AP Calculus BC

From Simple Studies: https://simplestudies.edublogs.org and @simplestudiesinc on Instagram

Unit 6: Integration and Accumulation of Change (Differentials, Slope Fields, and Euler's)

Verifying Solutions for Differential Equations

Differential Equations are equations where both $x \& y$ can be integrated/anti-differentiated. Both $\mathrm{x} \& \mathrm{y}$ may be expressions of their own.

Ex: A bacterial colony on the surface of a piece of chin started to grow exponentially at 2 AM . At the time, there were 233 bacterial on it. At 5 AM, the population had grown to 1,622. At what time will the bacterial colony hit 5,000 strong?
$1622=233 e^{k 3}$
$\frac{1}{3}\left(\ln \frac{1622}{233}\right)=\mathrm{k}$
$5000=233 e^{1 / 3}\left(\ln \left(\frac{1622}{233}\right) \mathrm{t}\right)$
$\ln \left(\frac{5000}{233}\right)=\frac{1}{3} \ln \left(\frac{1622}{233}\right) t$
$3 \frac{\ln (5000 / 233)}{\ln (1622 / 233)}=\mathrm{t}$

7.3 Sketching Slope Fields

- A slope field is a collection of all the possible different solutions for the integral of a function.

Sketching slope fields

1. $d y / d x: x+1$

point	dy/dx
$(1,2)$	$1+1=2$
$(-2,1)$	$-2+1=-1$
$(1,0)$	2
$(1,1)$	2
$(1,-1)$	2
$(-1,2)$	0
$(0,2)$	1

Area bounded by $\mathrm{y}=\sin \mathrm{x}, \mathrm{y}=x^{3}+2 x+1, \mathrm{x}=0$, and $\mathrm{x}=\pi$ is revolved about the axis $\mathrm{y}=-1$.

Approximating Solutions Using Euler's Method

Euler's Method of approximating where a function will be given a starting point

Use 4 steps to Approximate $f(1)$ if $f(2)=2 d y / d x=y-4 x$

x	$\mathrm{x}+\Delta x$	y	$\frac{d y}{d x}$	$\mathrm{y}+\frac{d y}{d x} \Delta x$
1	$11 / 2$	2	6	$2+6^{\star 1 / 2=5}$
$1 / 2$	2	5	22.5	16.25
2	2.5	16.25	97.5	65
2.5	3	65	482.5	308.25
3		308.75		

https://app.fiveable.me/ap-calc/unit-4

Integrals with a constant domain

- Geometrically $\rightarrow \Delta=\mathrm{c}(\mathrm{b}-\mathrm{a})$
- Calculus $\rightarrow \Delta=\int_{\square}^{\square} \quad \mathrm{c} \mathrm{dx}$

$\int_{a}^{b} \quad c d x=c(b-a) \quad c d x=c$ and $c(b-a)=\mathrm{c}$
$\int_{\square}^{\square} \mathrm{dx}=(\mathrm{b}-\mathrm{a}) \rightarrow$ Leads to the first fundamental theorem of Calculus
$\int_{\square}^{\square} \quad f^{\prime}(x) d x=f(b)-f(a)$

