AP Statistics: Hypothesis Testing (Means & Proportions)

From Simple Studies, <u>https://simplestudies.edublogs.org</u> & @simplestudiesinc on Instagram

Hypothesis Testing

- A hypothesis test is used to see whether an assumption is statistically plausible by using sample data
- The basic formula for a hypothesis test is: Statistic Parameter/Standard Deviation of Statistic
- The higher the Z or t score, the lower the p value, and the more evidence there is to reject the null hypothesis

Five Steps

- 1. Hypothesis
- 2. Conditions/Assumptions
- 3. Formula
- 4. P Value
- 5. Conclusion

From <u>HYPERLINK</u> <u>"https://towardsdatascience.com/everything-you-need-to-know-about-hypothesis-testing-part-i-</u>

H_a is more probable

orobable

a is more probable

Right-tail test

Left-tail test

Two-tail test H_a: $\mu \neq$ value

 $H_a: \mu > value$

H_a: μ < value

Hypothesis	One-Sample Mean	Two-Sample Mean	One-Sample Proportion	Two-Sample Proportion
Ho	$\mu = x$	$\mu_1 = \mu_2$	$\mathbf{p} = \mathbf{x}$	$p_1 = p_2$
Ha	µ < or > or ≠ x	$\mu_1 < \text{or} > \text{or} \neq \mu_2$	p < or > or ≠ x	$p_1 < or > or \neq p_2$

Step 1: Hypothesis

- "Where $[\mu, p, \mu_1, \mu_2, p_1, p_2]$ is [context of problem]"
 - Define ALL parameters in the context of the problem
- Whether H_a is <, >, or \neq depends on the problem

Step 2: Conditions/Assumptions

- Random Sample
 - "The stem of the problem states that [sample] was chosen at random"
 - "The stem of the problem states that [*participants*] were randomly assigned to the groups"
- Approximate Normal Distribution
 - "The stem of the problem states the distribution is approximately normal"
 - Since n = _ ≥ 30, by the Central Limit Theorem, we can assume the distribution is approximately normal"
 - For two samples, both n_1 and n_2 must be ≥ 30
 - "Since np = _ ≥ 10 and nq = _ ≥ 10, we can assume the distribution is approximately normal"
 - For two sample, $n_1\hat{p}_1$, $n_1\hat{q}_1$, $n_2\hat{p}_2$, and $n_2\hat{q}_2$ must all be ≥ 10
 - "Since the [*graphical display*] shows no outliers or strong skewness, we can assume the distribution is approximately normal"
 - You must provide a graphical display (preferably a box plot) if normality cannot be assumed by the other three ways

Step 3: Formula

• List the formula, your substitution, degrees of freedom (if using t) and your unrounded answer $\overline{x} = u$ $\overline{x} = u$

• One-Sample Means
$$Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
 $t = \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}}$

• Two-Sample Means

$$Z = \frac{(\overline{x}_1 - \overline{x}_1) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \sqrt{\frac{\sigma_2^2}{n_2}}}} \qquad t = \frac{(\overline{x}_1 - \overline{x}_1) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \sqrt{\frac{S_2^2}{n_2}}}}$$

• Proportions

Step 4: P
$$Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \qquad Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{(\hat{p}_c)(\hat{q}_c)(\frac{1}{n_1} + \frac{1}{n_2})}} \qquad \hat{p}_c = \frac{X_1 + X_2}{n_1 + n_2}$$

Value

- The probability of obtaining a test statistic (Z or t) that is this much or more extreme
- If H_a is <
 - \circ P(Z<)
- If H_a is >

 $\circ P(Z >)$

- If H_a is \neq
 - 2P(Z >) if Z > 0
 - \circ 2P (Z < _) if Z < 0

Step 5: Conclusion

- "Assuming H₀ is true, since the p value ([*p value*]) is [*greater/less*] than α = _, we [*fail to reject/reject*] H₀"
 - A α will usually be given in the problem. If it is not, use $\alpha = .05$
- "We [do not/do] have sufficient evidence to suggest H_a, that [context of problem]"

Type I and II Errors

- Type I Error: You reject H₀ when you should not have
 - P (Type I Error) = α
- Type II Error: You fail to reject H₀ when you should have
 - P (Type II Error) = β
 - Power of the test = 1β
 - P (Rejecting H₀ when you should have)
 - Increases as α increases
- Which one is worse depends on the scenario

Match Paired t-Testing

- Most often used in a "before and after" scenario (e.g. dexterity before and after the subjects undergo a program) and comparing two things (e.g. amount of active ingredient in a name brand and generic brand drug).
- Hypothesis
 - $\circ \quad H_0: \, \mu_d = 0$
 - $H_a: \mu_d > or < or \neq 0$
 - \circ *Where μ_d is the average difference (After Before)
- Assuming Normality
 - Draw a box plot of A B
- Compute the Match Paired t-test as if it were a normal hypothesis test (5 steps!)

Z vs t Distribution

- Means
 - Use a Z distribution when you have σ
 - Use a t distribution when you do not have σ (i.e. you have S)
- Proportions
 - ALWAYS use a Z distribution

Degrees of Freedom

- Only applies to t-distributions
 - \circ The t-distribution varies with degrees of freedom
- df = n 1
- For a Z-distribution, df = ∞

Calculator (TI-84 Plus)

- Stat \rightarrow Test
 - Means
 - $\bullet \quad 1 = \text{One-Sample Z-Test}$
 - 2 =One-Sample t-Test

- $\bullet \quad 3 = \text{Two-Sample Z-Test}$
- 4 =Two-Sample t-Test
- Proportions
 - 5 = One-Sample
 - 6 = Two-Sample

