AP Calculus BC

From Simple Studies: https://simplestudies.edublogs.org and @simplestudiesinc on Instagram

UNIT 7: Applications of Integration (Volume, Cross Sectionals, Riemanns)

Area and Volume
Volumes of Solids with known cross sectionals

1. For cross sections of area $A(x)$ taken perpendicular to the x-axis
volume $=\int_{\square}^{\square} \mathrm{A}(\mathrm{x}) \mathrm{dx}$
2. For cross sections of area $A(y)$ taken perpendicular to the y-axis.

$$
\text { Volume }=\int_{c}^{d} \mathrm{~A}(\mathrm{y}) \mathrm{dy}
$$

If you wanna do a quick check:

- set up, but do not evaluate the integrals that would compute the volume of the solid

Finding the Area Between Curves Expressed as Functions of \mathbf{x}

Whenever we are talking about areas between two curves, we are talking about the TOTAL POSITIVE AREA between them.

EX: example of how it would look like in another way with y

Top-consistent(RED)
Bottom- In Consistent
Left-Consistent(Red)
Right-Consistent(purple)

The Disk Method

A similar formula can be derived if the axis of revolution is vertical.

THE DISK METHOD
To find the volume of a solid of revolution with the disk method, use one of the following, as shown in Figure 7.15.

Horisontal Axis of Revolution Verical Axis of Revolution Volume $=V=\pi \int_{a}^{b}[R(x)]^{2} d x \quad$ Volume $=V=\pi \int_{c}^{d}[R(y)]^{2} d y$

Figure 7.15

Example 1 - Using the Disk Method

Find the volume of the solid formed by revolving the region bounded by the graph of $f(x)=\sqrt{\sin x}$ and the x-axis $(0 \leq x \leq \pi)$ about the x-axis.

Solution:

From the representative rectangle in the upper graph in Figure 7.16, you can see that the radius of this solid is

$$
\begin{aligned}
R(x) & =f(x) \\
& =\sqrt{\sin x} .
\end{aligned}
$$

12

The volume Equation you need to memorize is:

V=A*H

A stands for the area of your main cross section
square $\rightarrow A=x^{2}$
rectangular $\rightarrow A=l * w$
triangle $\rightarrow A=\frac{l}{2} \mathrm{~b}^{*} \mathrm{~h}$
circle $\rightarrow A=\pi r^{2}$
trapezoid $\rightarrow A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$

Ex: Cross sectional of semicircle perpendicular to the x-axis are laid on the area bounded by $\mathrm{y}=\sqrt{\sin x}$, the x -axis, and between $\mathrm{x}=0$ and $\mathrm{x}=\pi$.

7

Terms to use when taking about Riemann Sums

- Subinterval- Each part of the area you are calculating (each of the smaller parts)
- Partition- the area for which you are approximating the area for which you are approximating the area for the whole thing
- Norm - the length of each subinterval $\rightarrow \triangle x O R P$

The norm is probably the most controllable and beneficial thing to manipulate for a riemann sum.

Trapezoid Sum = Average of your left and right riemann sums
If you don't have either sum, you can still candidate the trapezoid sum via the old standard formula
$\mathrm{T} T_{\text {sum }}=\frac{\Delta x}{2}\left(h_{0}+2 h_{1}+2 h_{2}+2 h_{3}+\ldots .+2 h_{n-1}+h_{n} \quad n\right)$
$\Delta x=\left(\frac{b-a}{n}\right)$

Use the tables to determine the areas

x	1	3	4	7	8	10	13
$f(x)$	2	4	4	1	7	9	10

1) Find the area using 6 subintervals

A] LRAM $\rightarrow 2(2)+1(4)+3(4)+1(1)+2(7)+3(9)=62$
B] RRAM $\rightarrow 2(4)+1(4)+3(1)+1(7)+2(9)+3(10)=70$
C] TRAP $\rightarrow \frac{L+R}{2}=\frac{62-70}{2}=\frac{132}{2}=66$
D] SIMP \rightarrow N/A Requires a constant ΔX

