AP Statistics: Hypothesis Testing (Means \& Proportions)

From Simple Studies, https://simplestudies.edublogs.org \& @ simplestudiesinc on Instagram

Hypothesis Testing

- A hypothesis test is used to see whether an assumption is statistically plausible by using sample data
- The basic formula for a hypothesis test is: ${ }^{\text {Statistic - Parameter/Standard Deviation of Statistic }}$
- The higher the Z or t score, the lower the p value, and the more evidence there is to reject the null hypothesis

Five Steps

Right-tail test $\mathrm{H}_{\mathrm{a}}: \mu>$ value

1. Hypothesis
2. Conditions/Assumptions

Left-tail test
H_{a} : $\mu<$ value

Two-tail test
$H_{\mathrm{a}}: \mu \neq$ value
4. P Value

From HYPERLINK
"https://towardsdatascience.com/everything-you-need-to-know-about-hypothesis-testing-part-i-

Step 1: Hypothesis

Hypothesis	One-Sample Mean	Two-Sample Mean	One-Sample Proportion	Two-Sample Proportion
$\mathrm{H}_{\mathbf{0}}$	$\mu=\mathrm{x}$	$\mu_{1}=\mu_{2}$	$\mathrm{p}=\mathrm{x}$	$\mathrm{p}_{1}=\mathrm{p}_{2}$
$\mathrm{H}_{\mathbf{a}}$	$\mu<$ or $>$ or $\neq \mathrm{x}$	$\mu_{1}<$ or $>$ or \neq μ_{2}	$\mathrm{p}<$ or $>$ or \neq x	$\mathrm{p}_{1}<$ or $>$ or \neq p_{2}

- "Where $\left[\mu, p, \mu_{1}, \mu_{2}, p_{1}, p_{2}\right.$] is [context of problem]"
- Define ALL parameters in the context of the problem
- Whether H_{a} is $<,>$, or \neq depends on the problem

Step 2: Conditions/Assumptions

- Random Sample
- "The stem of the problem states that [sample] was chosen at random"
- "The stem of the problem states that [participants] were randomly assigned to the groups"
- Approximate Normal Distribution
- "The stem of the problem states the distribution is approximately normal"
- "Since $n=$ _ ≥ 30, by the Central Limit Theorem, we can assume the distribution is approximately normal"
- For two samples, both n_{1} and n_{2} must be ≥ 30
- "Since $\mathrm{np}=__{-} \geq 10$ and $\mathrm{nq}=_\geq 10$, we can assume the distribution is approximately normal"
- For two sample, $\mathrm{n}_{1} \hat{\mathrm{p}}_{1}, \mathrm{n}_{1} \hat{\mathrm{q}}_{1}, \mathrm{n}_{2} \hat{\mathrm{p}}_{2}$, and $\mathrm{n}_{2} \hat{\mathrm{q}}_{2}$ must all be ≥ 10
- "Since the [graphical display] shows no outliers or strong skewness, we can assume the distribution is approximately normal"
- You must provide a graphical display (preferably a box plot) if normality cannot be assumed by the other three ways

Step 3: Formula

- List the formula, your substitution, degrees of freedom (if using t) and your unrounded answer
- One-Sample Means

$$
Z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} \quad t=\frac{\bar{x}-\mu}{\frac{S}{\sqrt{n}}}
$$

- Two-Sample Means

$$
Z=\frac{\left(\bar{x}_{1}-\bar{x}_{1}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}}+\sqrt{\frac{\sigma_{2}^{2}}{n_{2}}}} \quad t=\frac{\left(\bar{x}_{1}-\bar{x}_{1}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{n_{1}}}+\sqrt{\frac{S_{2}^{2}}{n_{2}}}}
$$

- Proportions

Step 4: P

$$
Z=\frac{\widehat{p}-p}{\sqrt{\frac{p_{q}}{n}}} \quad Z=\frac{\left(\widehat{p}_{1}-\widehat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\left(\widehat{p}_{c}\right)\left(\widehat{q}_{c}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \quad \widehat{p}_{c}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}
$$

Value

- The probability of obtaining a test statistic (Z or t) that is this much or more extreme
- If H_{a} is <
- $\mathrm{P}\left(\mathrm{Z}<{ }_{-}\right)$
- If H_{a} is >
- $\mathrm{P}\left(\mathrm{Z}>{ }_{-}\right)$
- If H_{a} is \neq
- $2 P\left(Z>{ }_{-}\right)$if $Z>0$
- $2 \mathrm{P}\left(\mathrm{Z}<{ }_{-}\right)$if $\mathrm{Z}<0$

Step 5: Conclusion

- "Assuming H_{0} is true, since the p value ($[p$ value $]$) is [greater/less] than $\alpha=$, we [fail to reject/reject $] \mathrm{H}_{0}$ "
- A α will usually be given in the problem. If it is not, use $\alpha=.05$
- "We [do not/do] have sufficient evidence to suggest H_{a}, that [context of problem]"

Type I and II Errors

- Type I Error: You reject H_{0} when you should not have
- $\mathrm{P}($ Type I Error $)=\alpha$
- Type II Error: You fail to reject H_{0} when you should have
- $P($ Type II Error $)=\beta$
- Power of the test $=1-\beta$
- P (Rejecting H_{0} when you should have)
- Increases as α increases
- Which one is worse depends on the scenario

Match Paired t-Testing

- Most often used in a "before and after" scenario (e.g. dexterity before and after the subjects undergo a program) and comparing two things (e.g. amount of active ingredient in a name brand and generic brand drug).
- Hypothesis
- $H_{0}: \mu_{\mathrm{d}}=0$
- $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{d}}>$ or $<$ or $\neq 0$
- *Where μ_{d} is the average difference (After - Before)
- Assuming Normality
- Draw a box plot of A - B
- Compute the Match Paired t-test as if it were a normal hypothesis test (5 steps!)

Z vs t Distribution

- Means
- Use a Z distribution when you have σ
- Use at distribution when you do not have σ (i.e. you have S)
- Proportions
- ALWAYS use a Z distribution

Degrees of Freedom

- Only applies to t-distributions
- The t-distribution varies with degrees of freedom
- $\mathrm{df}=\mathrm{n}-1$
- For a Z-distribution, df $=\infty$

Calculator (TI-84 Plus)

- Stat \rightarrow Test
- Means
- 1 = One-Sample Z-Test
- 2 = One-Sample t-Test
- 3 = Two-Sample Z-Test
- 4 = Two-Sample t-Test
- Proportions
- $5=$ One-Sample
- 6 = Two-Sample

