AP Calculus AB Course Study Guide Differential Equations

From Simple Studies, https://simplestudies.edublogs.org \& @simplestudies4 on Instagram

Differential Equations (Separate the integral)

Example: $\mathrm{dy} / \mathrm{dx}=\mathrm{e}^{3 \mathrm{x}} / 3 \mathrm{y}^{2}$

You want to separate x and y	$3 \mathrm{y}^{2} \mathrm{dy}=\mathrm{e}^{3 \mathrm{x}} \mathrm{dx}$
Integrate	$\int 3 \mathrm{y}^{2} \mathrm{dy}=\int \mathrm{e}^{3 \mathrm{x}} \mathrm{dx}(\mathrm{u}=3 \mathrm{x}, \mathrm{du}=3 \mathrm{dx}$, $1 / 3 \mathrm{du}=\mathrm{dx})$ $3 \mathrm{y}^{2} \mathrm{dy}=1 / 3 \int \mathrm{e}^{\mathrm{u}} \mathrm{dx}$ $\mathrm{y}^{3}=1 / 3 \mathrm{e}^{3 \mathrm{x}}+\mathrm{c}$
Make y by itself	$3 \sqrt{y^{3}=3} \sqrt{1 / 3} e^{3 x}+c$
	$y=3 \sqrt{1 / 3} e^{3 x}+c$

Example: $\mathrm{dy} / \mathrm{dx}=\mathrm{xy}$

Separate x and y.	$1 / y d y=x d x$
Integrate.	$\int 1 / y d y=\int x d x$ $\ln \|y\|=x^{2} / 2+c$
Multiply each side by e.	$\|y\|=e^{x^{\wedge} 2 / 2} \cdot e^{c}$
C will always be positive and will remain as "c" even if multiplied/divided/added/divided by	$\|y\|=e^{x^{\wedge} 2 / 2} \cdot \mathrm{e}^{c}$

something.

Differential Equation with Initial Condition

Example:

The slope of a curve at each point (x, y) is given by $2 \cos \mathrm{x}-\mathrm{x}$. Which of the following is an equation of the curve if its graph passes through the point $(0,1)$?

Set up the equation. We know that the "slope of a curve" equals to $d y / d x$	$d y / d x=2 \cos x-x$				
Integrate.	$\int d y=\int 2 \cos x-x d x$				
$y=2 \sin x-x^{2} / 2+c$		$	$		$\mathrm{c}=2 \sin (0)-(0)+\mathrm{c}$ Using the points they gave us $(0,1)$, plug it into the equation and solve for c. Now that you have c, go back and plug it into the original equation where you found y. $\mathrm{y=2} \mathrm{\sin x-x}^{2} / 2+1$
:---	:---				

Slope Field

A visual depiction of a differential equation of $d y / d x$.

- Example of what a slope field looks like:

Picture Credits:

