AP Calculus AB Course Study Guide Integration and Accumulation of Change

From Simple Studies, https://simplestudies.edublogs.org \& @simplestudies4

on Instagram

Riemann Sums

You use Riemann sums to find the actual area underneath the graph of $f(x)$.
Example: $\mathrm{f}(\mathrm{x})=x^{2}+1$ on $[0,2]$ with 4 equal subintervals

Left Riemann Sum

Right Riemann Sum

Left sum is an underestimate.
Right sum is an overestimate.

Fundamental
 Theorem of

Calculus (Definite

Trapezoidal Sum

Integration)

$$
\frac{\int_{a}^{b} f(x) d x=F(b)-F(a)}{\text { Picture Credits: }}
$$

The area under the curve of derivatives of F from A to B is equal to the change in y-values of the function F from A to B, given f is:

- Continuous in interval $[a, b]$
- F is any function that satisfies $\mathrm{F}(\mathrm{x})=\mathrm{f}(\mathrm{x})$

Example:

$$
\int 2 \ldots 2!-\ldots 3
$$

What is an indefinite integration?

Given y^{\prime} or $\mathrm{f}^{\prime}(\mathrm{x})$, the anti-derivative can be thought of as the original function, $\mathrm{f}(\mathrm{x})$. Integration is used to find the original function.

- The operation of finding all solutions to this equation is called antidifferentiation or indefinite integration.
- Detonated by an integral sign: \int

$$
v=\int f^{\prime}(x) d x=f(x)+c
$$

- $\mathrm{f}^{\prime}(\mathrm{x})=$ integrand
- $d x=$ variable of integration
- $\mathrm{f}(\mathrm{x})=$ antiderivative
- $\mathrm{c}=$ constant of integration
- $\int=$ integral

Reminder: ALWAYS add $+\mathbf{C}$ when you're solving for an INDEFINITE integral!
Reminder: Differentiation and integration are inverses!
Basic Integration Rules (w/ examples)
*K=constant/number

Power Rule	$\int x^{n} \mathrm{dx}=\frac{x^{(x+l)}}{(n+l)}+\mathrm{C} ; \mathrm{n}=-1$	$\int x^{2} \mathrm{dx}=\frac{x^{(2+l)}}{(2+l)}=\frac{x^{3}}{3}+\mathrm{C}$
Constant Rule	$\int \mathrm{kdx}=\mathrm{kx}+\mathrm{C}$	$\int 7 \mathrm{dx}=7 \mathrm{x}+\mathrm{C}$
Multiple Of A Constant	$\int \mathrm{k} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\mathrm{k} \int \mathrm{f}(\mathrm{x}) \mathrm{dx}$	$\int 7 \mathrm{xdx}=7 \int \mathrm{x} \mathrm{dx}=7 \frac{x^{2}}{2}+\mathrm{C}$
Sum \& Differences	$\int[\mathrm{f}(\mathrm{x}) \pm \mathrm{g}(\mathrm{x})] \mathrm{dx}=$ $\int \mathrm{f}(\mathrm{x}) \mathrm{dx} \pm \int \mathrm{g}(\mathrm{x}) \mathrm{dx}$	$\int[3 \mathrm{x}+5] \mathrm{dx}=\int 3 \mathrm{xdx}+\int$ $5 \mathrm{dx}=$ $3 \frac{x^{2}}{2}+5 \mathrm{x}+\mathrm{C}$

Antiderivative Trig Function

$$
\begin{array}{ll}
\int \cos x d x=\sin x+C & \int \sec x \tan x d x=\sec x+C \\
\int \sin x d x=-\cos x+C & \int \csc x \cot x d x=-\csc x+C \\
\int \sec ^{2} x d x=\tan x+C & \int \csc ^{2} x d x=-\cot x+C
\end{array}
$$

Examples with trig functions

$\int 2 \sin \mathrm{xdx}=2 \int \sin \mathrm{xdx}=2(-\cos \mathrm{x}+\mathrm{c})=-2 \cos \mathrm{x}+\mathrm{c}$

> C is still a constant when

- HINT: How I memorize antiderivatives by using derivatives of trigonometric functions.
- EX: $\mathbf{d} / \mathbf{d x} \boldsymbol{\operatorname { s i n }} \mathbf{x}=\boldsymbol{\operatorname { c o s } x}$ and for the antiderivative, you just switch the two trigonometric functions and add +C since it's an indefinite integration.
- EX: $\mathbf{d} / \mathbf{d x} \operatorname{cscx}=-\operatorname{cscxcotx}$ and for the antiderivative, just switch the two trigonometric functions and add +c since it's an indefinite integration. Also, if the derivative was negative, then the anti-derivative is also negative!

Integration by \mathbf{U}-substitution

Example 1: $\int \mathrm{x}^{2}\left(\mathrm{x}^{3}-7\right)^{3} \mathrm{dx}$

First step: Find u HINT: Usually u is the one in the parentheses or the one where if you derive it, the derivative equals something else in the function.	$\mathrm{U}=\mathrm{x}^{3}-7$
Second step: Derive u HINT: Notice when you divide each side by $3, \mathrm{x}^{2}$ is the same as the function in the original function	$d u=3 x^{2} d x$
Third step: Once you derive, divide each side by 3 .	$1 / 3 d u=x^{2} d x$

Fourth Step: Substitute u and $d u$ back into the original function	$\int 1 / 3 u^{3} d u$
Fifth Step: Factor out the $1 / 3$ and integrate	$1 / 3 \int u^{3} d u \rightarrow 1 / 3\left(u^{4} / 4\right)=\frac{u^{4}}{12}+\mathrm{C}$
Sixth Step: Go back and replace u	$\frac{\left(x^{3}-7\right)^{4}}{12}+\mathrm{C}$
REMINDER: Don't forget to go back and replace \boldsymbol{u} and add $+C!$	

Example 2: $\int \cos (8 \mathrm{x}) \mathrm{dx}$

First Step: Find u	$\mathrm{U}=8 \mathrm{x}$
Second Step: Derive u	$\mathrm{du}=8 \mathrm{dx}$
Third Step: Divide both side by 8 so dx is by itself	$1 / 8 \mathrm{du}=\mathrm{dx}$
Fourth Step: Substitute u and $d u$ back into the original function	$1 / 8 \int \cos (\mathrm{u}) \mathrm{du}$
Fifth Step: Integrate by using indefinite integrals trig functions	$1 / 8 \sin (\mathrm{u})+\mathrm{c}$
Sixth Step: Replace u	$1 / 8 \sin (8 \mathrm{x})+\mathrm{c}$

Natural Log Function for Integration (Log rule for integration)

Use this rule when ' x ' becomes DNE

$$
\int 1 / x d x=\ln |x|+c
$$

$$
\left|\int 1 / \mathrm{udx}=\ln \right| \mathrm{u} \mid+\mathrm{c}
$$

Ex. $\int 2 / \mathrm{x} \mathrm{dx}$
Ex. $\int \sec ^{2} x / \tan x d x$
$2 \int 1 / x d x$
$2 \ln |x|+c$
$\int 1 / u d u$

$$
\begin{aligned}
& U=\tan x \\
& d u=\sec ^{2} x d x
\end{aligned}
$$

$\ln |\mathrm{u}|+\mathrm{c}$
$\ln |\tan x|+c$

Integrals of the 6 Basic Trig Functions

$$
\begin{array}{ll}
\int \sin u d u=-\cos u+C & \int \cos u d u=\sin u+C \\
\int \tan u d u=-\ln |\cos u|+C & \int \cot u d u=\ln |\sin u|+C \\
\int \sec u d u=\ln |\sec u+\tan u|+C & \int \csc u d u=-\ln |\csc u+\cot u|+C
\end{array}
$$

Picture Credits: kerrierich

- HINT: For $\int \tan u$ du, I memorized it like this: $\int \tan u d u=\int \sin$ $u / c o s u d u$ because of the trigonometric identities. After that, I just did u-substitution with cos u being u.
- If you work it out, it looks like this:

Step One: Use trig identities	$\int \tan u d u=\int \sin u / \cos u d u$
Step Two: Use U-Substitution	$\begin{aligned} & U=\cos u \\ & d u=-\sin u d u \\ & -d u=\sin u d u \end{aligned}$
Step Three: Substitute u and $d u$ back into the original function	$-\int \mathrm{l} / \mathrm{u} d u$
Step Four: Use the log rule for integration	$-\ln \|u\|+c$
Step Five: Don't forget to go back and replace u	- $\ln \mid$ cosul \mid c

Example 1: $\int \tan (5 \mathrm{x}) \mathrm{dx}$

Step One: Find u	$\mathrm{U}=5 \mathrm{x}$
Step Two: Derive	$\mathrm{du}=5 \mathrm{dx}$
Step Three: Divide both sides by 5	$1 / 5 \mathrm{du}=\mathrm{dx}$
Step Four: Substitute u and $d u$ back into the original function	$1 / 5 \int$ tan u du
Step Five: Use the integrals of the 6 basic trig functions	$-1 / 5 \ln \|\operatorname{cosu}\|+\mathrm{c}$
Step Six: Replace u	$-1 / 5 \ln \|\cos (5 \mathrm{x})\|+\mathrm{c}$

Integration rule for "e"

- With e, it's just the same thing as regular u-substitution but with the additional 'e'.

Example 1: $\int \mathrm{e}^{3 \mathrm{x}+1} \mathrm{dx}$

Step 1: Find u	$\mathrm{U}=3 \mathrm{x}+1$
Step 2: Derive	$\mathrm{du}=3 \mathrm{dx}$
Step 3: Divide both sides by 3 because you want dx by itself	$1 / 3 \mathrm{du}=\mathrm{dx}$
Step 4: Substitute u and $d u$ back into the original function	$1 / 3 \int \mathrm{e}^{\mathrm{u}} \mathrm{du}$

Step 5: Integrate using the integration rule for "e"	$1 / 3 \mathrm{e}^{\mathrm{u}_{+\mathrm{c}}}$
Step 6: Replace u	$1 / 3 \mathrm{e}^{3 \mathrm{x}+1}+\mathrm{c}$

Example 2: $\int \mathrm{e}^{2 \mathrm{x}} / 1+\mathrm{e}^{2 \mathrm{x}}$

Step 1: Find u	$\mathrm{U}=1+\mathrm{e}^{2 \mathrm{x}}$
Step 2: Derive	$\mathrm{du}=2 \mathrm{e}^{2 \mathrm{x}} \mathrm{dx}$
Step 3: Divide both sides by 2	$1 / 2 \mathrm{du}=\mathrm{e}^{2 \mathrm{x}} \mathrm{dx}$
Step 4: Substitute u and $d u$ back into the original function	$1 / 2 \int 1 / \mathrm{u} d u$
Step 5: Use the "log rule" for integration	$1 / 2 \ln \|\mathrm{u}\|+\mathrm{c}$
Step 6: Replace u	$1 / 2 \ln \left\|1+\mathrm{e}^{2 \mathrm{x}}\right\|+\mathrm{c}$

Integration Rule for Exponential Functions

$$
\int a^{x} d x=(1 / \ln a) a^{x}+c
$$

Example: $\int 7^{-\mathrm{x}} \mathrm{dx} \rightarrow-\int 7^{\mathrm{u}} \mathrm{du} \rightarrow-1 / \ln (7) \cdot 7^{\mathrm{u}}+\mathrm{C} \rightarrow-7^{-\mathrm{x}} / \ln 7+\mathrm{C}$

- $u=-x \rightarrow d u=-d x \rightarrow-d u=d x$

