AP Calculus AB Course Study Guide Integration and Accumulation of Change

From Simple Studies, <u>https://simplestudies.edublogs.org</u> & @simplestudies4

on Instagram

Riemann Sums

You use Riemann sums to find the actual area underneath the graph of f(x).

<u>*Example*</u>: $f(x)=x^2+1$ on [0,2] with 4 equal subintervals

The area under the curve of derivatives of F from A to B is equal to the change in y-values of the function F from A to B, given f is:

- Continuous in interval [a,b]
- F is any function that satisfies F(x)=f(x)

<u>Example</u>:

$$\int 2 - 2 I - - 3$$

What is an indefinite integration?

Given y' or f '(x), the anti-derivative can be thought of as the **original** function, f(x). Integration is **used to find the original function**.

- The operation of finding all solutions to this equation is called **antidifferentiation or indefinite integration**.
- Detonated by an integral sign: \int

$$v = \int f'(x) dx = f(x) + c$$

- f'(x) = integrand
- dx = variable of integration
- f(x) = antiderivative
- c = constant of integration
- $\int = integral$

Reminder: <u>ALWAYS</u> add +C when you're solving for an INDEFINITE integral!

Reminder: Differentiation and integration are inverses!

Basic Integration Rules (w/ examples)

*K=constant/number

Power Rule	$\int x^n dx = \frac{x^{(x+1)}}{(n+1)} + C; n \neq -1$	$\int x^2 dx = \frac{x^{(2+1)}}{(2+1)} = \frac{x^3}{3} + C$
Constant Rule	$\int k dx = kx + C$	$\int 7dx = 7x + C$
Multiple Of A Constant	$\int k f(x) dx = k \int f(x) dx$	$\int \mathbf{7xdx} = 7 \int \mathbf{x} \mathbf{dx} = 7 \frac{x^2}{2} + C$
Sum & Differences	$\int [\mathbf{f}(\mathbf{x}) \pm \mathbf{g}(\mathbf{x})] d\mathbf{x} =$	$\int [3x+5]dx = \int 3xdx + \int$
	$\int f(x)dx \pm \int g(x)dx$	5dx =
		$3\frac{x^2}{2} + 5x + C$

Antiderivative Trig Function

$\int \cos x dx = \sin x + C$	$\int \sec x \tan x dx = \sec x + C$
$\int \sin x dx = -\cos x + C$	$\int \csc x \cot x dx = -\csc x + C$
$\int \sec^2 x dx = \tan x + C$	$\int \csc^2 x dx = -\cot x + C$

Examples with trig functions

 $\int 2\sin x \, dx = 2 \int \sin x \, dx = 2(-\cos x + c) = -2\cos x + c$

- *HINT*: How I memorize antiderivatives by using derivatives of trigonometric functions.
 - EX: d/dx sinx = cosx and for the antiderivative, you just switch the two trigonometric functions and add +C since it's an indefinite integration.
 - EX: d/dx cscx = -cscxcotx and for the antiderivative, just switch the two trigonometric functions and add +c since it's an indefinite integration. Also, if the derivative was negative, then the anti-derivative is also negative!

Integration by U-substitution

<u>Example 1:</u> $\int \mathbf{x}^2 (x^3-7)^3 dx$

First step : Find <i>u</i>	$U = x^3 - 7$
<i>HINT:</i> Usually <i>u</i> is the one in the parentheses or the	
one where if you derive it, the derivative equals something else in the function.	
Second step: Derive u <i>HINT:</i> Notice when you divide each side by 3, x^2 is the same as the function in the original function	$du=3x^2dx$
Third step: Once you derive, divide each side by 3.	$\frac{1}{3} du = x^2 dx$

Fourth Step: Substitute <i>u</i> and <i>du</i> back into the original function	∫ ¼ u³ du
Fifth Step: Factor out the ¹ / ₃ and integrate	$\frac{1}{3} \int u^3 du \rightarrow \frac{1}{3} (u^4/4) = \frac{u^4}{12} + C$
Sixth Step: Go back and replace <i>u</i>	$\frac{(x^3-7)^4}{12}$ + C
REMINDER: Don't forget to go back and replace <i>u</i> and add +C!	

Example 2: ∫cos(8x)dx

First Step : Find <i>u</i>	U = 8x
Second Step: Derive <i>u</i>	du = 8dx
Third Step : Divide both side by 8 so dx is by itself	$\frac{1}{8} du = dx$
Fourth Step : Substitute <i>u</i> and <i>du</i> back into the original function	¹ ∕8∫ cos(u)du
Fifth Step : Integrate by using indefinite integrals trig functions	$\frac{1}{8}\sin(u) + c$
Sixth Step: Replace <i>u</i>	$\frac{1}{8}\sin(8x) + c$

Natural Log Function for Integration (Log rule for integration)

Use this rule when 'x' becomes DNE

$$\int 1/x \, dx = \ln|x| + c$$

$$\int 1/u \, dx = \ln|u| + c$$

Ex.
$$\int \sec^2 x / \tan x \, dx$$

2∫ 1/x dx

 $2 \ln|x|+c$

∫ l/u du

U = tanx $du = sec^2 x dx$

ln|u|+c ln |tanx|+c

Integrals of the 6 Basic Trig Functions

$$\int \sin u \, du = -\cos u + C \qquad \int \cos u \, du = \sin u + C$$

$$\int \tan u \, du = -\ln|\cos u| + C \qquad \int \cot u \, du = \ln|\sin u| + C$$

$$\int \sec u \, du = \ln|\sec u + \tan u| + C \qquad \int \csc u \, du = -\ln|\csc u + \cot u| + C$$

Picture Credits: kerrierich

- HINT: For ∫ tan u du, I memorized it like this: ∫ tan u du = ∫ sin u/cos u du because of the trigonometric identities. After that, I just did u-substitution with cos u being u.
- If you work it out, it looks like this:

Step One: Use trig identities	∫ tanu du =∫ sinu/cos u du
Step Two: Use U-Substitution	$U = \cos u$ du = -sinu du -du = sinu du
Step Three: Substitute <i>u</i> and <i>du</i> back into the original function	-∫ 1/u đu
Step Four : Use the log rule for integration	-ln u +c
Step Five : Don't forget to go back and replace u	-ln cosu +c

Example 1: $\int \tan(5x) dx$

Step One : Find <i>u</i>	U = 5x
Step Two: Derive	du = 5dx
Step Three : Divide both sides by 5	$\frac{1}{5} du = dx$
Step Four : Substitute <i>u</i> and <i>du</i> back into the original function	½ ∫ tan u du
Step Five : Use the integrals of the 6 basic trig functions	$-\frac{1}{5}\ln \cos u +c$
Step Six: Replace u	$-\frac{1}{5}\ln \cos(5x) +c$

Integration rule for "e"
$$\int e^{x} dx = e^{x} + c \qquad \int e^{u} du = e^{u} + c$$

• With e, it's just the same thing as regular u-substitution but with the additional 'e'.

<u>Example 1:</u> $\int e^{3x+1} dx$

Step 1: Find <i>u</i>	U = 3x + 1
Step 2: Derive	du = 3dx
Step 3: Divide both sides by 3 because you want dx by itself	$\frac{1}{3} du = dx$
Step 4: Substitute <i>u</i> and <i>du</i> back into the original function	¹ ∕3 ∫ e ^u du

Step 5: Integrate using the integration rule for "e"	$\frac{1}{3}e^{u}+c$
Step 6: Replace <i>u</i>	$\frac{1}{3}e^{3x+1}+c$

Example 2: $\int e^{2x}/1+e^{2x}$

Step 1: Find <i>u</i>	$U = 1 + e^{2x}$
Step 2: Derive	$du = 2e^{2x}dx$
Step 3: Divide both sides by 2	$\frac{1}{2} du = e^{2x} dx$
Step 4: Substitute <i>u</i> and <i>du</i> back into the original function	¹ ⁄2∫1/u du
Step 5: Use the "log rule" for integration	$\frac{1}{2}\ln u +c$
Step 6: Replace <i>u</i>	$\frac{1}{2}\ln 1+e^{2x} +c$

Integration Rule for Exponential Functions

Example:
$$\int 7^{-x} dx \rightarrow -\int 7^{u} du \rightarrow -1/\ln(7) \cdot 7^{u} + C \rightarrow -7^{-x}/\ln7 + C$$

• $u=-x \rightarrow du=-dx \rightarrow -du=dx$