AP Calculus BC

From Simple Studies: https://simplestudies.edublogs.org and @simplestudiesinc on Instagram

Unit 3: Differentiation: Composite, Implicit, and Inverse Functions (and Important Theorems)

Chain Rule

Chain Rule

If f and g are both differentiable and $F(x)$ is the composite function defined by $F(x)=f(g(x))$ then F is differentiable and F^{\prime} is given by the product

from:https://www.onlinemathlearning.com/image-files/chain-rule.png

Implicit Differentiation

Implicit Differentiation \rightarrow Differentiable in respect of x

1) Take the derivative of (Differentiate) Both sides of the equation
2) Collect all the terms involving $\frac{d}{d x}$ or y ' to one side of the equation
3) Factor out $\frac{d}{d x}$ or y,
4) Solve for $\frac{d}{d x}$ or y,

Explicit form: Implicit form

$$
\begin{array}{ll}
\mathrm{y}=\sqrt{25-x^{2}} & x^{2}+y^{2}=25 \\
\mathrm{y}=x^{2} & \mathrm{x}=y^{2} \\
& x^{2}+y^{2}-2 x y=0
\end{array}
$$

$$
\begin{aligned}
& x^{3} y^{3}-y=x \\
& x^{3}\left[3 y^{2} \frac{d y}{d x}\right]+y^{3}\left[3 x^{2}\right]-\frac{d y}{d x}=1 \\
& 3 x^{3} y^{2} \frac{d y}{d x}+3 x^{2} y^{3}-\frac{d y}{d x}=1 \\
& 3 x^{3} y^{2} \frac{d y}{d x}-\frac{d y}{d x}=1-3 x^{2} y^{3} \\
& \frac{d y}{d x}\left(3 x^{3} y^{2}-1\right)=1-3 x^{2} y^{3} \\
& \frac{d y}{d x}=\frac{1-3 x^{2} y^{3}}{3 x^{3} y^{2}-1}
\end{aligned}
$$

From: https://calcworkshop.com/wp-content/uploads/implicit-example-1.png

The Extreme Value Theorem

If f is continuous function on a closed interval [a,b], then f has both an absolute maximum and absolute minimum.

Definition of Critical numbers

- A critical number C is a number, such that $\mathrm{f}^{\prime}(\mathrm{c})=0$ or $\mathrm{f}^{\prime}(\mathrm{c})=$ Undefined.
- Relative extrema only occurs at critical numbers

Derivative is not defined

Guide lines fore solving absolute extrema

1] Find all critical numbers: $f^{\prime}(c)=0, f^{\prime}(c)=D N E$
2] Compare the values of f at the critical numbers and at the endpoints
3] The largest value of f is the absolute maximum and the smallest value is absolute maximum

Rolle's Theorem: If f is continuous function on $[a, b]$ and differentiable on (a, b), and $f(a)=f(b)$, then there exists at least one number " c " such that $f^{\prime}(c)=0$

EX: Let $\mathrm{f}(\mathrm{x})=x^{4}-2 x^{2}$
Verify that Rolle's Theorem can be applied in the interval [-2,2]
\square (check)Continuous
\square (check)Differentiable
$f(-2)=(-2)^{4}-2(-2)^{2}=8$
$f(2)=(2)^{4}-2(2)^{2}=8$
$\mathrm{f}(-2)=\mathrm{f}(2) \rightarrow$ Rolle's Theorem can be applied

Since $f(-2)=f(2)$ and $f(x)$ is continuous on $[-2,2]$ and diff. On (-2,2), then Rolle's Theorem can be applied.

Connecting Physics and Calculus

Math
Physics
Original function $=$ Position Graph
First Derivative $=$ Velocity Function (slope of your position)
Second derivative $=$ Acceleration(slope of your velocity)
Third Derivative= Jerk (snap you feel when a vehicle changes acceleration rapidly)

Linear Approximation

$y-y_{l}=\mathrm{m}\left(\mathrm{x}-x_{1}\right)$
$\mathrm{y}-\mathrm{f}\left(x_{0}\right)=\mathrm{f}^{\prime}\left(x_{0}\right)\left(\mathrm{x}-x_{0}\right)$
$0-\mathrm{f}\left(x_{0}\right)=\mathrm{f}^{\prime}\left(x_{0}\right)\left(\mathrm{x}-x_{0}\right)$

$$
\begin{aligned}
& \frac{-f\left(x_{0}\right)+-x_{0} * f^{\prime}\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=\frac{f^{\prime}\left(x_{0}\right) * x}{f^{\prime}\left(x_{0}\right)} \\
& x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=\mathrm{x}
\end{aligned}
$$

The fundamental theorem of Calculus

FTC- if a function continuous on a closed interval $[\mathrm{a}, \mathrm{b}]$ and F is an antiderivative of f on the interval [a,b], then $\int_{\square}^{\square} f(x) d x=F(b)-F(a)$
(integral represents the area) $\quad \int_{\square}^{\square} f(x) d x=F(x) \leftarrow$ answer

Guidelines for using the Fundamental Theorem of Calculus

1. Provided you can find an antiderivative of, you now have a way to evaluate a definite integral without having to use the limit of a sum.
2. When applying the FTC, the following nation us convenient
