AP Calculus AB Course Study Guide Limits and Continuity

From Simple Studies, <u>https://simplestudies.edublogs.org</u> & @simplestudies4

on Instagram

What is a limit and how to find it:

Limit: If f(x) becomes <u>close to a unique number L as x approaches c from either side</u>, then the limit of f(x) as x approaches c is L.

• A limit refers to the y-value of a function

- The general limit exists when the right and left limits are the same/equal each other.
- DNE = does not exist.

Examples of estimating a limit numerically:

х	1.9	1.99	1.999	2.0	2.001	2.01	2.1
f(x)	3.700	3.970	3.997	4	4.003	4.030	4.4

• Example 2: Given lim (3x-2), find what L would be when you plug in the constant of 2.

Lim
f(2(2)_2)

Example of using a graph to find a limit:

*2 is the limit.

When limits don't exist:

When the **Left limit ≠ Right limit**, then the limit is said to not exist.

• In the picture below, you can tell that the two limits don't equal each other, thus the answer to this limit is **DNE**.

Unbounded Behavior:

Evaluating Limits Analytically:

Limits Theorem:

Given:

Lim and Lim

<mark>Scalar Multiple</mark>	$\lim_{x \to c} \left[bf(x) \right] = bL$
Sum/Difference	$\lim_{x \to c} [f(x) \pm g(x)] = L \pm K$
Product	$\lim_{x \to c} [f(x)g(x)] = LK$
Quotient	$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \left(\frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \right) = \frac{L}{M}$
Power	$\lim_{x \to a} \left(f(x) \right)^r = \left(\lim_{x \to a} f(x) \right)^r = L^r$

Picture Credits: need2knowaboutcalculus & khan academy

Limits at Infinity

- If m < n, then the limit equals 0
- If m=n, then the limit equals a/b
- If m>n, then the limit DNE

Li	<u>ax</u> m	
X→	<mark>±</mark> ∞	bx ⁿ

Finding Vertical Asymptotes

The only step you have to do is set the denominator equal to zero and solve.

• Example:

$$f(x) = \underline{x - 2} = \underline{x - 2}$$
$$x^{2} - 4 \quad (x+2)(x-2)$$
$$(x+2)(x-2) = 0 \rightarrow x = 2, -2$$

■ 2 is a removable hole while -2 is the non-removable vertical asymptote.

Finding Horizontal Asymptotes

Use the two terms of the highest degree in the numerator and denominator

• Example:

$$\lim_{x \to \infty} \frac{x-2}{x^2-4}$$

• x and x² are the two terms of the highest degree in the numerator and denominator respectively. After finding it, use the limits at infinity rule to determine the limit.

Intermediate Value Theorem

A continuous function on a closed interval cannot skip values.

- f(x) must be continuous on the given interval [a,b]
- f(a) and f(b) cannot equal each other.
- f(c) must be in between f(a) and f(b)

<u>Example #1</u>: Apply the IVT, if possible on [0,5] so that f(c)=1 for the function $f(x)=x^2+x+1$

- 1) f(x) is continuous because it is a polynomial function.
- 2) f(a)=f(0)=1
 - f(b)=f(5)=29
- 3) By the IVT, there exists a value c where f(c)=1 since 1 is between -1 and 29.

```
Example #2:
```

t(seconds)	0	15	25	30	35	50	60
v(t) in ft/sec	-20	-30	-20	-14	-10	0	10

From https://simplestudies.edublogs.org

- 1) For $0 \le t \le 60$, must there be a time t when v(t) = -5?
- 2) f(a) = f(0) = -20f(b) = f(60) = 10
- 3) By the IVT, there is a time t where v(t)=-5 on the interval [0,60] since -20 < -5 < 10

The Squeeze Theorem

 $\begin{array}{rl} h(x) \leq & f(x) & \leq g(x) \\ \lim_{x \to a} h(x) = & \lim_{x \to a} g(x) & = L \\ \end{array}$

therefore,

 $\lim_{X \to a} h(x) = L$

that means f(v) equals h(v) and a(v)