AP Calculus AB Course Study Guide Differential Equations

From Simple Studies, <u>https://simplestudies.edublogs.org</u> & @simplestudies4

on Instagram

Differential Equations (Separate the integral)

<u>Example</u>: $dy/dx = e^{3x}/3y^2$

You want to separate x and y		$3y^2dy = e^{3x}dx$
Integrate		$\int 3y^2 dy = \int e^{3x} dx (u=3x, du=3dx,$
		1/3du=dx)
		$\int 3y^2 dy = 1/3 \int e^u dx$ $y^3 = 1/3e^{3x} + c$
	K	$y^3 = 1/3e^{3x} + c$
Make y by itself	7	${}^3\sqrt{y^3} = {}^3\sqrt{1/3}e^{3x} + c$
	\bigcirc	${}^{3}\sqrt{y^{3}} = {}^{3}\sqrt{1/3}e^{3x} + c$ $y = {}^{3}\sqrt{1/3}e^{3x} + c$
Example: du/du-vu		

Example: dy/dx=xy

Separate x and y.	1/y dy=xdx
Integrate.	$\int 1/y dy = \int x dx$ $\ln y = x^2/2 + c$
Multiply each side by e.	$ \mathbf{y} = e^{\mathbf{x}^2/2} \cdot e^{\mathbf{c}}$
C will always be positive and will remain as "c" even if multiplied/divided/added/divided by	$ y =e^{x^{2}/2} \cdot e^{c}$ y=Ce ^{x^2/2}

something.	

Differential Equation with Initial Condition

Example:

The slope of a curve at each point (x,y) is given by 2cosx-x. Which of the following is an

equation of the curve if its graph passes through the point (0,1)?

Set up the equation. We know that the "slope of a curve" equals to dy/dx	$dy/dx = 2\cos x - x$
Integrate.	$\int dy = \int 2\cos x - x dx$ y= 2sinx-x ² /2+c
Using the points they gave us (0,1), plug it into the equation and solve for c.	1=2sin(0)-(0)+c c=1
Now that you have c, go back and plug it into the original equation where you found y.	$y=2sinx-x^2/2+1$

Slope Field

A visual depiction of a differential equation of dy/dx.

• Example of what a slope field looks like:

Picture Credits:

