

 

● Since , we can substitute and get   . This is the force on a 

moving charge in a magnetic field. 

● In all cases, if the current or charge is negative, reverse the vector effect (direction 

of the magnetic field or force). 

● Cyclotron effect - magnetic force is a centripetal force because it is always 

perpendicular to the velocity.  Magnetic forces don't do work on moving charges 

as they only affect the direction of a particle's motion, not speed. If a particle 

moves at an angle to the magnetic field, it will spiral along the magnetic field 

line.  Overall direction of motion is the component of the original velocity that 

was parallel to the magnetic field.   

 

http://new.math.uiuc.edu/math198/MA198-2015/lhansel2/index.html 

● Recall the centripetal force  (sum of radial forces only).  For a charged 

particle in a magnetic field: , thus . 

● Velocity Selector - crossed electric and magnetic fields.  In the image below, the 

magnetic field deflects a positive charge down.  The electric field deflects a 

positive charge up (with parallel plates). For the charge to remain 

undeflected, , and thus , and thus the velocity that will pass 

through undeflected is   . 



 

 

 

https://en.wikipedia.org/wiki/Wien_filter 

● You can either calculate or select out particles of a certain velocity by adjusting 

the electric and magnetic fields. 

● The electric field, velocity, and magnetic fields must all be mutually 

perpendicular. 

● Mass Spectrometer - used to calculate mass of atoms or molecules. 

● Particles are often singly or doubly ionized (charge of +e or +2e).  Acceleration 

across some voltage will produce some final velocity.  Since , 

then .  If you can't calculate this, use  on the velocity 

selector.  Fire into the magnetic field, so cyclotron effect yields mass , 

and thus solving for  and combining with  and then solving for , 

once can find the the mass from . 

  



 

 

Current Loops and torques - motor 

 

A current loop behaves like a bar magnet.  It thus tends to  line up with an external 

field.  We can wrap our right hand fingers around the loop to get the magnetic field 

generated by the loop (i.e. - up).  OR, you can look at it as having an upward force on the 

left and a downward force on the right.  In a stable state: 

 

Close and far wires go opposite now so everything is balanced (note how they are not 

parallel to the magnetic field now).  There is maximum torque when the area vector is 

perpendicular to the magnetic field. 

 

Here, theta is the angle between the area vector and the magnetic field. 

 

but there are two forces, and length here is  

 

 

and generally, for a coil of  number of loops. 

   

● Hall Effect - if a current bearing conductor is placed in a magnetic field, moving 

charges will be deflected to one side setting up a voltage, , across the width of 

the conductor.  Consider a conducting strip width , and thickness .  Electrons 

(assuming that they are moving) set an electric field across the width.  Quickly, 

the electric and magnetic forces balance out. 



 

 

 

http://www.coolmagnetman.com/magflux.htm 

● We know from velocity selectors that in perpendicular magnetic and electric 

fields, our drift velocity will be defined by .  We also know the Hall 

Voltage can be defined as follows: .  Combining gives 

.  This is a simple way to find drift velocity if you know the hall voltage, the 

magnetic field, and the width. 

● If your material is a particular sort of semiconductor, the hall voltage reverses 

across the width.  These are called p-type materials.  Implication: some materials 

have "positive charge carriers", not electrons, transferring current. 

● The Hall Effect is also used to measure weak magnetic fields.  Recall for charge-

carrier density in a material: .  Combining with the previous 

equation, , which solved for magnetic field is   . 

  



 

 

Chapter 27 - Sources of the Magnetic Field 

All our force formulas are inverse square laws ( ).  With magnetic fields, additional 

things need to be taken into account. 

 

Gravitational Electric Magnetic 

 

 

For a point mass 

 

 

 

For a point charge 

 

 

Or as an equality 

(for an element of current) 

 

 

For a line of current 

(integration of above) 

 

  



 

 

 

 is called the Biot-Savart Law.  It is the most general expression 

for calculating the electric field but is very limited in its practicality.  There are only two 

cases to memorize. 

 

Biot-Savart Case 1: Magnetic field from 

a curved wire 

Biot-Savart Case 2: Magnetic field from 

a current ring 

 

Because of the geometry, the cross product 

goes away.  Start with the Biot-Savart law. 

  

Substitute  

 

   

Resulting magnetic field is into the page. 

 

  

by pythagorean theorem: 

 

  

 

Because of the geometry,  appears twice, 

thus 

 

Since we know the resultant magnetic field 

is up, we can drop the cross product (since 

we are accounting for components already). 

 

 

  

  



 

 

● Gauss' Law for Magnetism: It's silly!!!  Since all magnetic field lines are loops, 

the flux in will equal the flux out, so thus  .  This can't really be 

used to calculate anything.  It just serves a reminder of the nature of magnetic flux 

( ). 

● Ampère's Law - a useful way to calculate magnetic fields, but for a current! 

   

● Instead of integrating around a Gaussian surface, we are now integrating around a 

Ampèrian loop.  We integrate the magnetic field around a closed loop 

surrounding a current in a plane perpendicular to the current so the magnetic field 

is always parallel to the Ampèrian loop.  For this equation, we have cases. 

Case 1 - for a straight wire 

 
 

Because of geometry, we can drop the , dot 

product, and differentials. 

 

 

 

   

Case 2 - inside a wire radius  and 

distance  from the center. 

Cross section: 

 

 

In order to find the portion of the current that is 

enclosed by our Ampèrian loop, we must use a 

proportion. 

 



 

 

 

   

Case 3 - Inside a solenoid 

 

https://en.wikipedia.org/wiki/Solenoid 

 

Putting a rectangular loop cross 

sectioning the solenoid... 

 

 

Let's assume that our solenoid has a 

current  and our Ampèrian loop is 

enclosing  number of wires. 

 

 

 doesn't matter because it's outside the coil 

 and  don't matter because  is 

perpendicular to  

 

 

 

note how  is a density of wire coils 

if we call this density , we can simplify this 

expression to say 

   

https://en.wikipedia.org/wiki/Solenoid


 

 

Case 4 - Inside a toroid 

Toroid = a wire-wrapped doughnut 

Current  and number of loops  

Inner radius  and outer radius  

  

  

 

 Integrate across radius where  

  

 

  

   

Extra note.  An old unit for magnetic field: The gauss (G).  Conversion 

factor:  

 

Forces due to parallel currents.  Parallel currents attract each other.  Each wire lies in 

the electric field caused by the other current.  This creates a magnetic force that attracts 

the two if they're running in the same direction and a magnetic force that repels them if 

they're running in the opposite direction. 

 

 

this is a force per length, which is practical if the length is unknown or is ideally infinite  

 

and thus 

 

which looks a ton like coulomb's law and newton's law of gravitation! 

 Use your knowledge of the directions of the currents to determine the direction of the 

forces. 



 

 

Chapter 28 - Magnetic Induction 

Inducing EMF.  Here, instead of V, we will use ℰ.  Recall that EMF is not really a force, 

but is rather a voltage.  Recall that magnetic fields are created by one of two things: 1. a 

current or 2. a changing electric field.  When a capacitor charges, initially, an imaginary 

current is created between the two plates since it acts like there is no break.  Really, a 

magnetic field is caused by the changing electric field between the plates. 

 

Faraday's Law - a changing magnetic current creates an electric field (or an 

EMF).  Recall . 

   

the negative is due to lenz's law (below) 

Take note that  can change one of two ways: 

1. Change in the magnetic field: .  Examples: pushing a magnet into a 

wire coil, or turning an electromagnet on or off. 

2. Change in the area: .  Examples: spin a wire coil in a magnetic 

field, so angle between the area vector and the magnetic field vector keeps 

changing. 

Special case: moving a wire so that it cuts a magnetic field.  This also generates an EMF. 



 

 

 

https://www.slideshare.net/mrmeredith/electromagnetic-induction-2 

 

Here, we have a wire of length  traveling with velocity  through a magnetic field 

.  Note that  is the distance traveled, and that  is the area swept out by the wire. 

 

 

 (if everything is at right angles) 

If not:    

 

Lenz' Law - an induced current flows in such a way as to oppose the change that caused 

it. If the flux is increasing, the induced current will create a magnetic field that goes 

against the increasing magnetic field. If the flux is decreasing, the induced current will 

create a magnetic field that goes with the increasing magnetic field. Examples: Pushing a 

magnet into a loop will cause repulsion. Pulling it out will cause attraction. (It's pretty 

much a specific application of the conservation of energy). 

 

  

https://www.slideshare.net/mrmeredith/electromagnetic-induction-2


 

 

Eddy Currents - (bulk conductor and changing magnetic field). When inserting a 

conducting block into a region with a magnetic field, charges are separated in the section 

intersecting the magnetic field. The voltage causes the charges to flow around the other 

part of the block (the part that doesn't have any magnetic field lines piercing it). When the 

block is at a place where the magnetic field covers the entire block, no eddy current 

occurs (only separation of charge occurs). These eddy currents dissipate energy as heat 

and flow as to oppose the motion. 

 

Induced Electric Field - since  and , we get an alternate 

form of Faraday's Law: 

   

  

There is a negative because of Lenz' Law (applied to the equation after the fact) 

.  Integrate the electric field across a closed loop.  Enclose the magnetic flux that you're 

talking about.  If the path of integration is a conduction loop, the electric field will do the 

work to move the charges for an induced current, not the magnetic field.  The electric 

field is parallel to the EMF.  This energy transfer is NOT conservative.  The work done 

by the electric field is typically dissipated as heat or transferred as kinetic energy in a way 

that it is not reversible. 

 

Inductance ( )  - How much a coil resists changes in current, due to magnetic 

effects.  SI Unit: Henry (H). It's an effect of Lenz' law.  Causes a reverse EMF (ℰ) when 

you turn the circuit on (when the current changes).  Definition: 

 

   

  

  



 

 

Magnetic Energy 

1. Electromagnets store energy.  When you turn a circuit on with an inductor, the 

magnetic field starts expanding around it.  Field lines expanding cut the coil, 

inducing a reverse emf: this acts like a temporary resistor in the coil.  Once a 

magnetic field is stable, reverse emf disappears.  The coil looks like a wire 

again.  When you switch the current off, the collapsing field induces an emf that 

tries to keep the current flowing, opposes the collapse of the field. 

2. Inductor - a wire coil used in a circuit.  The creation/destruction of the field acts 

like a break on the charges to the circuit current.  It acts the opposite of a 

capacitor.  Inductors:  first turned on/off, acts like a break in the circuit - a long 

time later, it looks like a wire.  (high resistance to low resistance).  Capacitors: 

first turned on/off, looks like a wire.  Later, it becomes a break in the circuit. 

3. Inductance (L) - property of a particular inductor or coil.  

4. emf induced in an inductor can be obtained by the definition of inductance. 

5. Power consumed by an inductor can be found by .  Not very 

useful...only gives power if current changes. 

6. Energy stored by an inductor can be found by  

7. RL Circuits - by Kirchhoff's voltage law, the differential 

equation .  The solution is .  Note that this 

indicates that the time constant is .  

  



 

 

Chapter 29 - Maxwell's Equations and Electromagnetic 

Waves 

This is not a full chapter.  You should know these equations already anyway: 

 

Maxwell's Equations 

1.  (gauss' law) 

2.  (gauss' law for magnetism) 

3.  (variant of Faraday's law) 

4.  (Ampère's Law) 

 

Note: displacement current ( ) - imaginary current from a capacitor when initially 

turned on.  Creates a magnetic field just as if it was a wire.  (the  serves 

somewhat as an addendum to Ampère's law) 

Appendix 

Store the following values in your calculator using the "➔ sto" function 

  

 Elementary Charge  

 Coulomb's Constant  

 Permeability of free space  

Remember also that you can get the permittivity of free space by coulomb's constant  (

) 



 

 

Reminder for Rebecca Karger: 

 

  

E+M topic breakdown for the test: 

1. Electrostatics (ch. 21-23) 30% - charge, coulomb's law, gauss' law, electric field 

and potential 

2. Capacitance (ch. 24) 14% - electric potential energy, capacitance, dielectrics 

3. Circuits (ch. 26-27) 20% - current, resistance, power, steady-stable DC Currents, 

transients with capacitors (changing current).   

4. Magnetic fields (ch. 26-27) 20% - force on moving charges and circuits, Biot-

Savert law, Ampère's law 

5. Electromagnetism (ch. 28-30) 16% - Faraday's law, Lenz's Law, induction, 

Maxwell's Equations  

  

 

 

 

 

 


