AP Calculus BC

From Simple Studies: https://simplestudies.edublogs.org and @simplestudiesinc on Instagram

Unit 6: Integration and Accumulation of Change (Differentials, Slope Fields, and Euler's)

Verifying Solutions for Differential Equations

Differential Equations are equations where both x & y can be integrated/anti-differentiated. Both x & y may be expressions of their own.

Ex: A bacterial colony on the surface of a piece of chin started to grow exponentially at 2 AM. At the time, there were 233 bacterial on it. At 5 AM, the population had grown to 1,622. At what time will the bacterial colony hit 5,000 strong?

$$1622 = 233e^{k3}$$

$$\frac{1}{3}(\ln\frac{1622}{233}) = k$$

$$5000 = 233e^{1/3} \left(\ln(\frac{1622}{233}) t \right)$$

$$\ln(\frac{5000}{233}) = \frac{1}{3} \ln(\frac{1622}{233}) t$$

$$3 \frac{\ln(5000/233)}{\ln(1622/233)} = t$$

7.3 Sketching Slope Fields

- A slope field is a collection of all the possible different solutions for the integral of a function.

Sketching slope fields

1. dy/dx: x+1

point	dy/dx
(1,2)	1+1=2
(-2,1)	-2+1=-1
(1,0)	2
(1,1)	2
(1,-1)	2
(-1,2)	0
(0,2)	1

Area bounded by y=sinx, $y=x^3+2x+1$, x=0, and x= π is revolved about the axis y=-1.

Approximating Solutions Using Euler's Method

Euler's Method of approximating where a function will be given a starting point

Use 4 steps to Approximate f(1) if f(2)=2 dy/dx=y-4x

х	x+∆ <i>x</i>	у	$\frac{dy}{dx}$	$y + \frac{dy}{dx} \Delta x$
1	1 1/2	2	6	2+6*1/2=5
1/2	2	5	22.5	16.25
2	2.5	16.25	97.5	65
2.5	3	65	482.5	308.25
3	7	308.75		

https://app.fiveable.me/ap-calc/unit-4

Integrals with a constant domain

- Geometrically $\rightarrow \Delta = c$ (b-a)
- Calculus $\rightarrow \Delta = \int_{\square}^{\square} c \, dx$

$$\int_{a}^{b} cdx = c(b-a) \quad \text{cdx=c and c(b-a)=c}$$

 \int_{\square}^{\square} dx = (b-a) \rightarrow Leads to the **first fundamental theorem of Calculus**

 $\int_{\square}^{\square} f'(x)dx = f(b)-f(a)$

