AP Physics Study GuideWork and Energy

From Simple Studies, https://simplestudies.edublogs.org @ simplestudiesinc on Instagram

All images are from the Openstax college physics textbook

Conservation of energy is the principle that energy can neither be created nor destroyed

- **Energy** is the ability to do work
- Even as scientists discovered new forms of energy, conservation of energy has always been found to apply

The **work** done on a system by a constant force is defined as the product of the component of the force in the direction of motion times the distance through which the force acts

- $W = Fd \cos\theta$
 - F is the magnitude of force on the system
 - o d is the magnitude of the displacement of the system
 - \circ θ is the angle between the force vector and the displacement vector
- Work and energy are measured in **newton-meters**

Net work is the work done by the net external force F_{net}

- $W_{net} = F_{net} d \cos \theta$
 - If $\theta = \theta(\text{so cos} = 1)$ then $W_{net} = mad$
 - This eventually leads to $W = .5mv^2 .5mv_0^2$
 - This expression is called the work-energy theorem

Kinetic energy is the energy an object has by reason of its motion

•
$$KE = .5mv^2$$

Gravitational potential energy is the energy an object has due to its position in a gravitational field

- $\bullet \quad PE_g = mgh$
 - This applies for any path that has a change in height

A conservative force is one

in which work done by or against it

depends only on the starting and ending points of a motion and not on the path taken

• **Potential energy** is the energy a system has due to position, shape, or configuration

- It is stored energy that is completely recoverable
- The **potential energy of a spring** is the stored energy of a spring as a function of its displacement

$$OPE_s = .5kx^2$$

- x is the distance the spring is compressed or extended
- k is the spring constant

Conservation of mechanical energy is the rule that the sum of the kinetic energies and potential energies remains constant only if conservative forces act on and within a system

$$\bullet \quad KE_i + PE_i = KE_f + PE_f$$

• Mechanical energy is the total kinetic plus potential energy of a system (KE+PE)

A **nonconservative force** is one in which work depends on the path taken

• It adds or removes mechanical energy from the system

• Ex: Friction causes **thermal energy** that removes energy from the system

Efficiency is a measure of the

effectiveness of the input of

energy to do work

- $Eff = W_{out}/E_{in}$
 - \circ W_{out} is the useful energy or work output
 - \circ E_{in} is the total energy input

Power is the rate at which work is done

- \bullet P = W/t
- The unit for power is the watt