AP Statistics: Linear Regression

From Simple Studies, https://simplestudies.edublogs.org & @simplestudiesinc on Instagram

General Notes

- Equation: $\hat{y} = a + bx$
 - \circ b = Slope = $^{\Delta y}/_{\Delta x}$
- Line of Best Fit: Minimal residual (vertical distance between line and points)
- r: Shows correlation (not causation)
 - \circ Sign of r = Sign of b (Slope)
 - The closer r is to ± 1 , the stronger r is
- r²: Correlation of determination (convert to a percentage)
- LSLR: Least squares regression line
- Extrapolation: Extending the LSLR to values outside the range of data used to generate it

Interpretations

- Slope (b)
 - \circ For each [x], the [y] increases/decreases on average by [b]
- Correlation Coefficient (r)
 - There is a [strong/weak], [positive/negative], and [linear/non-linear] relationship between [x] and [y]
 - \circ As [x] increases, it appears that [y] [increases/decreases].
- Correlation of determination (r²)
 - \circ r²% variation in [y] can be explained by a linear relationship with [x]
- Put all interpretations in the context of the problem!

Residuals

- y ŷ
- If the graph of the residuals shows a pattern, a non-linear model should be used

- "Since the residual graph
 [does/does not] show a
 pattern, a [linear/nonlinear]
 model should be used"
- Positive residual = Underestimate;Negative residual = Overestimate

Predictor	Coef	SE Coef	T	P
Constant	0.137 ₁	0.126 ₂	1.09 ₃	0.289 ₄
Wind velocity	0.240 ₅	0.019 ₆	12.63 ₂	0.000 ₈
$S = 0.237_{9}$	R-Sq = 0.87	73 ₁₀ I	R-Sq (adj) =	0.868 ₁₁

From <u>HYPERLINK "https://secure-media.collegeboard.org/apc/ap11_frq_statistics.pdf"https://secure-media.collegeboard.org/apc/ap11_frq_statistics.pdf"https://secure-</u>

media.collegeboard.org/apc/ap11 frg statistics.pdf. p. 10 (modified)

Table

• When presented with a table (like the one seen in the image), you DO

NOT need: 2, 3, 4, 9, 11

- Line of best fit: $\hat{y} = 1 + 5x$
- 6 is the standard deviation of the slope (SE_b)
- 7 is the t-score of the slope
- 8 is the p-value of 7
- 9 is the standard deviation of the residuals

Confidence Intervals

- Step 1: Conditions
 - o "The scatterplot shows a somewhat linear trend"
 - "A residual plot shows no pattern"
 - "All points are independent and random"
 - If the problem states that the conditions are satisfied, you can write: "The stem of the problem states the conditions are satisfied."
- Step 2: Formula
 - List the formula, substitution, unrounded answer, and degrees of freedom
 - Formula: $b \pm t*(SE_b)$
 - \circ d.f. = n 2
- Step 3: Interpretation
 - \circ "Based on these samples, we are _% confident that for every [x], [y] will [increase/decrease] between [lower value] and [upper value]"

Hypothesis Testing

- Step 1: Hypothesis
 - H_0 : $\beta = 0$ (There is no linear relationship between [x] and [y])
 - H_a : $\beta \neq 0$ (There is linear relationship between [x] and [y])
- Step 2: Conditions
 - o "The scatterplot shows a somewhat linear trend"
 - o "A residual plot shows no pattern"
 - "All points are independent and random"
 - If the problem states that the conditions are satisfied, you can write: "The stem of the problem states the conditions are satisfied."
- Step 3: Formula
 - o List the formula, substitution, unrounded answer, and degrees of freedom
 - Formula: $t = \underline{b} \underline{\beta}$ SE_b
 - \circ d.f. = n 2
- Step 4: P Value
 - \circ 2P(t > or < _) = _
- Step 5: Conclusion
 - "Assuming H₀ is true, since the p value [p value] is [greater/less] than $\alpha = _$, we [fail to reject/reject] H₀"
 - "We [have/do not have] sufficient evidence to suggest Ha, that there is a linear relationship between [x] and [y]"