## AP Statistics: Linear Regression

From Simple Studies, https://simplestudies.edublogs.org \& @ simplestudiesinc on Instagram

## General Notes

- Equation: $\hat{y}=a+b x$
- $\mathrm{b}=$ Slope $=\Delta \mathrm{y} / \Delta \mathrm{x}$
- Line of Best Fit: Minimal residual (vertical distance between line and points)
- r: Shows correlation (not causation)
- Sign of $r=$ Sign of $b$ (Slope)
- The closer $r$ is to $\pm 1$, the stronger $r$ is
- $\mathrm{r}^{2}$ : Correlation of determination (convert to a percentage)
- LSLR: Least squares regression line
- Extrapolation: Extending the LSLR to values outside the range of data used to generate it


## Interpretations

- $\quad$ Slope (b)
- For each $[x]$, the $[y]$ increases/decreases on average by $[b]$
- Correlation Coefficient (r)
- There is a [strong/weak], [positive/negative], and [linear/non-linear] relationship between $[x]$ and $[y]$
- As [x] increases, it appears that [y] [increases/decreases].
- Correlation of determination $\left(\mathrm{r}^{2}\right)$
- $\mathrm{r}^{2} \%$ variation in $[y]$ can be explained by a linear relationship with $[x]$
- Put all interpretations in the context of the problem!


## Residuals

- $\mathrm{y}-\hat{\mathrm{y}}$
- If the graph of the residuals shows a pattern, a non-linear model should be used
- "Since the residual graph [does/does not] show a pattern, a [linear/nonlinear] model should be used"
- $\quad$ Positive residual $=$ Underestimate;

Negative residual $=$ Overestimate

| Predictor | Coef | SE Coef | T | P |
| :---: | :---: | :---: | :---: | :---: |
| Constant | $0.137{ }_{1}$ | $0.126_{2}$ | $1.09{ }_{3}$ | $0.289{ }_{4}$ |
| Wind velocity | $0.240{ }_{5}$ | $0.019{ }_{6}$ | 12.63 z | 0.000 |
| $\mathrm{S}=0.237_{\underline{9}}$ | $\mathrm{R}-\mathrm{Sq}=0.8$ |  | q ( adj ) | 0.868 |

## Table

- When presented with a table (like

From HYPERLINK "https://secure-
media.collegeboard.org/apc/ap11_frq_statistics.pdf"https://securemedia.colleaeboard.ora/apc/ap11 fra statistics.pdf. D. 10 (modified)
the one seen in the image), you DO
NOT need: 2, 3, 4, 9, 11

- Line of best fit: $\hat{y}=1+5 x$
- 6 is the standard deviation of the slope $\left(\mathrm{SE}_{\mathrm{b}}\right)$
- 7 is the $t$-score of the slope
- 8 is the p-value of 7
- 9 is the standard deviation of the residuals


## Confidence Intervals

- Step 1: Conditions
- "The scatterplot shows a somewhat linear trend"
- "A residual plot shows no pattern"
- "All points are independent and random"
- If the problem states that the conditions are satisfied, you can write: "The stem of the problem states the conditions are satisfied."
- Step 2: Formula
- List the formula, substitution, unrounded answer, and degrees of freedom
- Formula: $\mathrm{b} \pm \mathrm{t}^{*}\left(\mathrm{SE}_{\mathrm{b}}\right)$
- d.f. $=\mathrm{n}-2$
- Step 3: Interpretation
- "Based on these samples, we are _\% confident that for every $[x],[y]$ will [increase/decrease] between [lower value] and [upper value]"


## Hypothesis Testing

- Step 1: Hypothesis
- $H_{0}: \beta=0$ (There is no linear relationship between $[x]$ and $[y]$ )
- $H_{a}: \beta \neq 0$ (There is linear relationship between $[x]$ and $[y]$ )
- Step 2: Conditions
- "The scatterplot shows a somewhat linear trend"
- "A residual plot shows no pattern"
- "All points are independent and random"
- If the problem states that the conditions are satisfied, you can write: "The stem of the problem states the conditions are satisfied."
- Step 3: Formula
- List the formula, substitution, unrounded answer, and degrees of freedom
- Formula: $t=\underline{b-\beta}$
$\mathrm{SE}_{b}$
- d.f. $=\mathrm{n}-2$
- Step 4: P Value
- $2 \mathrm{P}\left(\mathrm{t}>\right.$ or $\left.<_{-}\right)=$_
- Step 5: Conclusion
- "Assuming $\mathrm{H}_{0}$ is true, since the p value [ $p$ value ] is [greater/less] than $\alpha=$, we [fail to reject/reject] $\mathrm{H}_{0}$ "
- "We [have/do not have] sufficient evidence to suggest $\mathrm{H}_{\mathrm{a}}$, that there is a linear relationship between $[x]$ and $[y]$ "

