AP Statistics: Confidence Intervals (Means \& Proportions)

From Simple Studies, https://simplestudies.edublogs.org \& @simplestudiesinc on Instagram

Confidence Interval Definition

- A confidence interval is a range of values obtained from a sample that is likely to contain the parameter
- The basic formula for a confidence interval is: Statistic \pm (Critical Value)(Standard Deviation of Statistic)
- The margin of error is defined by the Critical Value (Standard Deviation of Statistic)
- The critical values for each confidence level can be found on Table B of the AP Statistics formula sheets (p. 5 of the 2020 version)

Three Steps

1. Conditions/Assumptions
2. Formula
3. Interpretation

Step 1: Conditions/Assumptions

- Random Sample
- "The stem of the problem states that [sample] was chosen at random"
- "The stem of the problem states that [participants] were randomly assigned to the groups"
- Approximately Normal Distribution
- "The stem of the problem states that the distribution is approximately normal"
- "Since $n=$ _ ≥ 30, by the Central Limit Theorem, we can assume the distribution is approximately normal"
- For two samples, both n_{1} and n_{2} must be ≥ 30
- "Since np = ≥ 10 and nq $=_{-} \geq 10$, we can assume the distribution is approximately normal"
- For two samples, $\mathrm{n}_{1} \hat{\mathrm{p}}_{1}, \mathrm{n}_{1} \hat{\mathrm{q}}_{1}, \mathrm{n}_{2} \hat{\mathrm{p}}_{2}$, and $\mathrm{n}_{2} \hat{\mathrm{q}}_{2}$ must all be ≥ 10
- "Since the [graphical display] shows no outliers or strong skewness, we can assume the distribution is approximately normal"
- You must provide a graphical display (preferably a box plot) if normality cannot be assumed by the other three ways

Step 2: Formula

- List the formula, your substitution, degrees of freedom (if using t*) and your unrounded answer
- One-Sample Means
- Two-Sample Means

$$
\bar{x} \pm \frac{Z_{\mathrm{c}} \sigma}{\sqrt{n}} \quad \bar{x} \pm \frac{t^{*} S}{\sqrt{n}}
$$

- Proportions

$$
\begin{aligned}
& \left(\overline{x_{1}}-\overline{x_{2}}\right) \pm Z_{c} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \quad\left(\overline{x_{1}}-\overline{x_{2}}\right) \pm t^{*} \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}} \\
& \hat{p} \pm Z_{c} \sqrt{\frac{\hat{p} \widehat{q}}{n}} \quad\left(\hat{p_{1}}-\widehat{p_{2}}\right) \pm Z_{c} \sqrt{\frac{\widehat{p_{1}} \widehat{q_{1}}}{n_{1}}+\frac{\widehat{p_{2}} \widehat{q_{2}}}{n_{2}}}
\end{aligned}
$$

Step 3: Interpretation

- "Based on these samples, we are _\% confident that the true [context of problem] is between [lower value] and [upper value]"
- "Since zero $[i s / i s ~ n o t]$ in the _\% confidence interval [interval], we $[d o$ not $/ d o$] have sufficient evidence to suggest there is a difference at the $\alpha=[1-\%]$ level"
- Always put the $\%$ as a decimal (e.g. $95 \%=.95$)
- Use this second statement for two-sample confidence intervals only

Z vs t Distribution

- Means
- Use a Z distribution when you have σ
- Use a t distribution when you do not have σ (i.e. you have S)
- Proportions
- ALWAYS use a Z distribution

Degrees of Freedom

- Only applies to t-distributions
- The t -distribution varies with degrees of freedom
- $\mathrm{df}=\mathrm{n}-1$
- For a Z-distribution, df $=\infty$

Finding Critical Values

- AP Statistics formula sheet table B
- TI-84 Plus
- 2nd \rightarrow Vars
- $3=$ Z-distribution
- $4=\mathrm{t}$-distribution
- Area $=1 / 2(1-\%)$
- Always put the $\%$ as a decimal (e.g. $95 \%=.95$)

Calculator (TI-84 Plus)

- Stat \rightarrow Test
- Means
- 7 = 1-sample Z-Interval
- $8=1$-sample t-Interval
- $9=2$-sample Z-Interval
- $10=2$-sample t -Interval
- Proportions
- $\mathrm{A}=1$-Sample
- $\mathrm{B}=2$-Sample

