AP Statistics: Probability

From Simple Studies, https://simplestudies.edublogs.org \& @ simplestudiesinc on Instagram

Definitions

- Sample Space: The collection of all possible outcomes of a chance experiment
- Event: Any collection of outcomes from the sample space
- Complement: Consists of all outcomes that are not in the event
- Union: The event A or B happening
- Consists of all outcomes that are in at least one of the two events
- $\mathrm{E}=\mathrm{A} \cup \mathrm{B}$
- Intersection: The events A and B happening
- Consists of all outcomes that are in both events
- $E=A \cap B$
- Mutually Exclusive (Disjoint): Two events have no outcomes in common
- Venn Diagrams: Used to display relationships between events
- Helpful in calculating probabilities
- Probability: Denoted by P (Event)
- $\mathrm{P}(\mathrm{E})=$ Favorable Outcomes $/$ Total Outcomes
- Only appropriate when the outcomes of the sample space are equally likely
- Experimental Probability: The relative frequency at which a chance experiment occurs
- Law of Large Numbers: As the number of repetitions of a chance experiment increase, the difference between the relative frequency of occurrence for an event and the true probability approaches zero
- Independent: Two events are independent if knowing that one will occur does not change the probability that the other occurs

Basic Rules of Probability

- Legitimate Values: For any event $\mathrm{E}, 0 \leq \mathrm{P}(\mathrm{E}) \leq 1$
- Sample Space: If S is the sample space, $\mathrm{P}(\mathrm{S})=1$
- Complement: For any event $\mathrm{E}, \mathrm{P}(\mathrm{E})+\mathrm{P}(\operatorname{Not} \mathrm{E})=1$
- Addition: Two events A and $B, P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Multiplication: If two events A and B are independent, $P(A \cap B)=$ $P(A) \cdot P(B)$
- General Rule: $P(A \cap B)=P(A) \cdot P(B / A)$
- At Least One: $\mathrm{P}($ At Least 1$)=1-\mathrm{P}($ None $)$
- Conditional Probability: Probability that takes into account a given condition - $P(A / B)={ }^{P(A \cap B /} / P(B)$

Combinations

- ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}!} /(\mathrm{nr})!\mathrm{r}!$
- ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }_{\mathrm{n}} \mathrm{C}_{\mathrm{n}-\mathrm{r}}$
- Order does not matter with combinations
- A, B , C
- ${ }_{3} \mathrm{C}_{1}=\mathrm{A}, \mathrm{B}, \mathrm{C}$
- ${ }_{3} \mathrm{C}_{2}=\mathrm{AB}, \mathrm{BC}, \mathrm{AC}$
- ${ }_{n} \mathrm{C}_{\mathrm{r}} \mathrm{p}^{\mathrm{r}} \mathrm{q}^{\mathrm{n}-\mathrm{r}}$
- $\mathrm{n}=$ Number of Trials
- $r=$ Number of Successes
- $\mathrm{p}=\mathrm{P}$ (Success)
- $\mathrm{q}=\mathrm{P}($ Not Success $)=1-\mathrm{p}$

Discrete Random Variables

- $\sigma=\mathrm{V}(\Sigma(\bar{x} \overline{\mathrm{x}}) 2 / \mathrm{n})$
- $\quad S=\sqrt{ }(5(x-\bar{x}) 2 / n-1)$
- $\mathrm{E}(\mathrm{X} \pm \mathrm{Y})=\mathrm{E}(\mathrm{X}) \pm \mathrm{E}(\mathrm{Y})$

$$
\text { - } E(X)=\bar{x}
$$

$$
\begin{gathered}
\circ \mathrm{E}(\mathrm{Y})=\overline{\mathrm{y}} \\
\text { - } \quad \sigma^{2}(\mathrm{X} \pm \mathrm{Y})=\sigma^{2}(\mathrm{X})+\sigma^{2}(\mathrm{Y})
\end{gathered}
$$

