AP Physics Study Guide Physics of Hearing

 $From \ Simple \ Studies, \underline{https://simplestudies.edublogs.org} \ \& \ @simplestudiesinc \ on \ Instagram$

All images are from the Openstax college physics textbook

Hearing is the perception of sound

- It has important applications beyond hearing
 - Sounds above 20,000 Hz are **ultrasound**, and those below 20 Hz are **infrasound**
- The perception of frequency is called **pitch**
 - Ex: **notes** from an instrument have different pitches
- The perception of intensity is **loudness**
 - **Phon** is the unit used to express loudness
- We call our perception of these combinations of frequencies and intensities tone quality,
 or timbre of the sound

Sound is a disturbance of matter that is transmitted from its source outward

- Sound is a wave
 - Some energy transfers into the air, but a small part goes into compressing and expanding the surrounding air

There is a relationship between the speed of sound, its frequency, and its wavelength:

- $v_w = f\lambda$
 - The higher the frequency, the smaller the wavelength
 - The same relationship is given for all waves

• In air, the speed of sound is related to air temperature

$$v_w = (331 \text{ m/s}) \sqrt{\frac{T}{273 \text{ K}}}$$

The sound of a motorcycle buzzing by is an example of the **Doppler effect**

- It is an alteration in the observed frequency of a sound due to motion of either the source or the observer
 - The actual change in frequency due to relative motion of source and observer is called a **Doppler shift**

Sound interference and resonance have the same properties as defined for all waves

- In air columns, the lowest-frequency resonance is called the **fundamental**
- The resonant frequencies of a tube are:

- o $f_n = n \frac{v_w}{4L}$, n = 1,3,5... for a tube closed at one end
- o $f_n = n \frac{v_w}{2L}$, n = 1,2,3... for a tube open at both ends

