

UNIT OF MEASURE

Objects at Micron Scale

1 Micron= 1 Micrometer

 $= 1 \mu m$

= 0.001 millimeter

= 1/25,400 Inch

= 1000nm (Nanometer)

- Red Blood Cells = 8 Microns
- Human hair = 100+ microns
- Smallest particle visible to human eye is 30 to 35 Microns

GRAVER LPF PRODUCT RANGE

LPF specializes in *Dead End* microfiltration

- Melt blown Filters
 - 0.5 to 100 micron range
- Pleated microfiber Filters
 - 0.2- 100 micron range
- Pleated Membrane Filters
 - 0.03-1.0 micron range

DEAD END FILTRATION

• What is it?

Particles flow in a 90° direction of filter media and are either captured (dead end) or pass through the media

Mechanism of capture

- Inertial Impaction
- Bridging
- Sieving /direct interception
- Adsorption (charge, hydrophobic interaction

WHAT GRAVER DOES NOT OFFER

- Other dead-end filter technologies such as:
 - Bag filters
 - String wound filters
 - Lenticular filters
 - Capsules
- Spiral wrapped or hollow fiber
 Crossflow products such as RO, NF
 and UF membranes.

WHY USE LIQUID FILTRATION

FILTRATION...

The removal of <u>undissolved</u> particulate matter from a fluid stream (air or liquid) for the purpose of meeting specifications for solids removal, solids recovery, optical clarity, a specific particle distribution in the fluid or protection of downstream equipment.

WHY USE LIQUID FILTRATION: SOLIDS REMOVAL

This is what we commonly think of when we discuss filtration – removing solid particle contamination.

- Incoming water/fluids may contain sand, pipe scale, iron, algae or other unwanted solids
- Fluids may pick up tank debris during transport or in storage tanks
- Prevent mold spores, bacteria, virus and dirt from entering a tank through the tank vent
- Capture carbon, sand, resin or DE (filter aid)

WHY USE LIQUID FILTRATION: SOLIDS RECOVERY

Some processes require isolation/recovery of the solids in the fluid due to the intrinsic value or it is the product being produced

- Catalyst recovery from a chemical reactor
- Harvesting of protein components

WHY USE LIQUID FILTRATION: OPTICAL CLARITY

Visual appearance or the aesthetics require no visible particles (35 microns or larger)

- Distilled Spirits
- Bottled water
- Soft drinks

WHY USE LIQUID FILTRATION: CLASSIFICATION

Certain processes require some particles to pass such as dyes and pigments while retaining agglomerates and other debris

- Architectural Paints
- Automotive paints
- Inks
- CMP slurries

WHY USE LIQUID FILTRATION: EQUIPMENT PROTECTION

Preservation of equipment is critical to prevent downtime and repair costs

- Pump seals
- Fine nozzles
- Seal flush glands
- Small orifices
- Heat exchangers

How Filters are Used

- Optical Clarification
- Tank Vents/Fermentation Feed Air
- DE or Carbon Removal/Polishing
- Protect pump seals
- Classification remove agglomerates while leaving pigments
- Pre RO
- Process Steam
- Microbial Control

Critical Considerations

- Standards
 - USP Class VI Plastic Testing
 - EU 1935
 - FDA
- Validation information for sterilizing /bioburden reduction filters
- Chemical Compatibility with solvents
- Operating temperatures
- Solids Loading/Contaminant loading levels
- NSF Requirements
 - Standard 61 –
 Leaching/Migration of
 Chemical Components

FILTRATION EFFICIENCY

RETENTION RATINGS

- Retention ratings refer to what a filter does, **not** what it is (the size of the pores in the filter).
 - Many mechanisms usually work together to create the filter's actual removal efficiency.
- Retention ratings refer to the efficiency with which a given filter can remove particles of a specific size or size range from a particular carrier fluid under specific conditions.
 - Changing the variables in any of these categories (filter, particle size, etc.) will alter the outcome of filtration.
- May be arbitrary values assigned by the Manufacturer
 - Difficult for a direct comparison between Manufacturers just based on claims
 - Rating ≠ Rating

RETENTION RATINGS

- Retention Ratings Are Expressed As
 - Percentages
 - Ratios (beta) between upstream and downstream counts for particles of a specific size
- There is no universally accepted way to evaluate filter performance.
 - Industry standards are very limited.
 - Changing the test parameters on the same filter would yield different results - ie modifying flow
 - Filters that are actually quite different might perform identically when modifying test conditions modify the test particle type.

RETENTION RATINGS

There are Few to None

- ASTM- F795-88 Single pass challenge using ISO test dust
- ASTM-F838-05 Bacterial retention of membranes
- Graver Technology uses an ASTM single pass test and measures efficiencies at the start of the tests
- We do not publish membrane efficiencies All membrane cartridges are considered 99.99+...% efficient at the published micron rating.

RETENTION RATINGS: NOMINAL

What do we mean.....

- Removes <u>Some/Most</u> Particles
 at/above the Rated Size
- Typically Used for Depth Filters
 and lower-end Pleated Filters
- Usually Based on 90% or Less
 Removal of ISO Test Dust, possibly
 less than 50% in bags and string
 wound filters

RETENTION RATINGS: ABSOLUTE

What do we mean.....

- Removes "All" Particles at/above the Rated Size
- In practice, most filter manufacturer's assign values of 98% to 99.99% to their absolute ratings.
- Values may be:
 - Derived under arbitrary test conditions that vary by manufacturer
 - Typically single pass, but may be multi-pass (hydraulic)
 - Interpreted in a variety of ways
 - Initial Efficiency
 - Average Efficiency
 - Final Efficiency

98.7% Removal

FILTRATION EFFICIENCY

What do we mean.....

 States particulate removal efficiency <u>at</u> a given particle size in percent (%).

Derived by

- subtracting outlet count from inlet count
- dividing by the inlet count

Example

- Inlet Particle Count: Particles ≥1 micron in diameter: 1000
- Outlet Particle Count: Particles ≥ 1 micron in diameter: 1
- Efficiency
 - (Inlet outlet) divided by inlet count = (1000 1) divided by 1000 = 999/ 1000 = 99.9% removal efficiency at 1 micron

BETA RATIO

What do we mean.....

- Refers to a filter's efficiency at removing particles <u>above</u> a given size
- Expressed as a whole number which represents the ratio of upstream to downstream particle counts in a given size range
- Derived by:
 - Dividing inlet (upstream/ influent) count for particles above a given size by the outlet (downstream/ effluent) count for particles in the same size range
- Example
 - Inlet Particle Count: Particles larger than 1 micron: 1,000
 - Outlet Particle Count: Particles larger than 1 micron: 10
 - Beta Ratio:
 - Inlet count divided by outlet count = Beta ratio 1,000 divided by 10 = 100 (equal to 99% efficiency)

EFFICIENCY/ BETA RATIO/ LRV (LOG REDUCTION VALVE)

$$\beta = 10$$

$$LRV = 1.0$$

$$\beta = 20$$

$$LRV = 1.3$$

$$\beta = 50$$

$$LRV = 1.5$$

$$\beta = 100$$

$$LRV = 2.0$$

$$\beta = 1000$$

$$LRV = 3.0$$

$$\beta = 5000$$

$$LRV = 3.7$$

$$\beta = 10,000$$

$$LRV = 4.0$$

$$\beta = 10,000,000$$

$$LRV = 7.0$$

$$\beta = \frac{\text{PARTICLES SIZE} >= X \text{ IN FEED}}{\text{PARTICLES SIZE} >= X \text{ IN FILTRATE}}$$

$$LRV = LOG \frac{FEED}{FILTRATE} = LOG \beta$$

At rated pore size

FACTORS INFLUENCING FILTRATION

Concentration

- Increase in concentration of particles results in fouling and shorter filter life.
- Microfiltration cartridges are intended for <u>0.1%- 0.2%</u> <u>maximum</u>. Require additional filtration if loads is higher than about 0.05%
- Particle type, size and distribution
 - Round more difficult to retain
 - Deformable able to be extruded through under pressure
 - Uniform size vs variable size may alter the way it plugs the filter

FACTORS INFLUENCING FILTRATION

Pressure

- Increase in pressure increases filtrate flow rate which negatively impacts efficiency
- Higher pressure can result in deformable particles passing, decreasing efficiency

Temperature

- Increase in temperature typically reduces viscosity = higher flow rates
- May increases solubility of contaminates, decreasing filtrate quality and accelerates fouling
- Makes certain chemicals more aggressive reduces compatibility.

FACTORS INFLUENCING FILTRATION

Remember

- Understand the application flow, pressure, temperature, solids level, process fluid. Identify the critical factors required to understand an application.
- When replacing a competitive product, not always safe to assume that the end user has the correct filter installed – do not duplicate a mistake
 Rating ≠ Rating
- Retention ratings refer to what a filter does, not what it is

MEMBRANE FILTERS

Factors Effecting Performance

Membrane	Contaminant	Fluid	Conditions
Structure	Type/Rigidity:	Type:	Flow rate/face
- cast	- hard	- solvent	velocity
- stretched	- deformable	- acid	T
- irradiated	(gel)	- base - mixture	Temperature
Charge	Charge		Pressure:
		Compatibility	- pulse
Pore size &	Challenge level		- differential
pore size dist.		Viscosity	
	Loading		
Porosity		Conductivity	
Thickness			
Compatibility			

DEPTH FILTERS

TYPES OF DEPTH FILTERS

String Wound Filter

Resin Bonded Filter

Melt Blown Filter

DEPTH FILTERS

- Capture Particles Through Filter the Depth of their Media
 - Filters by Inertial Impaction and Direct Interception
 - Effective from 0.5um to 100um
 - Most are nominally rated, some very nominal
 - Price point varies from <\$1 to >\$15.
- Graded Density vs. Constant Density vs. Graded pore structure
 - Constant Density Filters Hold Less Dirt
 - (uniform fiber structure through out the media)
 - Graded Density Distributes Filtration Load
 - (Same Fiber size but packed tigher closer to the core)
 - Graded pore structure
 - Different fiber sizes to create gradient which results in higher porosity

DEPTH FILTERS

- Smaller membrane pores are plugged first.
- Larger pores remain open resulting in pathway for particles to travel through
- Retention decreases with heavy loading
- Decrease in retention occurs before any noticeable pressure drop

DEPTH FILTERS: STRING WOUND

- Constructed by winding a cord (string) around a perforated center core.
- Graver does not offer
- Melt Blown is replacement option

Advantages

- Can be inexpensive
- Constant depth

Disadvantages

- Nominal rated @ low pressure
- Prone to media migration
- Surfactants/Antistatic
- Extractables (Taste)
- Highly Inconsistent

DEPTH FILTERS: BAGS

- Constructed of felt with sewn or thermal bonder edges/ends
- Graver does not offer

Advantages

- Can be inexpensive
- Range of materials
- High dirt capacity

Disadvantages

Tend to be very nominally rated @ low pressure - low efficiency High risk of bypass at seal zone

DEPTH FILTERS: RESIN BONDED

Composed of polyester fiber or microfiberglass and coated with resin

Advantages

- Relatively inexpensive for industrial applications
- Graded Depth
- High structural strength
- High temperature tolerance as compared to polypropylene

Disadvantages

- Very Nominally rated@ low pressure
- May have inconsistent performance
- High Extractables
 (Taste) not a
 beverage product.

DEPTH FILTERS: MELT BLOWN

- Molten polypropylene injected into a high velocity air stream.
- May be coreless or have a molded core

<u>Advantages</u>

- May be inexpensive
- Low extractables definitely cleaner than String wound or Resin Bonded
- Can be Absolute or Nominal rated @ low pressure
- Graded Density or Graded PoreStructure

Disadvantages

- Relatively low flow rates due to limited surface area
- Relatively Low dirt capacity compared to pleated
- Quality can vary greatly by source
- Consistency may vary greatly.

DEPTH FILTERS

CAT SCAN SHOWING GRADED DENSITY

String Wound Filter

Melt Blown Filter

DEPTH FILTERS: MELT BLOWING DEFINED

Fabrication method of microfibers where a melted polymer is extruded through small nozzles surrounded by high-speed blowing gas (air) to form randomly deposited fibers on a core.

DEPTH FILTERS: GRAVER MULTI EXTRUDER

Multi Extruder (4) process

 Microprocessor controlled recipes

- White room for contamination control
- Environmental controls for consistent temperature and humidity
- State-of-the-art Melt Blowing machinery

DEPTH FILTERS: GRADE PORE STRUCTURE

DEPTH FILTERS: APPLICATIONS

- Machine coolants
- Plating solutions
- Parts washing
- Process water
- Resin trap
- Carbon trap
- Pre RO filtration
- Utility Water
- Water disposal
- Municipal Water
- Everywhere

DEPTH FILTERS: APPLICATIONS

- Pre RO
- Trap Filters
- Plating/Surface Finishing
- Automotive Paints
- General Grade Chemicals
- CMP slurries

PLEATED FILTERS

PLEATED FILTERS: CARTRIDGE DESIGN

Layer(s) of flat sheet microfiber media, pleated and placed around a center perforated core.

Advantages

- High dirt capacities due to having 10-15 X surface area of Depth
- Higher efficiencies @ higher pressure (>15 psid)
- High flows/lower pressure
- Low Media Migration

<u>Disadvantages</u>

- Expensive when compared to depth type filters
- Narrower particle size retention vs. depth filters
- Typically retain gels less effectively

PLEATED FILTERS: CARTRIDGE DESIGN

mechanical strength

Molded cage
protects against
physical damage

sealed to filter

Pleat support and drainage layers give strength and minimize pressure loss

End cap melt-

PLEATED FILTERS: GRAVER TECHNOLOGIES

- Typically supported by a Core and Outer Sleeve (cage).
- Flow pattern <u>typically</u> outside in.
- Microfiber
 - Pleated for High Surface Area
 - Effective from 0.2μm to 100μm
- Multiple Media Materials
 - Glass
 - Polypropylene
 - Cellulose
 - Polyester

PLEATED FILTERS: CARTRIDGE DESIGN

Style	DOE or SOE	Visual
Р	DOE	Thermally bonded-plastic caps with flat gasket seal on both open ends
P3	SOE	222 double o-ring Flat on closed end
P8	SOE	222 double o-ring Spear on closed end
P2	SOE	226 double o-ring on open end closed end
P7	SOE	226 double o-ring Spear on closed end
NN	DOE	No endcaps, o-rings or gaskets on either open ends

Style	DOE or SOE	Visual
DBG	DOE	Santoprene gaskets bonded on both open ends
P6	SOE	Plastic spring Gasket or NN on closed end on open end
P9	SOE	Plastic spring Extended core on open end
PX	DOE	Flat gasket or NN on both open ends with extended core on one end
AM	SOE	Internal o-ring Recessed cup on open end on closed end
NPC	DOE	Internal o-rings on both open ends

PLEATED FILTERS: MICROFIBER MEDIA

- Microfiber
 - Pleated for High Surface Area
 - 2.55" and 2.7" OD (3.25" & 4.5" also in market)
 - Effective from 0.2µm to 100µm calendared 1 micron and below
 - Available as Absolute or Nominal
 - Multiple Media Materials
 - Glass
 - Polypropylene
 - Others cellulose, polyester
- Flow pattern generally outside-in. Exception may be large geometry.

PLEATED FILTERS: APPLICATIONS

- Inks, Coatings, CMP slurries (single pass)
- Wine & Beer prefilters
- Pharmaceutical clarifying and classifying filters
- Chemicals final and prefilters
- Semiconductor chemicals
- Process and drinking water

MEMBRANE FILTERS

- Highly efficient 99.999+%
- Thin semi-permeable films
 (160 microns thick or less)
 from 0.03 μm 1 μm using
 inert polymeric material –
 nylon, PVDF, PES
- Pore characteristics closely controlled = Narrow pore size distribution
- Integrity testable –
 necessary for critical
 applications to
 demonstrate function

- <u>Capable</u> of microbial retention
- Within a membrane product families (there are variations of the product that are intended to meet certain application requirements. Grade designation such as:
 - "E" Electronics
 - "B" Bioburden reduction
 - "P" Pharmaceutical
 - "WB" Food and Beverage

Hydrophilic:

"Having an affinity for, absorbing, wetting smoothly with, water." Does not require pre-wetting with aqueous fluids.

Hydrophobic:

"Of or exhibiting hydrophobia.....fear of water; antagonistic to, tending not to combine with water."

Requires pre-wetting when used with aqueous/high surface tension liquids.

- Hydrophilic
 - Cellulosic
 - Nylon
 - Polyester
 - Polyethersulfone
 - Polysulfone
 - Polyvinylidene fluoride (PVDF)
- Hydrophobic
 - Polypropylene (PP)
 - Polytetrafluoroethylene (PTFE)
 - Polyvinylidene fluoride (PVDF)

Manufacturing Methods

- Cast/Phase Inversion
 - Nylon, PES, PVDF
 - Spreading of a thin film

MEMBRANE FILTERS: DEFINED Manufacturing Methods

- Stretching
 - PTFE
 - Application of tensile
 stress (pull) to a dense film

Cellulosic

Nylon

Track Etch Polyester

Polyethersulfone

Polysulfone

Polyvinylidene Fluoride (PVDF)

Polypropylene

Polytetrafluoroethylene (PTFE)

MEMBRANE FILTERS: APPLICATIONS

- Bottling filters for beer, wine and bottled water
- SVPs and LVP (small/large volume parenterals)
- Tank Vents
- Fermentation Feed Air
- High Purity Water Systems
- Ultra-High Purity Chemicals

QUESTIONS

"Knowledge is of two kinds. We know a subject ourselves, or we know where we can find information on it."

Samuel Johnson

"Your brain is like a sponge that absorbs knowledge, but that's not exactly how it's done."

