AP Calculus AB Course Study Guide Differentiation: Definition and Basic Derivative

 Rules

 Rules}

From Simple Studies, https://simplestudies.edublogs.org \& @simplestudies4 on Instagram

What is a derivative?

- Derivative: The slope of the tangent line at a particular point; also known as the instantaneous rate of change.
- The derivative of $f(x)$ is denoted as $f^{\prime}(x)$ or

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(Picture credit to Bartleby)

Derivatives as Limits

$$
\begin{array}{cc}
\mathrm{f}^{\prime}(\mathrm{c})=\lim & \underline{\mathrm{f}(\mathrm{x})-} \\
\mathrm{f}(\mathrm{c}) & \mathrm{x}-\mathrm{c} \\
\mathrm{x} \rightarrow \mathrm{c} & \\
\mathrm{f}^{\prime}(\mathrm{x})=\lim & \\
\underline{\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})} & \mathrm{x} \rightarrow
\end{array}
$$

Steps to find derivatives as limits:

1) Identify the form of the derivative first (look at the image above)... is it form a ? b ? c ?
2) Identify $f(x)$
3) Derive $f(x)$ using the corresponding equations next to each form
4) Plug in the "c" value if applicable.

Example:

1) This is form A.
$\lim _{x \rightarrow 3} x^{3}=$
2) $f(x)=(x)^{3}$
3) Derive $\rightarrow f^{\prime}(x)=3 x^{2}$
4) Plug in the limit $\rightarrow f^{\prime}(2)=3(2)^{2}=12$

- Differentiable: A function $f(x)$ is differentiable at $x=a$ if $f^{\prime}(\mathbf{a})$ exists.

Rules of Differentiation

Constant Rule	$\frac{d}{d x}[c]=0$
Power Rule	$\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$
Constant Multiple Rule	$\frac{d}{d x}[c \mathrm{f}(\mathrm{x})]=\mathrm{c}^{\prime}(\mathrm{f})$
Sum and Difference Rule	$\frac{\mathrm{d}}{\mathrm{dx}}[\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})]=\mathrm{f}^{\prime}(\mathrm{x})^{\prime}+\mathrm{g}^{\prime}(\mathrm{x})$
Sine and Cosine	$\frac{\mathrm{d}}{\mathrm{dx}}[\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})]=\mathrm{f}^{\prime}(\mathrm{x})-\mathrm{g}^{\prime}(\mathrm{x})$
	$\frac{\mathrm{d}}{\mathrm{dx}}[\sin \mathrm{x}]=\cos \mathrm{x}$
	$\frac{\mathrm{d}}{\mathrm{dx}}[\cos \mathrm{x}]=-\sin \mathrm{x}$

Constant Rule

If the function is just a number, then it would equal $\mathbf{0}$ because there's nothing to derive.
Example: $\mathrm{f}(\mathrm{x})=5$

$$
\mathrm{f}^{\prime}(\mathrm{x})=0
$$

Constant Multiple Rule

Example: $\mathrm{f}(\mathrm{x})=5 \mathrm{x}^{4}$

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=5 \cdot 4 \mathrm{x}^{3} \\
& \mathrm{f}^{\prime}(\mathrm{x})=20 \mathrm{x}^{3}
\end{aligned}
$$

Sum and Difference Rule

Example: $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+5 \mathrm{x}^{3}$

$$
\mathrm{f}^{\prime}(\mathrm{x})=3+15 \mathrm{x}^{2}
$$

Power Rule: $\frac{d}{d x}\left[\mathrm{x}^{\mathrm{n}}\right]=\mathrm{nx}^{\mathrm{n}-1}$
Example: $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}$

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=2 \cdot 3 \mathrm{x}^{2-1} \\
& \mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x}
\end{aligned}
$$

Product Rule: $f(x)=f(x) \cdot g(x)$

$$
f^{\prime}(x)=f^{\prime}(x) \cdot g(x)+g^{\prime}(x) \cdot f(x)
$$

Example: $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2} \cdot 5 \mathrm{x}$

$$
f^{\prime}(x)=4 x \cdot 5 x+5 \cdot 2 x^{2}=20 x^{2}+10 x^{2}=30 x^{2}
$$

Quotient Rule:

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

(Picture Credits: andymath_
Example: $\mathrm{f}(\mathrm{x})=2 / 4 \mathrm{x}$

$$
\mathrm{f}^{\prime}(\mathrm{x})=(4 \mathrm{x})(0)-(2)(4) /(4 \mathrm{x})^{2}=0-8 / 16 \mathrm{x}^{2}=-1 / 2 \mathrm{x}^{2}
$$

Derivatives of Trigonometric Functions:

$$
\begin{array}{ll}
\frac{d}{d x} \sin x=\cos x & \frac{d}{d x} \sec x=\sec x \tan x \\
\frac{d}{d x} \cos x=-\sin x & \frac{d}{d x} \csc x=-\csc x \cot x \\
\frac{d}{d x} \tan x=\sec ^{2} x & \frac{d}{d x} \cot x=-\csc ^{2} x
\end{array}
$$

Picture Credits: monkarlomonskie

- HINT: If the original function starts with C, then the derivative is negative!
- Example: $\underline{\operatorname{cosx}, ~} \underline{\operatorname{cotx}, ~ \& ~} \underline{\csc }$

Derivative Rule for LN

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}
$$

- HINT: [Derive over copy]
- Example: $\mathrm{h}(\mathrm{x})=\ln \left(2 \mathrm{x}^{\wedge} 2+1\right)$
- First derive $2 x^{\wedge} 2+1$. That would be $4 x$! And then put that over the original function, which would be $2 x^{\wedge} 2+1$.
- Your answer would then be $4 x /\left(2 x^{\wedge} 2+1\right)$

Deriving Exponential Functions

Continuity

A function f is continuous at " c " if:

- The value exists- The value of the function is defined at "c" and $f(c)$ exists.
- The limit exists - The limit of the function must exist at " c ".
- The left and right limits must equal.
- Function=limit. The value of the function at "c" must equal the value of the limit at "c"

Discontinuity

- Removable \rightarrow discontinuity at " c " is called removable if the function can be continuous by defining $f(c)$
- Non-removable \rightarrow discontinuity at " c " is called non-removable if the function cannot be made continuous by redefining $f(c)$

Picture Credits: calcworkshop

Differentiability

In order for a function to be differentiable at $\mathbf{x}=\mathbf{c}$:

- The function must be continuous at $\boldsymbol{x}=\boldsymbol{c}$
- Its left and right derivative must equal each other at $\mathrm{x}=\mathrm{c}$

Example:

$$
f(x)=\left\{\begin{array}{c}
2 x+1, x>2 \\
x^{3}-x-1, x \leq 2
\end{array}\right.
$$

- Continuity $\rightarrow 2 x+1=x^{3}-x-1 \rightarrow 2(2)+1=(2)^{3}-2-1 \rightarrow 5=5$
- Differentiability $\rightarrow 2=3 x^{2}-1 \rightarrow 2=3(2)^{2}-1 \rightarrow 2 \neq 11$
- This function is continuous but not differentiable!

