AP Calculus AB Course Study Guide Limits and Continuity

From Simple Studies, https://simplestudies.edublogs.org \& @simplestudies4 on Instagram

What is a limit and how to find it:

Limit: If $f(x)$ becomes close to a unique number L as x approaches \mathbf{c} from either side, then the limit of $\mathrm{f}(\mathrm{x})$ as x approaches c is L .

- A limit refers to the y-value of a function

$$
\begin{aligned}
& \operatorname{Lim} f(x) \\
& =L
\end{aligned}
$$

- The general limit exists when the right and left limits are the same/equal each other.
- \quad DNE $=$ does not exist.

Examples of estimating a limit numerically:

x	1.9	1.99	1.999	2.0	2.001	2.01	2.1
$\mathrm{f}(\mathrm{x})$	3.700	3.970	3.997	4	4.003	4.030	4.4

- Example 2: Given $\lim (3 x-2)$, find what L would be when you plug in the constant of 2.

Example of using a graph to find a limit:

$$
f(x)=\left\{\begin{array}{r}
2, x \neq 3 \\
0, x=3 \\
\\
\\
\\
\\
x \rightarrow 3
\end{array}\right.
$$

*2 is the limit.

When limits don't exist:

When the Left limit $=$ Right limit, then the limit is said to not exist.

- In the picture below, you can tell that the two limits don't equal each other, thus the answer to this limit is DNE.

Unbounded Behavior:

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}
$$

Evaluating Limits Analytically:

Limits Theorem:

Given:
$\operatorname{Lim} \quad$ and $\quad \operatorname{Lim}$

Scalar Multiple	$\lim _{x \rightarrow c}[b f(x)]=b L$
Sum/Difference	$\lim _{x \rightarrow c}[f(x) \pm g(x)]=L \pm K$
Product	$\lim _{x \rightarrow c}[f(x) g(x)]=L K$
Quotient	$\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\left(\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}\right)^{\prime}=\frac{L}{M}$
Power	$\lim _{x \rightarrow a}(f(x))^{r}=\left(\lim _{x \rightarrow a} f(x)\right)^{r}=L^{r}$

Picture Credits: need2knowaboutcalculus \& khan academy

Limits at Infinity

- If $\mathrm{m}<\mathrm{n}$, then the limit equals 0
- If $\mathrm{m}=\mathrm{n}$, then the limit equals a / b

$$
\operatorname{Lim} \quad \underline{a x}^{m}
$$

- If $m>n$, then the limit DNE

Finding Vertical Asymptotes

The only step you have to do is set the denominator equal to zero and solve.

- Example:

$$
\begin{aligned}
& f(x)=\frac{x-2}{x^{2}-4}=\underline{x-2} \\
& (x+2)(x-2) \\
& \\
& \circ \quad(x+2)(x-2)=0 \rightarrow x=2,-2
\end{aligned}
$$

- 2 is a removable hole while -2 is the non-removable vertical asymptote.

Finding Horizontal Asymptotes

Use the two terms of the highest degree in the numerator and denominator

- Example:

$$
\lim _{x \rightarrow \infty} \frac{x-2}{x^{2}-4}
$$

- x and x^{2} are the two terms of the highest degree in the numerator and denominator respectively. After finding it, use the limits at infinity rule to determine the limit.

Intermediate Value Theorem

A continuous function on a closed interval cannot skip values.

- $f(x)$ must be continuous on the given interval $[a, b]$
- $f(a)$ and $f(b)$ cannot equal each other.
- $f(c)$ must be in between $f(a)$ and $f(b)$

Example \#1: Apply the IVT, if possible on $[0,5]$ so that $f(c)=1$ for the function $f(x)=x^{2}+x+1$

1) $f(x)$ is continuous because it is a polynomial function.
2) $f(a)=f(0)=1$
$f(b)=f(5)=29$
3) By the IVT, there exists a value c where $f(c)=1$ since 1 is between -1 and 29.

Example \#2:

t (seconds)	0	15	25	30	35	50	60
$\mathrm{v}(\mathrm{t})$ in $\mathrm{ft} / \mathrm{sec}$	-20	-30	-20	-14	-10	0	10

1) For $0<t<60$, must there be a time t when $v(t)=-5$?
2) $f(a)=f(0)=-20$
$f(b)=f(60)=10$
3) By the IVT, there is a time t where $v(t)=-5$ on the interval $[0,60]$ since $-20<-5<10$

The Squeeze Theorem

$$
\begin{aligned}
\mathrm{h}(\mathrm{x}) & \leq \mathrm{f}(\mathrm{x}) \\
\lim _{\mathrm{x} \rightarrow \mathrm{a}}(\mathrm{x}) & =\mathrm{g}(\mathrm{x}) \\
\lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{~g}(\mathrm{x}) & =\mathrm{L}
\end{aligned}
$$

therefore,
$\lim \mathrm{h}(\mathrm{x})=\mathrm{L}$ $\mathrm{X} \rightarrow \mathrm{a}$

