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Abstract

In this whitepaper we present Circularise, a system that facilitates the
knowledge transfer required for a circular economy to function. Circu-
larise utilises a combination of blockchain, peer-to-peer technology and
cryptographic techniques like Zero-Knowledge Proofs (ZKPs) to build a
decentralised information storage and communication platform. The goal
is to allow information exchange between participants in value chains while
allowing them to remain anonymous and fine-tune the amount of informa-
tion they want to disclose, and who can access it. Despite the anonymity,
the platform contains built-in mechanisms for keeping participants ac-
countable, thus disincentivising the spreading of untruthful information,
and for allowing parties to share verifiable information without compro-
mising their anonimity, in a way that requires none of the involving parties
to trust one another. Furthermore, participants remain responsible for in-
formation pertaining their products questions that become important in
the future to be answered about products that were produced in the past.
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1 Introduction

At present, most of the world’s economy works in a linear fashion. Raw materials
are extracted, products are assembled, more products are assembled out of other
products, products are consumed, products are thrown away (i.e. incenerated or
landfilled). For each product, the set of parties and processes that these parties
perform to create it constitute the product’s value chain. A circular economy,
as described in Andersen (2007), turns value chains into loops by ensuring that
as many “consumed” products as possible are reintroduced into the economy
instead of being thrown away. Reintroduction happens through one or more of
the circular economy loops: repairing, re-using, refurbishing, recycling, etc.

Any stakeholder in a value chain, whether individual or group, is a party.
Examples of parties include: a consumer, a recycling company, a television
screen manufacturer, a PCB manufacturer, a material manufacturer, a retailer.

Goods and/or information move through the value chain bidirectionally.
From any position in the value chain, suppliers are parties that supply you
with goods. Recipients are parties that receive your goods. Your direct suppli-
ers/recipients are Tier 1, their direct suppliers/recipients are Tier 2, etc.

Supplier

Tier 2

Supplier

Tier 1

You Recipient

Tier 1

Recipient

Tier 2

Figure 1: Value chain terminology: suppliers and recipients described in Tiers. Note that
real value chains can involve multiple feedback loops and complex networks of manufacturers,
retailers and other parties.

Every party involved in the value chain of a product has access to some infor-
mation about the value chain: they know who their suppliers are and who their
recipients are. Also, they know the transformation of the product that occurs
between the input and the output. For example, a television screen manufac-
turer may know who produces the screens and who produces the remotes, but
not who produced the batteries that come with the remote (the party that made
the remote may know that). Also, they know that the screen has been assem-
bled into the television chassis in some particular way, using certain materials,
etc.

For example, one of the main challenge faced by recyclers is to access product
information that they need to do their job.1

Use Case 1: Recycling Suppose that a recycling company A obtains an
electronic product such as a tablet, and wants to recycle it. It is of great
importance, to decide how to recycle the tablet, for A to know whether or not
it contains specific (hazardous) materials and/or parts. Currently, the only way
to find out is inefficient manual inspection. Circularise will enable the following
process: supposing the tablet’s manufacturer B is known, so A will need to

1Refer to our bluepaper for more information on why recycling is so crucial.
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contact B and ask whether in the tablet contains e.g. mercury. B, however,
does not know: they only take care of the assembly of parts and they purchase
from suppliers C, D, E, F all over the world. So B needs to personally contact C,
D, E, F and ask them to get this information for them and report back. These
parties may in turn refer B to their suppliers, and so on.

The main reasons why this is not presently done already are:

1. The manufacturer B is not always known. E.g. unlabelled, unbranded
products.

2. Parties have no incentive to proxy an information exchange chain, as it
may pose a risk to their competitive advantage (e.g. their recipients and/or
suppliers might cut them out).

3. Most notably, current methods are based on outdated technologies (send-
ing emails back and forth), rendering the process inefficient, unscalable
and costly.

Use Case 2: Auditing An auditor is a party that is entitled to check that
other parties do not misbehave and that they provide correct and consistent
answers. Even though the Circularise system does not provide the auditor with
special rights, once a company is made to cooperate through real-world channels,
Circularise can be used to empower the auditor. Effectively, Circularise hosts
logs about the claims that a party has made. Finding out whether someone is
lying about the content of these claims, is the first step to indicating whether
a party is misbehaving or not. In addition, if a recycler were to encounter
suspicious materials that were stated otherwise in the manifest of the product,
an immutable, digital trail is left for the auditor to find the source of mischief.

Auditors fulfil an essential role in the system, as they make sure that real-
world consequences are connected to the veracity of claims of all parties. The
consequences of misbehaviour provides incentive to be a good citizen. Knowing
that misbehaviour is punished increases the system’s trustworthiness.

1.1 Problem statement: our goal

More generally, the challenge we face is to facilitate information sharing in a
decentralised network, without centralising the information or the network. And,
because of the nature of the information involved and the network, our solution
needs to be reliable. That is, all parties involved need to have certain guarantees
about the way our solution works: especially the quality of the information they
can obtain through it, the robustness of the framework to changes in the shape
of the market (companies coming and going) and its information needs (old
information becoming irrelevant, new information becoming essential).

As we have argued above, for a circular economy to function it is not only
resources which need to circulate, but also information. In fact in any economy, The Goal
information about products can be even more valuable than products them-
selves.
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We are going to enable companies to share information while staying in
control of their secrets, and without the need of trusting anybody – not even us
– except the framework we provide.

More generally, circularise needs to connect information users to information
providers, and that involves: 1) someone in need of information has to find their
way to someone who has the information, and 2) a channel has to be set up to
allow information exchange.

These basic requirements constitute the foundation of our solution, the Cir-
cularise platform. The solution is in fact a smart question-/answering platform
based on a graph structure, where each node represents a party in the value chain
of a product, from smelters supplying materials to consumers and recyclers. A
platform where information seekers can ask questions, and the system will try
and find a path from them to some other party in possession of the answer.

The nature of the problem however imposes certain restrictions on how ex-
actly we need to implement this generic solution strategy. Our core contribution
is to identify these further restrictions and work out a technical solution that
overcomes them. In the rest of this section, we walk through Fig. 2 to under-
stand these restrictions and the subgoals that they entail for our solution to be
satisfying.

The Goal

facilitate infor-
mation sharing

A

decentralisation:
users retain
control of the
information
they own

A.1

about products

A.1.1

how much to
share

A.1.2

with whom to
share

A.2

about network

B

reliability:
users can trust
the system to
work

B.1

trustworthiness
of obtained
information:
accountability

B.1.1

auditability
of informa-
tion

B.1.2

identifiability
of parties

B.2

future-proofing

B.3

resilience to
parties leaving

Figure 2: A breakdown of our core goal into subgoals.
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1.1.1 Decentralisation

Firstly, the parties’ information in a value chain is decentralised and desirably
so, which means that the information our final users need is distributed (and
often purposefully hidden) therein. A

A product generally consists of multiple components. Consider for example
the electronics industry: a television contains a circuit board, an LCD panel, a
power regulator and many more parts. While the television may be assembled
by one company, its parts may be bought from other companies and in turn
consists of more parts. Each of the parties in the value chain has certain pieces
of knowledge about the finished product, a television, and not any single party
has them all. Such information can in fact be a valuable asset – a trade secret A.1
– and therefore be part of the value of a company. Therefore, if you want to
gather a piece of information about a product, the first challenge is to find the
party that has it.

Not only information about products is distributed across the value chain,
but also the information about who has information about products is. Some
companies are very transparent about their suppliers (e.g. fairphone), but there
are also companies that want to keep their suppliers a secret in fear of being left
out. Some parties are simply intermediaries. Parties like these are susceptible to A.2
losing their value once a supplier gets in direct contact with a recipient. Knowing
a supplier can be worth money by itself and most people are not willing to share
this kind of knowledge.

Data therefore has to be handled in a secure, decentralised way. So when
someone in a party’s network is looking for information, and while they don’t
have the answer, they know someone else in their network who do, they might
not be willing connect the two parties directly in order to exchange information.
They may, however, be willing to act as proxies if it is guaranteed that the two
communicating parties will not be able to exchange identifying information.

A party should not obtain knowledge about business partners through re-
questing information. Likewise, a party should not obtain this knowledge either
when providing information.

Furthermore, companies want to stay in control of their own data and do
not typically want to rely on anyone else to handle it for them.

Therefore, to ensure that information is exchanged, we cannot simply gather
all information in one place and manage it centrally or trust someone else to do
so. We need to keep the information in the hands of their owners, and create a
game which they all have an interest to play, and design it in such a way that
the information is allowed to flow where it needs to.

To make this possible, while ensuring that as much information as possible
can circulate without stripping any involved party of their trade secrets, we need
to enable parties to fine-tune how much information is exchanged and who it is
accessible by.

Some information is confidential. For example, the precise amount of mer-
cury that goes into party A’s batteries may be a trade secret.

However, party A may be willing to disclose partial information, or may be
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willing to disclose full information but only to certain other parties. A.1.1
Party A may be willing to answer questions such as: ”Does the product con-

tain mercury?”, or ”Does the product contain less than five grams of mercury?”
2 Therefore, we need to enable them to do so.

Also, A may only be willing to share their information with certain types of
other parties only. For example, they may be willing to share the make-up of A.1.2
their product with recyclers only. To accomplish this, a party should be able to
specify which groups are authorised to access their information. As mentioned
before, it is in a party’s best interest to keep their business partners secret. A.2

1.1.2 Reliability

Secondly, the Circularise system has to be reliable to be up to the challenge of
facilitating the transition to a circular economy. We build Circularise to address
a real-world issue, and to be used by real parties in real situations. It follows
that the information exchange the system provides has to be reliable. B

Reliability here has two meanings: firstly, the information itself needs to
be reliable, as in trustworthy, and while the parties who exchange it may wish
to remain anonymous, there needs to be a way to hold them accountable for
the information they provide. Secondly, the information exchange protocols we
provide need to be resilient to parties leaving the network, and scalable enough
to handle complex scenarios of value chains with many mediators.

Firstly, for Circularise to be useful, information obtained through it has to
be trustworthy. Companies might be willing to lie to make their product worth B.1
more if they can get away with it (e.g. about whether it contains materials
that are harmful for the environment). It is therefore necessary to incentivise
parties to only share correct information, and to hold them accountable when
they don’t.

Most of the trustworthiness of the data in Circularise is generated by the
work of auditors. The better they can do their job, the more trustworthy the B.1.1
system becomes. It is therefore in the interest of Circularise to help facilitate
the auditing process, by holding parties accountable for the information they
exchange. However Circularise cannot provide any form of special privilege to
the auditors (or any category of users) by design. Therefore, auditing will always
require the cooperation of the audited parties, and go through the traditional
out-of-Circularise channels. What we can ensure, on the other hand, is that
the log of all information transfers are kept forever, so that parties cannot at
a later time deny that information was exchanged, and what information was
exchanged, when requested to reveal that data during an audit.

Another factor in keeping parties accountable for the role they play in Circu-
larise is to ensure that any on-Circularise action can always be traced back to its
real-world actor. This means that parties’ digital identities need to be connected B.1.2
to their real identities, and that connection needs to be public knowledge.

2Not all ”Is there less than X mercury?” questions have to be answered. Otherwise one
might ask this question repeatedly with decreasing-increasing amounts and thus pinpoint the
exact amount. To figure this out is always up to the answerer.
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The second core aspect of reliability is the guarantee that the system ad-
dresses real-world challenges. The main challenge that we face in that respect is
that it is not always known in advance what information will be needed in the
future to close a circular loop. It is sometimes known which information one B.2
needs to attach to a product, during production, which would make recycling
easier. The problem is that the life span of many products can range from sev-
eral years to decades, even more in a circular economy. It is impossible to have
complete knowledge today on what will be important to know in such a distant
future. An example is asbestos, a resource which was used for years before it
became known that it was a health hazard. The system has therefore to be
future-proof and provide techniques for addressing this sort of challenges.

That Circularise needs to be reliable, finally, means that it needs to be
resilient to changes in the network. Since a party is in control of both a piece of B.3
the network information and some information on a product, this information
could be lost when they leave Circularise or when the company goes bankrupt,
merges, or undergoes other forms of change which are common in the trade. It
cannot be expected that a bankrupt party will still be receptive to incoming
queries and contribute actively to Circularise. Therefore the availabilty of the
information present in the system should not have a critical dependency on any
parties, since anyone may stop using Circularise, for whatever reason, at any
time.

1.2 Solution outline

Now that the problem is clear, we can outline the solution.

The Goal (Information needs to be exchanged)

At its core, our information exchange platform consists of a question-
answering protocol. Products are tagged with cirlabels that point to
the product’s manifest: metadata stored online. As products are assem-
bled by parties involved in the value chain into progressively more final
products, at each step the party who manipulates the product will update
the manifest to make the supply chain traceable. The question-answering
protocol consists of a way to use the label of a product to access the meta-
data it points to, and then use it to track down parties in the value chain
who may know the answer to some question.

A (The information has to stay decentralised:)

To keep the information decentralised, we ensure two things:

A.1 (Parties have to remain in control of their products’ in-
formation:) First, that parties can choose what to share, and
with whom to share, about their product information. There-
fore, all parties can determine for themselves how much they can
share without losing valuable information. In particular:
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A.1.1 (Enable to fine-tuning how much information is shared)
We implement for this purpose two question-answering mech-
anisms: push and pull questions. Using push questions, par-
ties can permanently attach the answers to some predeter-
mined questions to the product’s manifest. Parties in need
for information can simply access it from the product’s mani-
fest. Using pull questions, parties in need for information can
find their way to who has it, and they in turn can decide on
each information request what exactly to disclose. To further
limit the amount of information that is disclosed with each
exchange, we implement zero-knowledge information trans-
fer protocols, thanks to which it is possible to only transfer
exactly the information you intend to transfer with the math-
ematical guarantee that no other information is leaked in the
process. Finally, we allow parties to disclose information in a
nonspecific format: ranges instead of precise values. In this
way, parties are allowed to fine-tune the amount of accuracy
of the information they provide.

A.1.2 (Enable fine-tuning with whom information is shared)
In the case of push questions, we allow parties to encrypt the
answers in such a way that only parties belonging to some
groups of parties can read them. This also needs to be de-
termined in advance. In the case of pull questions, parties
have full control over the information and can restrict access
as much as they want to.

A.2 (Parties have to remain in control of their network infor-
mation) Product cirlabels need to contain some information
about their creator’s network, that is, their position in the value
chain. In this way they enable parties in need for answers to
find parties who have them. Network information includes who
supplied the parts of a product and who the finished product
was sold to.
To protect the privacy of all parties, the information is obfus-
cated by hiding each identity behind a secret name known only
to the label’s owner.

B (The system has to be reliable:) This means that:

B.1 (Information should be trustworthy) When a party obtains
an answer to a question, we offer some guarantee that the infor-
mation is trustworthy. We do this in two ways:

B.1.1 (Information owners should be held accountable for
the information they exchange) Any information that
is shared in Circularise will be stored on-chain, forever im-
mutable and traceable. Parties will be able to prove that the
information that was shared is undeniably linked to the data
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that was stored. Therefore the shared information can be
audited, with the cooperation of involved parties.

B.1.2 (Information owners need to be identifiable) Informa-
tion leaves a paper trail that can be followed. Even though
the providers of this information are generally anonymous,
with the cooperation of intermediate parties the actual iden-
tities can be uncovered.

B.2 (Circularise has to be future-proof) The main way by which
we address this is the pull question mechanics: pull questions al-
low parties in need for information to trace back parties able to
provide it, even long after the product was created. Also for this
purpose, we build on open source technology and existing stan-
dards to allow circularise to embrace new future developments.

B.3 (Network should be robust to parties leaving) We achieve
this by allowing questions to be asked directly to any party in
the (anonymised) value chain. This makes the system resilient
to gaps in the network caused by intermediate parties that have
left. So long as the party that owns the information is responsive,
it can be contacted by the party in need of its information.

Any party involved in the value chain of a product can interface with the
product’s manifest, through its label, if it already has one, or create one for it. In
labelling a product and creating a manifest, a party becomes a participant of the
Circularise system. Joining Circularise is thus simply a matter of interfacing
with an existing label, or purchasing one, putting it on a product and then
attach some information to it.

In the rest of this white paper we explain how precisely we build Circularise’s
model to achieve the goals stated above. In Section 2 the technologies are
presented that form the base for Circularise along with a number of technologies
that were considered, but eventually discarded. Section 3 provides the core
concepts of the system as an abstract overview. This is followed by a number of
definitions and terminology in Section 4. In Section 5 a number of protocols are
explained in depth, which are used in Section 6 to verify whether the proposed
solution meets the goals.

2 Related work

Here we share a high-level overview of some relevant existing technologies that
have the potential to help us achieve some of Circularise’s goals. We argue
whether and how these technologies are useful for us.

2.1 ZkSNARKs

Verification with no knowledge was accomplished by using zkSNARKs, a proto-
col first introduced by Bitansky et al. (2012). ZkSNARKs help provide convinc-
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ing evidence that a given statement is true, without giving away any information
beyond this statement. It is theoretically possible but computationally infeasible
to falsify one such proof.

Circularise has requirements where it is essential that only the truth of a
statement is proven, to avoid other information leaking. Namely it is needed to
prove that an inquirer is a member of a group without allowing the inquirer to
be identified.

Bitansky et al. have shown that zkSNARKs exist for at least all NP-problems.
ZkSNARKs are applicable if you can transform the statement you want to prove
into the problem of knowing the answer to a specific NP-Complete problem
(there currently exist zkSNARKs for the quadratic assignment problem and
quadratic span programs). It is therefore not straightforward to use zkSNARKs
in our case, for we’d first need to translate it into an equivalent NP-complete
problem. So the statements that are to be proven need custom-made trans-
formations to an NP-Complete problem. However ring signatures, described in
Section 2.4, are made specifically for this kind of problem and therefore are a
better choice.

A.1 is another case where zkSNARKs are possibly useful to make verifiable
claims with hidden information. However, once again we have found a more
specific solution for this problem (see Section 2.3).

ZkSNARKs are useful in cases where information needs to be hidden. How-
ever, while offering a more general approach, they require too much tailoring
compared to techniques that are made for a specific application. In conclusion,
we do not use zkSNARKs because our problems can be solved by other more
specific, off-the-shelf techniques.

2.2 IPFS

The InterPlanetary File System (IPFS) is a peer-to-peer file sharing system, in-
spired to BitTorrent. The system provides Content Addressable Storage (CAS),
meaning files and their contents are identified by their hash, and can be ad-
dressed as such. In the context of IPFS, files are referred to as objects. An
object can contain content and any number of links to other objects, which are
also simply the hashes of those objects. Under the assumption that you use
a secure enough hashing function, the data structure makes it impossible to
change the contents of an object or the objects under it without changing its
hash.3

In the context of Circularise, using IPFS is desirable if we can use it to store
our manifests. A consideration is the difficulty of using encrypted content and
links on the platform. IPFS has built-in support for object-level cryptography,
as well as having encrypted links to objects available.

While IPFS offers immutability of content4, availability is not guaranteed.
An object is only available for retrieval if at least one connected peer in the

3IPFS currently uses SHA-256 hashes, which are, at the time of this writing, understood
to be secure.

4Under the assumption that SHA-256 is secure
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IPFS network has a full copy of it. If no peer has a copy of the file anymore,
it is simply lost. For normal information, a request can usually be made to
the owner of the information to share it, but this does not work for orphaned
information. This lack of availability poses an issue for orphaned information,
especially so if there are non-technical reasons that this information needs to
stay available (e.g. legal).

IPFS has many desirable properties, but the guarantee of data permanence
is a serious need for Circularise. Besides, IPFS is still under development and
it may be at too early a stage to reliably host a production service such as ours.

If there really turns out to be a need to use it, e.g. because blockchain
storage turns out to be too costly, we should think of a solution that uses IPFS
for bulk storage but keeps essential structural data on the blockchain.

2.3 Zero-Knowledge proofs of ranges

Zero-Knowledge proofs of ranges can be used to prove that x lies in a given range
without revealing the value of x. These proofs work with commitments. Anyone
can commit to a value x1 by creating a commitment E(x1, r1), a value which can
be computed by knowing (x1, r1) but for which it is computationally infeasible
to find any other pair (x2, r2) such that E(x1, r1) = E(x2, r2). Meaning one
cannot feasibly switch the value of x1 during their proof for that commitment.

Commitments can be used to provide a convincing proof that x ∈ [a, b] with-
out revealing the value of x, this is called a Zero-Knowledge Proof (ZKP). Fur-
thermore, since the proof is attached to the commitment, one cannot lie about
the answer without being caught. To implement these Zero-Knowledge proofs
of ranges we adapt the methods introduced by (Chan et al., 1998) and refined
by (Boudot, 2000). A summary of those methods is included in Appendix A.

For Circularise, Zero-Knowledge proofs of ranges are useful as they allow
parties to flexibly give verifiable answers about their sensitive information with-
out revealing the exact content of the information. A.1 states that parties
should be able to verifiably answer questions like ”Does the product contain at
most 5 grams of cadmium?” without revealing the exact amount of cadmium in
the product. This question can be re-written to a range question by changing
”at most 5” to x ∈ [0, 5], where x is the amount of cadmium in the product
(in grams). In fact, any question about the amount of x can be written as a
range question. A question on whether a product contains x can refer to the
range [0,m], where m is the total mass of the product (or perhaps an even larger
amount).

In addition, commitments also help fulfil B.1, make information trustworthy.
Audits are only needed on the commitment of x instead of every answer given
about x. This decreases the amount of audits needed to generate the same
amount of confidence in the system.
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2.4 Ring Signatures

One of the important requirements of Circularise is A.2, the value chain has to
remain a secret. To guarantee this secret, parties need to remain anonymous
when answering questions and when asking them. Anonymous answering is
easier to achieve than anonymously asking a question, since it does not really
matter who gives the answer as long as it is auditable (auditors are an excep-
tion when it comes to learning secrets). In contrast, an inquirer needs to be
authorised by the respondent before an answer is given. The challenge here is
that an inquirer should provide enough information to be authorised while at
the same time remaining anonymous.

Ring signatures were first introduced as a way to leak authoritative secrets
in an anonymous way by Rivest et al. (2001). In a more general sense, ring
signatures can be used to provide a means of giving proof that a message m
was signed by a member of a group without a way to identify which member
it was. An alternative for this property exists in the form of group signatures
which were proposed by Chaum and Van Heyst (1991), however ring signatures
have some advantages over group signatures.

One of these advantages is that there is no notion of prearranged groups and
that there is no need to set anything up. Furthermore, it requires no cooperation
or permission of other members of the group that are included in the signature.
This is useful for Circularise since parties can enter (or leave) the network over
time and there is no need for members of a group to permit a new member to
their signature group.

Another important advantage of ring signatures is that it does not include
a means of revoking anonymity (unlike group signatures). Thus there is no
one who needs to be trusted to keep the anonymity of inquirers. Inquirers do
not need to be audited so there is no need for revoking anonymity. The ring
signature protocol is explained in detail in Appendix B.

2.5 Diffie-Hellman Key Exchange

As there are some answers which should not be heard by intermediate parties,
a secure channel needs to be established between the inquirer and respondent.
If the answers would consist of a single response, providing a single public key
for the inquirer might have sufficed, but for Circularise this is not always the
case. An answer in the form of a ZKP usually requires a challenge and response
kind of communication.

To set up an encrypted channel between an inquirer and respondent with
only secret keys, one can use a Diffie-Hellman key exchange (Diffie and Hellman,
1976). This is an exchange where two users construct a secret key, without ever
actually posting it on the potentially insecure channel. This provides forward
secrecy in that even when the complete exchange is recorded, the created key
can never be obtained by a simple eavesdropper. The full Diffie-Hellman key
exchange is provided in Appendix C.

The constructed secret can have multiple purposes, but for Circularise its
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purpose is to act as the key for symmetric encryption between two parties. Do
note that a Diffie-Hellman key exchange is susceptible to man-in-the-middle
attacks. Therefore it is important that both Alice and Bob are able to verify
each other’s identity (which is also where the ring signatures are useful).

2.6 Blockchain

It has been mentioned before that centralisation of data is unwanted by com-
panies. Circularise is therefore to be a peer-to-peer system. Given the sensitive
nature of the information, furthermore, the data distributed to the peers has to
be suitably protected by encryption. On top of that, parties need to be iden-
tifiable for them to be held liable (i.e. from their digital identity it must be
possible to backtrack their real-world one).

For these reasons, Circularise uses a blockchain. This section describes the
specifications of a blockchain that are required for the implementation of Cir-
cularise and provides motivation for our choice.

2.6.1 Immutable storage

Data is always under control of its owner, so Circularise needs some guarantee
that the owner can be trusted. Audits give some form of trustworthiness of
the data, but auditors need to know what should be audited. It has already
been mentioned in Section 2.3 that commitments are a great way to provide
an immutable promise of a value, but this commitment still needs to be stored
somewhere where the committer cannot change its value unnoticed. This means
we want the commitments to be immutable. Parties need to be allowed to
change their commitment (in case they made a mistake), but when they do
this it should be known it changed, when such a change happened and what
the previous commitment was. This kind of immutability is made possible by
blockchain technology.

Commitments need to be undeniable, not only in their value but also in
their origin. The value of a commitment may be faulty or not, but in order
to do a proper audit, the auditor needs to know who created the commitment.
The creator can be linked to a commitment by providing a digital signature,
but this only means that a commitment can be linked to a public key (and we
need to know who the owner of that key is). This provides a second case where
immutability is required: the identification of parties. Parties need to be linked
to their public keys to keep them accountable for their commitments. In the
same way that the value of a commitment should not be changed unnoticeably,
the link between public key and party should also share this characteristic.

2.6.2 Read access

In addition to the authentication of parties, it is important that the Circularise
network is able to authorise parties for certain tasks (such as managing group
membership). Examples of actions that require authorisation include viewing
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data and adding/updating data. The immutability of the data prevents records
from getting lost due to misbehaving parties.

One issue is that providing authorisation for the viewing of data is not
doable on a public blockchain. As data is public on the blockchain, it is visible
to everyone at all times. This makes it impossible to deny someone access to
data that is stored on a blockchain. Therefore, authorisation for the viewing of
data should be accomplished through different means, like encrypting the data
for the intended recipients.

On the other hand, authorisation for adding and updating data is doable
using almost any blockchain technology. In some cases, the public wallet of an
updater is sufficient in order to determine their rights. However, in case the
group of a public wallet needs to be verified an additional step is required. In
such cases, the group of a wallet needs to be obtained first and then used for
determining authorisation.

2.6.3 Choice of blockchain

We need a blockchain technology which offers immutable storage, facilitates
(classification-based) authorisation and allows the creation of a token. These
requirements are not that special, so Circularise is in principle not linked to a
specific blockchain technology. However, so far as permissionless blockchains
go, the Ethereum blockchain is the ideal candidate.

The Ethereum blockchain provides immutable transactions where its sender
is publicly visible. What makes Ethereum a proper fit for our requirements are
its smart contracts. Because all operations on smart contracts are done through
blockchain transactions, they retain the desired immutability and accountability
of a typical blockchain transaction. Smart contracts can also check whether
someone is authorised to perform a certain action in a flexible way. If the
classifications of all participating parties are stored in a smart contract, other
smart contracts can use that contract to look up the classification of anyone
who is trying to perform an operation.

Ethereum is a widely adopted blockchain with many users, which is essen-
tial for a distributed technology. It also has an active development team and
community. In conclusion, because Ethereum offers decent support for our re-
quirements, and because of its popularity and good developer support, this
blockchain technology is used to implement Circularise.

2.6.4 Limitations

Ethereum has known limitations. One of these is the transaction capacity (low
amount of transactions per second) and another is the transaction speed (it
takes a long time to fulfil a transaction). Given that we are dealing with the
production of products and that each product will need some information stored
on the blockchain, a fully operational Circularise may require millions of trans-
actions on your average Monday. The current state of Ethereum certainly does
not support this scale of transactions.
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Furthermore, the transaction fee of Ethereum can become quite high (there
was a peak at januari 2018 of $ 4.15 per transaction), and this may be a problem
for companies in need of high transaction volumes.

Ethereum, however, is working on improving these limitations. So it is a
question of whether Circularise will grow faster than Ethereum can fix their
problems. Given our requirements, many blockchain services could host the
Circularise platform. For this reason we keep our options open and do not
commit to a specific blockchain.

2.6.5 Token model

No matter what blockchain service we choose to implement cirbase on, the
service is going to have an upkeep. To make circularise a self-sustaining system,
we build into it a payment system based on its own cryptocurrency, circoin.

Fiat currencies are going to be exchanged for circoins, and circoins will be
spent to fuel blockchain operations. Depending on which blockchain Circularise
is implemented, the specifics of the token model may vary5.

The fundamental idea is that the upkeep will have to be supported by the
users. In the case of Ethereum, transaction costs have to be paid by parties
every time on-chain operations (not read-only) are executed. For example, when
a party creates a cirlabel or modifies a manifest. So, some of the actions that
parties can perform on Circularise are going to have a (small) cost to be paid
in circoin.

3 Our proposal: cirbase

Here we provide a concrete description of a platform on which to build all of
Circularise, referred to as cirbase. In addition, a description for systems that
allow all participants to interact with cirbase is presented as well.

3.1 Circularise

Every party having something to do with a product can create a manifest for
it, which become nodes in a network that overlaps the value chain the product
is involved in. Every manifest’s owner corresponds in turn to some party that
had something to do with the product or component and that can, in principle,
provide or request information about it. The network acts as a peer-to-peer
system where every participant provides information about a product while
maintaining ownership of their data. They decide what information to share
and with whom they share it.

Each product/component/resource has a cirlabel attached which links to
a manifest that is stored on the blockchain. This manifest contains information
that is used to answer questions and also link to other manifests. In order to keep
secret which parties are part of the value chain, the identities of the manifest

5Token model will be finalised in V3 of the paper
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Parties
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Figure 3: A depiction of the core Cirbase elements. arrows represent “real-world knowl-
edge”. E.g. P1 and P3 interact in real life: they know one another. arrows denote various
forms of information access: users can access the products they manufacture; the products
contain their labels; the labels point to their manifests; manifests point to other manifests.

creators are anonymised. By following the links, called network links, from a
single manifest one can obtain more manifests and follow their links in turn,
gradually building an anonymous representation of the value chain. However,
all one obtains by doing so is the structure of the network and the names of
the groups of parties involved, not the identities of the individual nodes or their
information.

For example, one may find out that 3 manufacturers, 2 repairers, 1 retailer
and 2 brokers were involved in the value chain, and which was dealing with
which, but not their real identities.

Within this network, only the direct contacts (see the thin arrows between
parties in Fig. 3) will know the actual identities of a manifest’s creator: just
like tier 1 suppliers and recipients know each other’s identities in the real world.
Keeping the knowledge as confined as possible ensures that the information
about the network remains secret, while still allowing for a participant to be
identified by leaving a digital trail that can be followed with the cooperation of
the manifest’s creators.

Besides product level manifests, cirbase also allows the creation of mani-
fests for a more generic level of products such as product lines or brands. This
avoids the need to modify each individual product’s manifest, when the infor-
mation to be updated is actually about a whole class thereof. These higher level
manifests are linked to via so-called product links and will not contain network
links themselves.

It needs not be that everyone in the value chain is part of Circularise, though
this would obviously mean more and better information. If a party involved
in the value chain chooses not to label its product, but its suppliers do, if its
recipients receive the labels they can choose to scan them and link them to their
own, thereby creating a link in Circularise that jumps one step in the actual
value chain. This way, manifests can be linked even though their creators are
not directly connected themselves. This is however a risk for parties that do
not want their suppliers and recipients to get in touch. These are therefore
incentivised to join Circularise as well.

Obtaining information from manifests happens through questions and an-
swers. In Circularise there is an important distinction between two types of
questions: those that a participant has answered beforehand (push-questions)
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and those that can be asked at a later time (pull-questions). Push-questions’s
intended usage is mainly to address questions that are mandatory by law, but
can also consist of custom questions that are defined by other participants. They
can be used when it is important that the answers are available at any future
time, even if the participant that supplied them has left the network. Pull-
questions are appropriate when participants want to obtain extra information
or when the answers are more confidential. These kind of questions are some-
what less important in terms of “answer uptime” but more important in terms
of maintaining ownership of data. The two kinds of questions will therefore be
facilitated in different ways, though both will involve adding information to the
manifest.

For push-questions answers are put directly in the manifest and subsequently
propagated to recipients as the label moves along the value chain. This allows
anyone with access to the manifest and the right authorisation (i.e. belonging
to the right groups) to access the answers.

Pull-questions can be asked to anyone in the value chain. The network
formed by the manifests can be used to find the right anonymised party to
ask the question to. If that party knows the answer and accepts the inquirer’s
authorisation, they can respond through their own secure channel.

Pull-questions can be turned into push-questions when a participant deems
it necessary by updating the manifest. This can be useful when for instance,
a question becomes mandatory in the future, when it was not in the past.
The other way around, push-question to pull-question, is also possible, though
effectively the answer would still be on the blockchain (due to the immutable
history).

3.2 Cirbase protocols: what can participants do?

A participant is any party who has a Circularise wallet. A participant could
be e.g. an individual, a company, a government, a corporation of companies, a
group of governments, an NGO, etc.

Cirbase is a platform that consists of a number of smart contracts that
implement several information exchange protocols that we define. Using these
protocols, participants can exchange information in a way that meets the goals
stated in Section 1.1.

The Cirbase Protocols:

Protocol 1 (Publish a group.) Each participant decides who they trust with their
information. For example, a manufacturer may entrust only certified re-
cyclers with the answers to certain sensitive questions. To implement this
feature, Circularise uses the concept of groups. Any participant can create
and manage groups of participants that they give a label, e.g., “trusted
recyclers”. When a participant shares a piece of information, they can
choose which groups are authorised to view it.
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Each participant is supposed to state which groups it belongs to, and
each group does the same. This acts as a kind of handshake. Only when
a participant is in a groups’s list and vice versa, Circularise will consider
the participant to be a member of the group.

The group’s creator is responsible for who they choose to include in their
group. Whether participants choose to authorise the group to include it
among its members will depend on its trust in the group’s creator or its
current members. This makes it likely, that the most popular creators will
be (supra/inter)national institutions which are bound by strict and verifi-
able rules in the real world. The creator can delegate group management
by adding pointers to other groups to their group, which effectively adds
the members of those groups to their group.

Note that any participant can own multiple groups, and each participant
can belong to multiple groups. For example, participant p could be in p′s
“recyclers” group, but in p′′s “retailers” group. participants who know p
in the real world and know that p is in fact a retailer will draw their own
conclusions about who to trust.

Interactions regarding the creation, modification and deletion of groups all
happen on the blockchain via smart contracts, and as such are transparent
to anyone with access to the public ledger of transactions.

Every group has an asymmetric key pair for which answers can be en-
crypted, so that only members of the group have access to that answer.

Protocol 2 (Add/Remove participant to group) Participants can be added to ex-
isting groups and removed from them. These operations are fairly straight-
forward, but they do require extra management of the group key.

Extra management of the group key pair is required because it is unwanted
to let participants, that leave a group G, access any new information
encrypted for G.

Protocol 3 (Manage lists of questions) Circularise supports the formulation of
question lists. Any participant can create a question list. For example, a
company like KPMG can choose to create their own question list and par-
ticipants can choose to subscribe to that list, i.e. answer to every question
in the a list, to gain some form of recognition or certification. KPMG will
then be the quiz master of this question list. To avoid tampering, the lists
are stored on the blockchain.

A question list can only be updated by its quiz master. An update of a
question list will create a new version of that list. Participants specify
which version of the question list they subscribe to. As the list evolves,
the subscription does not update automatically. (In future versions, this
will be an optional feature.) This allows users to choose whether they
still want to support the latest version, as an update might include new
questions that they do not want to answer.
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Quiz masters are motivated participants who want to actively contribute
to the system. They need not be individuals: like any participant, quiz
masters can also be a collective decision-making entity, such as an assem-
bly, consortium or board.

Question lists can also contain questions which participant are legally
obliged to answer. There is no mechanism in cirbase that can enforce
that they answer these questions, but the identifiers can be made known
by a trusted participant such as Circularise or the government. However,
motivation could come from formal or informal recognitions (awards, cer-
tificates...).

Protocol 4 (Subscribe to question lists)

Participants can subscribe to a question list to show their intention of an-
swering those questions. The list of subscriptions, plus information about
which groups are allowed to read the answers is included in the manifest.
This information is useful for interested participants to determine whether
their questions are going to be answered or not.

A notification will be pushed as an event on a smart contract whenever a
question list is updated. It is possible to be subscribed to multiple lists
(also multiple versions of the same list).

Protocol 5 (Publish or modify a manifest) A participant can publish a new man-
ifest or modify an existing one that they own.

They do so by creating an empty data structure and populating it with
information such as general product information, push-questions and their
answers, links to other manifests, subscribed question lists and some anonymised
ownership information.

The manifest is linked to a cirlabel and published on the blockchain.
Although the manifest can be viewed by anyone, the identity its creator is
anonymised and sensitive information like answers to push-questions and
product links are encrypted.

Almost all information in a manifest can be modified, but only by its
creator. Both the old version and the modification will still be available
on the blockchain due to the immutable history, which prevents malicious
participants from tampering with their manifests.

Protocol 6 (Ask a Push-Question) In this case the participant attempts to read
the stored answers of a push-question. The answers can be found using the
information in the product’s manifest linked to its cirlabel. So whether
a participant can access the answer of a push-question depends on the
group(s) that they are a member of. The inquirer may also follow the
network links to find, for example, whether the question is answered in
the components of the product, or even by someone else in the value chain.

Answers can be either public, or encrypted for specific groups. For ex-
ample, a customer that bought a product may only be allowed to see
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general product information, whereas a verified recycler/auditor may also
see claims made about the particular contents of the product: the way it
was manufactured, the origin of the materials, etc.

Protocol 7 (Ask or answer a Pull-Question) In this case the participant becomes
an inquirer or respondent. The inquirer uses the information in the man-
ifests, like the network links, to find a manifest whose creator has (part
of) the answer. They then use the anonymised identity of the creator to
create a secure channel with them and ask the question.

The Circularise system guarantees that neither the inquirer nor the re-
spondent will know exactly which entity they are in contact with (unless
they willingly disclose that information).

At the same time, they will have the certainty that the inquirer is of the
claimed group and that the respondent is the real owner of a manifest in
the relevant value chain. The group of an inquirer can be used by the
respondent to determine whether they want to answer the question.

Protocol 8 (storing and verifying identification) For B.1, the trustworthiness
of information, it was stated that participants need to be held account-
able for their behaviour. As not all enforcement of rules (e.g. fines) can
be handled through Circularise, the real-world identity of participants is
an important asset to allow this enforcement. With this protocol, the
Circularise identity of a participant is publicly linked to their real-world
identity.

Every participant remains, however, the sole owner of its secret (anonymised)
identities used for publishing manifests.

4 Terminology and definitions

This section contains a formal definition of the important parts of the Circularise
system. Section 4.1 gives a definition for participants and groups. Following
that, Section 4.2 describes the format of information relating to push- and pull-
questions. Then, in Section 4.3 a full definition of the manifest is given. Finally,
registries for managing identity are defined in Section 4.4.

4.1 Participants and Groups

A participant is potentially any subject that has a wallet address in the block-
chain platform circularise will be implemented in. So for simplicity’s sake, we
say that the set of all participants coincides with the set of all wallets.

Definition 1 (Participant ) The set of all wallets is P. A participant is then
p ∈ P

A group is a named list of participants. Crucially, a group is a “for internal
use” denomination, and as such we don’t envision a unified, fixed list of them.
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If a future group creator sees fit to categorise all of the participants she knows
as “potatoes” or “squirrels”, that’s up to them.6

Since audits can only occur through external channels, the categorisation of
some participant as an auditor (or some other equivalent label) only has the
in-system effect of vouching for the trustworthiness of the information that the
auditor publishes on Circularise, so long as one trusts the categorisation in the
first place. So if a malicious party P starts to label itself or another party Q as
an auditor, third parties will only trust that labelling as much as they trust P ’s
judgement, or, if they know Q directly, their own.

Besides a collection of members, groups contain additional information. First
of all there is a participant linked to the group that is considered the owner.
Additionally a unique, possibly descriptive name is used identify every group.

The final piece of information is a public key, which can be used to encrypt
data specifically for the members of a group (the members only having access
to the associated private key). New key pairs have to be generated every time
the group’s composition changes, to prevent leaving/banned members to retain
group privileges.

Definition 2 (Group of participant p) A group G, created by a participant
p is a (owner, name, members, public key) tuple, where the name is unique,
members is a list of participants and pointers to other groups (‘embedded groups’),
and public key is the public key of the group. The group name string needs to
be unique for p.

A group name n is a string; the set of all names N is a subset of all strings:

N ⊆ str

We call a 〈p, n〉 pair a ‘pointer’ to a group, in the sense that one can iterate
through p′’s groups until it finds a group named n. A pointer t is defined as:

t := P×N

Let T be the set of all pointers.
A group is:

G := P×N × P(P ∪ T)× N×Kpub

Where Kpub is the set of all public keys. Subject to the constraint ∀G =
〈p, n, P, kpub〉, 〈p, n〉 /∈ flatten(P ). In words: no group contains a pointer to
(a group that contains a pointer to(...)) itself.

The set of all groups is G. We use the short-hand notation:

Gp := {G ∈ G | G = 〈p, , , 〉}

The definition of groups is recursive. When a group GA contains a pointer
to another group GB , the members of GB are also considered members of GA.

6Presumably, not many will use those lists.
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The same holds for when GB points to a group GC , then the members of GC
are also considered members of GA. All of these members (direct and indirect)
are given access to the private key that is paired with group GA’s public key.
We formally define this relationship with the members function:

members(〈p, n, P, 〉) := (P ∩ P) ∪ {m | m ∈ members(Gp′ [n′]), 〈p′, n′〉 ∈ P )}

Members of a group can change over time. They can get added, or removed
from the group, or any of the groups that it (in)directly points to. The term
generation is used to refer to the specific composition of a group at a certain
point in time. Whenever a member is added or removed, the generation is
incremented. In general we always refer to the last generation of a group,
though in some cases there is a need to refer to older versions of a group in
which case the generation is specifically mentioned. The generation of a group
G is denoted as Gi, where i ∈ N.

4.2 Questions and Answers

The core information that can be exchanged on the circularise system are ques-
tions and answers. Questions are predefined and answers relating to their prod-
ucts are linked to the questions by participants.

Questions are freeform strings that have to be manually answered. On the
other hand, questions contain metadata concerning their topic (e.g. whether the
question is about mercury), this information is used by participants to verify
the correctness of the answer (using commitments, as explained later).

Definition 3 A question Q contains a (human-readable) description and a
topic. Similar to group names, the set of all descriptions D and the set of
all topics T are a subset of all strings:

D ⊆ str, T ⊆ str

A question Q is then a pair:
Q = 〈D,T〉

4.2.1 Question lists

Question lists work in much the same way as groups: everyone can publish their
own question list and import questions from other lists.

We call Lp the set of question lists published by participant p. For an
Lp ∈ Lp, Lp[i] is the ith question of that list. Lp[i] either contains a string
(description of the question) or a pointer to another list’s question Lp′ [j], where
p′ ∈ P and Lp′ ∈ Lp′ . Note that the pointed-to question can be from a different
list of p or from the list of a different participant. Finally, we define the set of
all question lists L as follows:

Definition 4 The set of all question lists is L =
⋃
p∈P

Lp
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4.2.2 Question/answer pairs

The combination of the questions and answers are called question/answer pairs
(QA pairs). QA pairs are the pieces of data that are used when it concerns
push-questions. As conforms to the name of push-questions, their data is stored
in manifests and forever pushed along in the value chain.

The answers of the QA pairs can be encrypted or not. If they are encrypted,
a symmetric encryption scheme is used. The symmetric key is then encrypted
for the authorised groups and passed along.

Without loss of generality we assume that a QA pair is a pointer-string pair
(the pointer being a reference to the question in a question list). When asking
a push-question, you are in fact just looking up a piece of data that is linked
to the question. Thus the answer is already there, all you need is the proper
authorisation to see it.

Definition 5 (QA pairs) Question/answer pair are encoded as:

QA =


〈{L1[i1], . . . , Ln[in]}, S〉 if public,

〈{L1[i1], . . . , Ln[in]}, Ek(S), {G1, . . . , Gm},
{EG1

(k), . . . , EGm
(k)}〉

otherwise

Where {L1[i1], . . . , Ln[in]} are all the questions that S is an answer to. The
questions may be synonyms, or simply different questions answered by the same
answer. {G1, . . . , Gm} is the set of all groups that are allowed to read S. Ek(S)
is S encrypted with a symmetric key k. The authorisation of groups is realised by
{EG1(S), . . . , EGm(k)} which are copies of k encrypted for each of these groups.

4.2.3 Topic/commitment pairs

Pull-questions are usually questions that have been defined after the product
was created (it is infeasible to update all the linked manifests for a question).
So even though participants will generally have a locally stored QA pair, this
data will not be stored in the manifest. To keep the answers to these types of
questions verifiable, additional information is added to the manifest in the form
of topic/commitment pairs (TC pairs).

TC pairs contain information that is more generic than those of QA pairs,
which have been made for specific questions. Instead of specific questions, they
focus on storing verifiable information on topics. Currently the only possible
commitments are those of numeric values. The commitment on the quantity
of an ingredient can be used to answer (in a verifiable way) the exact amount,
a threshold or a range of the quantity of an ingredient. So even though it is
unknown which questions will be asked in the future, there exists a subset of
answers which can be verified with commitments that have been provided in the
past. Answering pull-questions using existing commitments, while not required,
will make the information more trustworthy.
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Definition 6 (TC pairs) Topic/commitment pairs are encoded as:

TC = 〈T,C〉

Where T ⊆ T is the set of synonym topics that C is a commitment for.

4.3 Manifests

A manifest is a bundle of information linked to a cirlabel, and published on
the blockchain. They are used by both inquirers and respondents to acquire
information for asking and answering questions. Additionally, the manifest can
also be used for verifying answers.

The anonymous identity of the creator is recorded on the manifest which
allows creators to claim ownership of the manifest when needed. Because a new
anonymous identity is used for each manifest, it cannot be directly linked to the
respondent’s public identity without additional information. The real identity
of the creator is also stored in the manifest, encrypted with the holder public
key. This way, only a holder (typically a tier 1 recipient) can reveal the creator’s
public identity.

A manifest can also have any number of holders, a holder being any party
who has or has had physical access to the cirlabel, in which a private key is
stored. Anyone with access to the label can use this private key and therefore
become identified as the holder of the label. Parties are required to store the
private holder key when they see it, so that they can continue to act as holder
after they no longer have possession of the label. This is especially important
for audits as this is the only way to identify manifest creators.

The information a manifest contains can have different security levels. Some
information can be public knowledge, while other information might be intended
for more specific recipients and therefore be encrypted for specific groups.

Manifests also contain TC pairs for answering pull-questions. These commit-
ments are made for the bill of materials. If the list of materials is confidential
in addition to the amounts, the information can be obfuscated by adding to
the manifest spurious TC pairs about materials that are not in the product –
commitments for the value 0. The commitments allow auditors to verify the
veracity of claims made by the participant.

Network links are used to point to the child and parent manifests. The par-
ent manifests are the manifests of the components and raw materials that were
involved in the creation of the product. The child manifests are the manifests
of any product(s) of which this product is a material or component. In a man-
ufacturing context, there is usually only one child. For example, the network
links of a motherboard’s manifest may point to the manifests of all the chips
present on the board as well as the manifest of the laptop that is manufactured
using the motherboard.

For some parties, like production companies, many of the created products
will have very similar information in their manifests. For example, all products
from a product line might have the same material composition and user man-
ual. To avoid unnecessarily duplicating information in this manner, we allow
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a manifest to include references to virtual manifests that contain information
for the whole product line, while that manifest in turn could point to a mani-
fest containing the warranties that are shared by all electronic products of that
company. These links are called product links.

In general, product links are encrypted to preserve the anonymity of the
manifest creator. If a product line manifest were publicly linked to all products
of that line, one could expose the owner of all of those manifests by identifying
the owner of one them. Furthermore the higher level manifests are more likely
to contain company-identifying information, such as a user manual or a prod-
uct warranty. This information could be used to link companies to (product)
manifests and expose the classified structure of the value chain.

Summarising, the entries of a manifest can be:

1. push QA pairs

2. a bill of materials in combination with commitments (is added as TC
pairs)

3. a pointer to a collection of question list

4. pointers to product line manifest, model manifest, etc: product links,
encrypted for the manifest holder

5. pointers to the manifests of parent and child products: network links

6. pointers to the manifests of the parts of the product - and the other
products that the manifest’s product is a part of7

7. the manifest holder

8. the manifest creator (anonymous address)

9. the manifest creator’s real (corporate) identity, encrypted with the holder
key

10. any other metadata, e.g. a serial number (which should not give away the
identification of the creator)

Definition 7 (Manifest Mc of a cirlabel c) A manifest of a cirlabel c is a
list of key-value pairs, i.e. a dictionary.

Mc ∈ P(StmtMc
)

7the parent-child product relationship means that a product was ”made of” another prod-
uct, such as a batch of butter is made from a batch of milk. The part-whole relationship means
that a product maintains its integrity and could in principle be recovered, or exchanged for
an equivalent part, such as when a hard drive is part of a laptop. This also means that the
parent-child relationship is permanent, the part-whole relationship can be updated over time,
e.g. when the hard drive is replaced.
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Valid key-value pairs are statements of the following types:

StmtMc
::= ‘push qa’ 7→ P(PushQA) |

‘pull tc’ 7→ P(PullTC) |
‘question list’ 7→ L |
‘network links’ 7→ P(Mc) |
‘product links’ 7→ P(Eh(Mc)) |
‘holder’ 7→ P |
‘creator’ 7→ P |
‘reveal id’ 7→ Eh(ppublic) |
‘metadata’ 7→ string

where Eh is a function that encrypts its argument for the holder.

4.4 Circularise Identities

To make the system trustworthy, participants’s identities on the blockchain
network need to be connected to their real-world identities. On the other hand,
to make the communication protocol private, each participant also needs to
have secret identities which can be used to perform actions anonymously on the
blockchain.

4.4.1 Public identities

For the former purpose we introduce registries, a bijection between real-world
identities and Circularise participants.

Definition 8 (Public Registry) An identity i is a string, starting with an
alphanumeric character; the set of all identities I is a strict subset of all strings:

I ⊂ str

A registry is then encoded as:

R = Ic ←→ P

where Ic = {i0, i1, . . . , in} are all identities that have been claimed. We in-
troduce the notations RIc 7→P and RP 7→Ic for accessing the bidirectional mapping.

Registries are publicly, immutably stored on the blockchain for all to see. The
validity of such identities is peer reviewed. The parties that do business with
a participant are in the perfect position to check whether the identity that is
linked to the manifest of a product corresponds to that of the one they are
buying the product of.
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4.4.2 Secret identities

For the latter purpose, each participant has to choose a secret identity every
time they create a manifest.8 Secret identities are used to tag the manifests
created by the participant. Each participant will then be in possession of their
own Private Registry, which is nothing but a list of all of the secret identities
hey have created in the past to sign the manifests they have published.

Definition 9 (Private Registries) A private registry of a participant p is en-
coded as:

Rp = Ic,p

where Ic,p is the set of all identities that have been claimed by p.9

5 Cirbase Protocols implementation

We have explained all concepts and the relationships among them. Next we
make this more precise and explain how the implementation works.

5.1 Implementation of Protocol 1: Publishing a group.

Publishing (and creating) a group consists out of a number of steps. Creating
the group itself with an initial set of members is the first. Then, an asymmetric
key pair is generated of which the public key is published along with the other
meta-data of the group (owner, members and name). The private key, however,
is not immediately distributed among the prospective participants. Before they
obtain the private key, they need to confirm that they want to be part of the
group.

Algorithm 1: publishing a group

1 input : group c r e a t o r p , name n , participants P , groups G
2 generate key pa i r (p0, s0) // pub l i c and s e c r e t key
3 l e t G1 := (p, n, P ∪G, p0)
4

5 d i s t r ibuteKey (G1,members(G1), s0)
6

7 pub l i sh group G1

8 end
9

10 fun d i s t r ibuteKey
11 input group G , participants P , s e c r e t key s0
12 foreach p ∈ P
13 l e t Ep := encrypt ion func t i on us ing p ’ s pub l i c key
14 send Ep(〈G, s0〉) to p

8Or every product line; or every so many manifests they create. The more often they
change the secret identity, the more protected their identity is.

9Assuming the secret identities are created with a strong random generator, the probability
of a duplicate occurrence can be made small enough.
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15 end
16 end

When someone leaves Network information can be shared between peers,
though initially encrypted. The key to unlocking this information is held by
the provider of the network information (though they do not actually need it as
they have access to the information unencrypted).

5.2 Implementation of Protocol 2: Add/Remove a partic-
ipant to/from a group

The main challenge of a dynamic group is the management of the group’s key
pairs. New members should be able to decrypt old information and leaving
members should not be able to decrypt new information.

When a participant leaves a group, a new public-private key pair is generated
by the introducer. The public key is published and linked to the group, the
private key is distributed among the remaining members. Because the leaving
party does not obtain the new key pair, they cannot decrypt information which
was made after their departure.

Due to the generation of new key pairs, a situation arises where answers
that were created at different dates require different keys to access even when
they were encrypted for the same group. If a participant, that joins a group, is
only given the current key, they will not be able to read the answers of older
questions. So instead of just giving the current key, the list of older private keys
is sent to joining members along with the current one.

Leavers will still retain access to the answers to older questions (which were
shared when they were still authorised to read them). We don’t consider this
to be a solvable problem, because when a party had access to the information
in the past, they could have made a copy anyways. The only guarantee is that
they will not be able to access information that is added after their access has
been revoked.

Algorithm 2 describes how to add or remove an entity to/from a group. This
entity can be either a participant or a (pointer to a) group.

Algorithm 2: add/remove a participant to/from a group

1 input group Gr ,
2 participant/group e
3 a ∈ {remove, add}
4 l e t 〈p, n, P, kr

p〉 := Gr

5 i f a = remove
6 generate key pa i r (kr+1

p , kr+1
s ) // pub l i c and s e c r e t key

7 l e t Gr+1 := 〈p, n, P \ {e}, kr+1
p 〉

8 d i s t r ibuteKey (Gr+1, P \ {e}, kr+1
s ) // from Algorithm 1

9 e l i f a = add
10 l e t kr+1

p := kr
p , kr+1

s := kr
s

11 l e t Gr+1 := 〈p, n, P ∪ {e}, kr+1
p 〉
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12 for i ∈ [1, r + 1]
13 d i s t r ibuteKey (Gi, {e}, ki

s) // from Algorithm 1
14 end
15 end
16

17 pub l i sh Gr+1

18 end

5.3 Implementation of Protocol 3: Manage lists of ques-
tions

Every participant can publish a question list on the appropriate smart contract.
The publisher of a question list can manage it by adding or removing questions,
or deleting the list.

To publish a question list, one needs a name for it (and the initial list of
questions). All newly created question lists have version number 1. The version
number is going to increase as the list is modified.

Algorithm 3: Creating a question list

1 input name n , ques t i on l i s t L ,
2 pub l i sh (n,L, 1)
3 end

Updating a question list L involves creating a duplicate of L, appending to it
some new questions or removing from it some old ones and publishing the result
under the same name, with the version number increased by one. To avoid data
duplication, the references of re-used questions are used instead of their actual
content.

Algorithm 4: Update a question list

1 input name n , removed que s t i on s Qrem , added que s t i on s Qadd

2 l e t 〈n,Lold, v〉 := l a t e s t ques t i on l i s t
3 l e t Lref := r e f e r e n c e s to Lold \Qrem

4 l e t Lnew := Lref ∪Qadd

5

6 pub l i sh 〈n,Lnew, v + 1〉
7 end

5.4 Implementation of Protocol 4: Subscribing to and re-
viewing a question list

Automating your decision of whether you want to subscribe to a question list
or not could be done in one of two ways. The first option is to create a parsing
tool for questions and let an AI decide whether the question list is acceptable.
The second option is to unconditionally trust a given quiz master and accept
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all question lists that they make. Option one involves some fairly complex
technology and option two requires one to trust the quiz master, which may not
always be the case. Deciding which question lists to subscribe to will therefore
likely be a manual task for the participant, unless they want to go through the
trouble of automating the task, or they choose to trust a third party.

When a participant decides they want to subscribe to a question list, they
have to use the protocol given below. As the input to the algorithm, we provide
a manifest and a list of tuples consisting of:

• a question q

• a question type k ∈ {‘push qa’, ‘pull qa’}

• either an answer or commitment a

• authorisation set g ∈ P(G) ∪ {‘public’}

Algorithm 5: Protocol subscribing to a question list

1 input : manifest M ,
2 s e t o f t u p l e s T := {t|t = 〈q, k, a, g〉}
3 l e t M ′ := M
4 foreach 〈q, k, a, g〉 ∈ T
5 i f g i s ‘public’
6 M ′[k] := M ′[k] ∪ 〈〈q〉, a〉
7 else
8 l e t e := encrypt a for each o f the groups in g
9 M ′[‘push qa’] := M ′[‘push qa’] ∪ 〈〈q〉, g, e〉

10 end
11 end
12 pub l i sh M ′ as an update to M
13 end

5.5 Implementation of Protocol 5: creating a manifest

When a party creates a product, they need to create and publish a new manifest
for it. How to create a manifest is described in Algorithm 6. Given that p is the
party creating the manifest, we choose p′ to be the anonymous one-time identity
of p, h the public holder key, Ml to be the set of manifests related to product
links, and Mi is the set of manifests of the parent and child products (network
links). Finalle, Mj is the set of manifests that are part of the manifest being
created. So for example if the manifest is being created for e.g. a computer, Mj

could contain screen, hard drive, keyboard, etc.

Algorithm 6: Protocol create manifest

1 input : cirlabel c ,
2 pub l i c ho lder key h ,
3 anonymous party p′ ,
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4 ques t i on l i s t L ,
5 s e t o f QA p a i r s PushQA ,
6 s e t o f TC p a i r s PullTC ,
7 s e t o f man i f e s t s Ml = {Ml1 ,Ml2 , . . . ,Mln} ,
8 s e t o f man i f e s t s Mi = {Mi1 ,Mi2 , . . . ,Mim} ,
9 s e t o f man i f e s t s Mj = {Mi1 ,Mi2 , . . . ,Mio} , %[pwp1 ] added input par t s

10 s t r i n g meta ,
11

12 l e t M := an empty d i c t i o n a r y
13 s e t M [‘question list’] := L
14 s e t M [‘metadata’] := meta
15

16 s e t M [‘network links’] := {pt | pt is a pointer to m, m ∈Ml}
17

18 l e t Eh := encrypt ion func t i on for h
19 s e t M [‘product links’] :=
20 {e | e = Eh(pt), pt is a pointer to m ∈Mi}
21 s e t M [‘parts’] :=
22 {e | e = Eh(pt), pt is a pointer to m ∈Mj} %[pwp1 ] added par t s d e c l a r a t i o n
23

24 s e t M [‘push qa’] := PushQA
25 s e t M [‘pull tc’] := PullTC
26 s e t M [‘creator’] := p′

27 s e t M [‘holder’] := h
28

29 pub l i sh M as the mani f e s t o f c
30 end

In Algorithm 7 (updating a manifest) a new manifest is created as well,
with the exception that a signature sp′ over all other inputs is added to the
list of inputs. This signature should demonstrate knowledge of the secret key
counterpart to p′, the creator of manifestM . If the signature is valid, an updated
version of M is published.

Algorithm 7: Protocol update manifest

1 input :
2 manifest M
3 ques t i on l i s t L ,
4 s e t o f QA p a i r s PushQA ,
5 s e t o f TC p a i r s PullTC ,
6 s e t o f man i f e s t s Ml = {Ml1 ,Ml2 , . . . ,Mln} ,
7 s e t o f man i f e s t s Mi = {Mi1 ,Mi2 , . . . ,Min} , %[pwp1 ] t h i s i s now input parts , not p l i n k s
8 s t r i n g meta ,
9 s i g n a t u r e sp′

10

11 l e t p′ := M [‘creator’]
12 l e t h := Mc[‘holder’]
13

14 i f sp′ i s not a v a l i d s i g n a t u r e w. r . t p′
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15 return
16 else
17 l e t M ′ := M
18 s e t M ′[‘question list’] := L
19 s e t M ′[‘metadata’] := meta
20

21 s e t M ′[‘network links’] := {pt | pt = pointer to m, m ∈Ml}
22

23 l e t Eh := encryption function for h
24 s e t M ′[‘parts’] := %[pwp1 ] changed from p l i n k s to par t s
25 {e | e = Eh(pt), pt = pointer to m, m ∈Mi}
26

27 s e t M ′[‘push qa’] := PushQA
28 s e t M ′[‘push qc’] := PullTC
29

30 pub l i sh M ′ as an update to M
31 end
32 end

As you can see, we only allow updating the ‘parts’ field of a manifest, and
not the ‘network links’ field. The reason is, the fact that a product was made
using some other product cannot be changed, while the fact that a product
currently contains a part that can be swapped for another, can.

Linking to a manifest can be done by anyone, but network links have to
be confirmed by parent manifests for them to be considered valid links in the
network. In Algorithm 8 the creator of the parent manifest Mp chooses to
confirm a link made by the child manifest Mc.

Algorithm 8: Protocol confirm link manifest

1 input :
2 manifest Mc ,
3 manifest Mp ∈Mc[‘network links’] ,
4

5 l e t M ′p := Mp

6

7 s e t M ′p[‘network links’] := Mp[‘network links’] ∪ {Mc}
8

9 pub l i sh M ′p as an update to Mp

10 end
11 end

5.6 Implementation of Protocol 6: Asking a push-question

When a participant wants to get the answer to a push-question about a product,
they scan the cirlabel to find its manifest. If the manifest does not contain
a QA pair that answers the question directly, they can recursively follow the
network links to find manifests that do, and combine the answers. For example,
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if the manifest of a T.V. does not specify whether it contains mercury, they can
still obtain a full answer if each of its components do specify it, or a partial
one if only some do. For each QA pair, the participant has to check if they are
authorised to read it. The exact protocol is shown in Algorithm 9.

Algorithm 9: Protocol for asking a push-question

1 input : cirlabel c , ques t i on q , p a r t i c i p a n t p
2 l e t M := the mani f e s t that c l i n k s to
3 l e t M := f indConta in ingMan i f e s t s (q,M, ∅)
4

5 i f M = ∅
6 return // The ques t i on i s not supported
7 end
8

9 l e t A := ∅
10 foreach M ′ ∈Ms

11 f i n d 〈L,G,E〉 ∈M ′[‘push qa’] , where q ∈ L
12

13 i f G = ∅
14 s e t A := A ∪ E // Answer i s pub l i c
15 else
16 f i n d an i such that p ∈ Gi ∈ G
17 i f i was found // Check i f p i s author i s ed
18 l e t Di := decrypt ion func t i on o f Gi

19 l e t k := Di(Ei) // Decryption o f EGi(k)
20 l e t Dk := decrypt ion func t i on o f k
21 s e t A := A ∪Dk(Ek(S))
22 end
23 end
24 end
25

26 return q dependent merge o f A
27 end
28

29 fun f i ndConta in ingMan i f e s t s
30 input ques t i on q , manifest M , accumulator r
31 l e t Apush := 〈L,G,E〉 ∈M [‘push qa’], where q ∈ L
32 l e t Apull := 〈T,C〉 ∈M [‘pull qa’], where q i s covered by T
33

34 i f Apush or Apull e x i s t
35 s e t r := r ∪M
36 else
37 foreach Ml ∈M [‘network links’]
38 l e t M ′l := f indConta in ingMan i f e s t s (Ml, q, r)
39

40 i f M ′l e x i s t s
41 s e t r := r ∪M ′l
42 end
43 end
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44 end
45 return r
46 end

5.7 Implementation of Protocol 7: Asking a pull-question

Pull-questions require a more involved Q&A protocol than push-questions. As
the answers are not stored in the manifest like in push-questions, participants
need to first find the creator of the manifests, then ask them the question. By
scanning the cirlabel of a product, one can find the manifest. The manifests
that contain relevant information can be found by recursively tracking the net-
work links through the network and making use of the topics of TC pairs to
filter for relevance. For each of the relevant manifests, the inquirer does not
(and shall not) know the real identity of the party that created it, but they can
read their anonymous identity, and the groups they belong to, off the respective
manifests.

Before posing a question, the creator of the manifest that contains the ap-
propriate topic is asked which groups are authorised to receive an answer to the
question. The response determines for which group the inquirer should create a
ring signature (if they are part of one). If the respondent does not answer this
question, they can respond that no one is authorised for this question. Respon-
dents are advised to keep track of asked questions they do not answer so that
they can decide whether they want to support the questions in the future.

With a proper signature, an inquirer can then pose the question and provide
a proof of authorisation for the answer. After posing a question to all the
creators of the relevant manifests, the inquirer can wait for the answers.

Algorithm 10: Asking a pull-question

1 input cirlabel c , ques t i on q , i n q u i r e r i
2 l e t M := the mani f e s t that c l i n k s to
3 l e t M :=
4 f i ndConta in ingMan i f e s t s (M, q, ∅) // from Algorithm 9
5

6 foreach M ′ ∈ M
7 send 〈M ′, q〉 to M ′[’creator’]
8 end
9 end

10

11 fun onAuth
12 input mani fe s t M , ques t i on q , groups G
13 l e t i := identity of inquirer
14 l e t ks := p r i v a t e key o f i
15

16 f i n d j such that i ∈ Gj ∈ G
17 i f no j found
18 return // I n q u i r e r not author i s ed
19 end
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20 l e t K := {kp | kp = public key of p, p ∈ Gj \ {i}}
21 l e t S := r ing s i g n a t u r e on Q , us ing K and ks
22 send 〈M, q, S〉 to M [’creator’]
23 end
24

25 fun onAnswer
26 input ques t i on q , answers X
27 return q dependent merge o f X
28 end

When a respondent is asked who is authorised to access a pull-question
answer pertaining to some manifest, they use their local system to retrieve the
list of the groups which have access. Such list is sent to the inquirer so that
they can provide a ring signature to prove that they belong to any one of them.
If they can’t, they won’t get the answer.

Next, the respondent can verify the provided signature. If this succeeds, the
answer is forwarded to the inquirer. This answer can either be a direct answer
to the question, or an answer in the form of a proof of ranges (see Appendix B).

Algorithm 11: Answering a pull-question

1 fun onAuth
2 input mani fe s t M , ques t i on q , i n q u i r e r i
3 l e t G := a u t h o r i s e (M, q) // groups author i s ed f o r 〈M, q〉
4

5 send 〈M,Q,G〉 to i
6 end
7

8 fun onQuestion
9 input mani fe s t M , ques t i on q , s i g n a t u r e S , i n q u i r e r i

10 l e t G := a u t h o r i s e (M, q)
11

12 i f S author i s ed for one o f G
13 l e t x := answer to q
14 send 〈q, {x}〉 to i
15 end
16 end

The inquirer receives either a single answer, or a collection of more answers
that will have to be merged, depending on which parties in the value chain have
the topic in their lists. How the answers are merged depends on the question.
For a question on the total amount of a certain ingredient included in a product,
the answer is the sum of all answers, while a question on whether there is more
or less of an ingredient than a certain threshold requires a different calculation
which might only have a case-by-case solution.

5.7.1 Security

When the answers are to remain a secret for anyone but the inquirer and re-
spondent, Diffie-Hellman key exchange comes into play.
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Following the protocol for executing a Diffie-Hellman key exchange (see Ap-
pendix C), we consider Alice the inquirer and Bob a respondent. Alice needs
to send three values (along with the question): the two chosen prime numbers
g and N , and the generated number A = ga mod N for Alice’s secret a. Bob
uses these values, and his own secret b, to calculate the shared secret s = Ab

mod N . The secret is then used to encrypt the answer x with the symmetric
encryption function Es before responding. Bob’s response is the encrypted an-
swer Es(x), and the additional number B = gb mod N which Alice requires
to calculate s herself. Using Bob’s response, Alice calculates the shared secret
s = Ba mod N and decrypts the answer x = Es(Es(x)).

Know that a Diffie-Hellman key exchange is susceptible to man-in-the-middle
attacks. It is possible for an intermediate Charlie to create his own parameters
upon receive those of Alice. By sending Alice and Bob both proper responses,
Charlie can create two simultaneous tunnels and become able to read messages
of both Alice and Bob. Thus Charlie can pass on the signed question of Alice
to Bob and obtain an answer that is meant for Alice.

Man-in-the-middle attacks are countered by letting Alice sign the complete
message instead of only the asked question using ring signatures. This gives Bob
the guarantee that both the question and the Diffie-Hellman parameters come
from an authorised participant. Bob is not required to sign his parameters as
Alice does not need the same guarantee of authorisation. If someone alters the
response for Alice, the only result will be that she will not be able to read the
answer. This would be annoying, but not harmful. Bob’s answer will not have
been read by an unauthorised party.

Similarly to providing a tamper-proof tunnel between the respondent and the
inquirer, if an answer is based on a commitment they can be given by providing
extra information in the answer. The proof of ranges of Boudot (2000) does not
require a challenge of the inquirer. Thus any response given by the respondent
can include the complete proof for a commitment without requiring additional
communication.

5.8 Implementation of Protocol 8: Storing and verifying
identification

Each participant p can claim a name conforming to Ethereum Improvement
Proposal (EIP) 137. Names are represented on-chain as a hash, which allows
us to have identifiers that are theoretically unbounded in length. There is only
one public registry.

Algorithm 12: Claiming an identity

1 input i d e n t i t y i ∈ I , p a r t i c i p a n t p ∈ P
2 l e t R := f e t ched r e g i s t r y
3 i f RP 7→Ic [p] i s de f ined
4 return // mapping a l r eady e x i s t s
5 e l i f RIc 7→P[i] i s de f ined
6 return // mapping a l r eady e x i s t s
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7 else
8 R′ := R ∪ {(i, p), (p, i)}
9 pub l i sh R′ as a new ve r s i o n o f R

10 end
11 end

Interacting with identities is done by accessing the registry R, as demon-
strated in the following protocol. Verifying the published information has to be
done manually in the general case by each participant using real world channels.
As interactions in the network usually model interactions in the real world, this
leaves ample opportunity to verify the claimed identities prior to any interaction
through Circularise.

Algorithm 13: Retrieving an identity

1 fun g e t I d e n t i t y
2 input p a r t i c i p a n t p ∈ P , r e g i s t r y R
3 l e t i := RP 7→Ic [p]
4 i f i i s de f in ed
5 return i
6 else
7 return // No e x i s t i n g mapping
8 end
9 end

10

11 fun getAddress
12 input i d e n t i t y i ∈ I , r e g i s t r y R
13 l e t p := RIc 7→P[i]
14 i f p i s de f in ed
15 return p
16 else
17 return // No e x i s t i n g mapping
18 end
19 end

Advanced features such as name caching and changed ownership of names
are currently not supported, they will be in the coming versions.

6 Goal Validation

In the introduction we have defined a set of goals we wish to achieve via Cir-
cularise. In the previous sections, we have defined a number of protocols that
regulate the actions that the users can take on the Circularise platform. In this
section we argue that these protocols are sufficient to achieve those goals: that
by using the Circularise platform with these functionalities, the resulting system
achieves the goals we had set earlier.
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6.1 How we meet The Goal: ensuring that information
can be shared

We enable information sharing in two ways: pull-questions and push-questions.
Firstly, information providers can permanently attach information to a cirlabel’s

manifest in the form of push-questions, using the protocol for creating a mani-
fest in Section 5.5. That information can be accessed by anyone with the proper
authorisation, using the push-question protocol from Section 5.6. Because the
push-questions and their answers are stored in the manifest on the blockchain,
they are always available, even if the party that made them no longer exists.
This makes push-questions a good way to share information that should always
be available, like information that you are legally obliged to provide with the
product, or a user manual.

Secondly, the pull-question protocol from Section 5.7 can be used to ask free-
form questions that are anonymously forwarded to the participants who know
the answer. The pull-question system addresses B.2, the importance of some in-
formation being unknown, by allowing the inquirer to ask any kind of question,
not just predetermined ones. It also addresses A, because questions are dynam-
ically forwarded to the right participants after which all relevant answers are
sent back to the inquirer. If the information is spread among multiple parties,
each of them can answer the inquirer. Pull-questions are meant to share that
information that you did not know was important when creating your manifest,
or to control the sharing of sensitive information that parties want to keep in
their possession at all times.

The combination of push- and pull-questions satisfies The Goal, to enable
sharing information. Now we have to verify that the way in which The Goal
is satisfied respects the rest of the subgoals.

6.2 How we meet A.1: participants stay in control of their
product information

A.1 refers to the ability of participants to decide what happens to their infor-
mation once they put it in the circularise system.

Participants regulate their product information in two ways, they decide
with whom information is shared and how much. Participants can control what
information is shared by fine-tuning when to answer a question. Similarly, they
control who obtains the information by making their answers readable only by
those in possession of the right key (using groups).

6.2.1 How we meet A.1.1: Fine-tune which information is shared

Information is shared only as answers to questions. In this way, we ensure
that the control of whether and when to answer remains with the information’s
owners. Subscribing to questions lists, participants can control what information
they share. Note that they can always create their own question list if they so
desire.
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Recall that there are two kinds of questions: pull-questions and push-questions.
Answers to push-questions are stored on the blockchain, therefore the choice of
answering these questions can not be reconsidered. For pull-questions the par-
ticipant can decide on a case-by-case basis whether they want to answer the
question or not as these requires active responses. A given answer for a pull-
question is possessed by the inquirer, but unlike a QA pair it is not available on
a public network.

Although there are a number of TC pairs stored in a manifest for pull-
questions, these pairs contain no publicly readable information. They can only
be used to verify whether a given answer to a pull-question is linked to them,
which makes them auditable.

6.2.2 How we meet A.1.2: Fine-tune with whom information is
shared

Once again we consider the two types of questions. For each type of question,
a different means is used to allow parties to decide who has access to what
information.

The answers to push-questions are stored in product manifests. Their au-
thorisation is handled by encrypting the answers using a symmetric key and
encrypting the key using the public keys of groups that are allowed to read it.
The latest public key of a group is always published as described in Algorithm 1.
Thus encryption can always be done with the group’s current members in mind.
Following Algorithm 2, future members will also gain access to this information
as the group’s private key is shared with them when they join.

One thing to keep in mind is that it cannot be assumed that the current
members of a group will delete their private key once they are no longer part of
it. This means they will always be able to read the answers that were encrypted
when they were still members. So, if one has access to some information by
virtue of being members of some group, they will always have access to that
information (but not to updates of that information that happen after they
leave the group).

For pull-questions the authorisation can be tuned more finely. The ring
signature that is provided by the inquirer (see Algorithm 10) proves that they
are one of a group of participants. If the respondent decides that any current
member of this group is allowed to know the answer, they can return an answer.
If not, they can simply refuse to.

6.3 How we meet A.2: parties stay in control of their
network information

In the Circularise system, information is shared in two ways: through the infor-
mation in the manifests (accessible by the push-question protocol) and through
the pull-question protocol. It is important that in either case, no leakage about
the real structure of the value chain can occur.
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The first step Circularise takes is the anonymisation of the creators of man-
ifests by using “throw-away” wallets. Only the label holders are able to reveal
the public identity of the manifest creators, but being a tier 1 recipient of the
manifest’s creators, they are in possession of that information anyway – they
don’t obtain it through Circularise.

The only information one can deduce from a manifest is the number of
Circularise participants that are involved in the value chain of that specific
product. At the same time, participants in search for information are able to find
who can answer the questions without giving away their identity. Additionally,
participants that are willing to provide an answer, can do so anonymous as well.

Creators of manifests and respondents are also kept anonymous during pull-
questions. Inquirers themselves remain anonymous as well since they use ring
signatures which only disclose that one of a group of parties is asking a question
(but not which).

The communicated identities are however not the only way network informa-
tion can leak. The information about the product that is stored in the manifest
is also a liability. Manifests creators could accidentally add identifying informa-
tion to their manifest. For example, a company wishing to remain anonymous
may mistakenly add to a manifest one of its product’s names in plaintext, and
a google search may reveal that the product name is linked to the company.
However, we do enable them to hide this information in higher level manifests
through product links which are encrypted for the holders only, but holders
already know the identity of the creator.

There is not much Circularise can do about bad citizens. However, due to
the nature of the question and answer system, exchanging contact information
is not made easy. Questions can only be asked if they are linked to a question
list and even if there exists a question list that contains the question “what is
your email?”, a party would have to publicly subscribe to this list. Public sub-
scriptions to “bad” question lists can be used to identify misbheaviour. Answers
on the other hand can be anything. The answer to the amount of mercury in a
T.V. component could very well be an encrypted email address in an attempt
to establish communication with another party to cut out the middleman. Only
the targeted groups would be able to notice this. Circularise cannot prevent
parties from adding contact information in a manifest. However, since a party
does not know who the inquirer is, they also do not know if the inquirer wants
to know their contact information. Their faulty answer could just as well be
used to invoke an audit.

6.4 How we meet B.1: ensuring that information is trust-
worthy

The trustworthiness of the information in Circularise is an emergent property
of the behaviour of its participants. To incentivise good behaviour, Circularise
itself should be trustworthy as well.
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Stimulating good behaviour In current, real-world value chains, parties
are incentivised to behave by means of controls and punishments: audits. Cir-
cularise facilitates auditing by allowing the information that is stored to be
permanent and verifiable: given some extra information, auditors are able to
read the immutable information and verify its correctness. Information that
has already been verified by auditors can be considered trustworthy, but it is
is undoable to verify every bit of information in Circularise. Information will
therefore be audited by samples.

Participants of Circularise are given incentive to post correct information, as
their answers can be traced back without error to their real identities. Suppose
that someone obtains a manifest and tries to retrieve information from it (push
or pull-questions). If the information it retrieves is incorrect, the party in ques-
tion may choose to begin following the network links in the manifest backwards,
and with the cooperation of the previous owners of the linked manifests, it will
eventually reach the owner of the “bad” manifest: Section 6.4.

? information seeker

group A

group B

!

group C

information owner

Auditors, in particular, have the authority to obtain this cooperation and
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will thus be able to use this procedure to find the source of bad information.10.
So, if wrong information is found, the associated party can be held account-

able by following the trail (cfr. Section 6.4.1 for details).
However, the question remains whether all answers are auditable. For push-

questions, the answer is one-to-one on the blockchain, so whatever the answer
was that was verified by an auditor will also be the answer that a inquirer will
read. On the other hand, pull-questions are answered by the respondent, not
by some information in a manifest. Though, if answers are based on the TC
pairs, it will be known that the given answer is provably linked to some piece of
information on the blockchain (which can in turn be verified by auditors). As
we expect most pull-questions to be answered based on TC pairs, most answers
will be auditable.

Trustworthiness of the system By making the Circularise system open-
source, we guarantee that third parties will be able to independently inspect the
code and convince themselves of its trustworthiness. Furthermore, because the
system is decentralised, the data does not go to (or through) Circularise either.
The important actions of the system like managing groups, question lists and
identification of participants are not dependent on Circularise. Moreover, any of
these actions that are taken by Circularise are visible on the public blockchain.
This combination of open-source, decentralisation and transparency ensures that
only a minimal amount of trust has to be placed in Circularise in order to trust
the system.

6.4.1 How we address B.1.1: Make information auditable

While auditing needs to take place through normal channels, Circularise offers
a way to permanently, immutably log information that can be used to trace
misbehaviour. The information published through Circularise can be audited
just like any other property of the party who owns/published it.

The goal of the auditor is to verify that participants are not misbehaving.
For an audit, the cooperation of the auditee is always required. Cooperation for
audits is not enforced by the system itself.

If misbehaviour is detected, the auditors can take appropriate action11.

On demand auditing An auditor who is auditing a participant could, in
addition to its normal checks, review the auditee’s manifests. First they need
to find out which manifests were created by the auditee. As the real identity of
a manifest owner is a secret that is known by only the creators and its holders,
the auditor will not be able to find the manifests without their help. Asking
the auditee for its manifests is one way to achieve this, though this does allow
a dishonest auditee to hide manifests (by not telling the auditor about them).

10Circularise does not have the power to enforce punishments for misbehaviour, but we
assume that auditors do.

11At this point, it is unsure whether information shared on Circularise is legally binding.
The bottom line is that it is possible to detect misbehaviour.
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With the manifest in hand, the content can be verified. For a manifest, there
are three kinds of things that need to be audited: QA pairs, TC pairs and the
edit history of the manifest.

For public accessible QA pairs nothing special has to be done, the values
can be read by the auditor at their leisure. Encrypted values of QA pairs can
be shown by either the creator of the manifest or the groups for which they are
encrypted. As the creator of the QA pairs made the symmetric key, they are
able to show the values of the QA pairs on the basis of the data stored on the
blockchain. This proves that the shown value corresponds to the value on the
manifest. It does not prove that what is encrypted for the groups is the actual
symmetric key, however these parties are able to alert auditors if they obtain a
faulty symmetric key.

For the TC pairs in the manifest, the auditee can provide the hidden value
and associated random value. As it is infeasible to find a pair that results in the
same commitment, this pair can be considered the original one. The auditor
can then verify the correctness of the hidden value using real-world channels.

In this way, the auditor can verify that the information participants disclose
about their products matches the truth. In the future, we could label verified
data as such, to mark that it is more trustworthy than unaudited data, and even
score participants according to how often an audit has confirmed information
that they have provided.

Secondly, the history of the manifest can be checked using the transaction
history of the blockchain. This can be used to verify whether the auditee shows
any suspicious behaviour, such as whether the manifest was edited just previous
to the audit to hide a lie.

Thirdly, manifests contain information that can certify the provenance of
products and their production history, some of which may be subject to regula-
tion. The data contained in manifests can thus be used by auditors to determine
whether the associated product was manufactured and obtained through legiti-
mate channels and procedures.

On discovery of a wrong answer Suppose that a recycler receives infor-
mation that turns out to be wrong, for example, prior to attempting to recycle
a TV screen it asks whether there is mercury in it, and receives a “no” as an
answer, while in fact there is. Thanks to the traceability of our questioning
protocols, it would be possible for an auditor to track down the origin of the
false information. In the case of push questions, the secret identity of the origin
is contained in the manifest that the QA pair comes from (cf. Protocol 6). For
pull questions, the secret identity of the origin is known the very moment a
communication channel is opened. In either case the wronged parties can call
for an auditor to find the source of the problem.

Linking a participant to an answer is easier than finding out all the manifests
of a participant. The participant that calls for an audit at least knows the
identity of their tier 1 suppliers. They have seen the holder private key for their
manifests, which they can use to decrypt the manifest’s public identity for the
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auditor. This step can be repeated for each party in the value chain until the
respondent is found.

6.4.2 How we meet B.1.2

The Circularise network has two kinds of identities: public, long-lived identities
that are directly linked to a real-world entity, and anonymous identities which
are used to publish the actual manifests. The link between these two categories
of identities can be revealed, with each party in the chain being able to reveal
the real identities of their direct suppliers in the network, using the holder key.

The trail can only have dead end if a participant either didn’t add the
proper network links to their manifest, or they lost the holder private key which
is needed to decrypt the identity of their supplier. In either of these cases, that
participant is easy to identify by following the trail to them, and they will be
held responsible. The trail may still be picked up by going through real-world
channels, e.g., by forcing them to reveal who their suppliers are.

6.5 How we meet B.2: Future-proofing of data

One of the goals of Circularise is to facilitate answering questions that are ini-
tially unknown. With TC pairs, participants can make commitments to infor-
mation that they want to keep secret, even if there is no accompanying question.
The commitments are however auditable from the moment they are made and,
once new questions are added, provide a verifiable way of answering them12.

Pull-question allow parties to pose and answer questions that did not exist
when the product was fabricated. A party needs to update their subscribed
question lists to allow for the new question and make sure that they answer the
question when it is asked.

6.6 How we address B.3: Robustness to parties leaving

Each participant in Circularise is a potential source of information for the net-
work. Similarly participants who choose to leave can mean that some informa-
tion is no longer available for the network. The goal, then, is to minimise the
amount of information that is lost when this happens.

As QA pairs are stored immutably on the blockchain, they are well preserved.
A party would not be able to remove the information even if they wanted to.
So push-questions that a party answered while being part of Circularise will be
available even after the party leaves.

One thing that cannot be retained is the leaver’s ability to answer pull-
questions. This is a trade-off between A and B.3. It is impossible to fully
satisfy one goal without violating the other. Providing complete resilience to
leaving parties would involve giving someone (or something) else a backup of
the information such that they can act as a stand-in for the leaving party. In

12Due to the nature of commitments, questions on them can only be about quanti-
ties/amounts.
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doing so, the party loses control over their information as they would need to
trust the third party to not abuse their information. The bottom line is, when
a party leaves, they take their information with them. So if they are the only
one that are able to answer a specific pull-question, the answer is lost.

On the other hand, it is a good feature of Circularise that a leaving party
does not break the network structure used for asking pull-questions. Since
the network links are publicly shared, one can always target the (anonymous)
creator of a manifest for asking a question anywhere in the value chain. Thus
as long as the answer to a pull-question is known by parties that are still active
in the network, the question is answerable.13

So, even supposing that all of your suppliers and all of your recipients leave
Circularise, all parties in search of information you have will always be able to
find you, so long as you don’t leave as well.

Even though most pull-questions can still be answered after parties have
left Circularise, the identifiability of respondents deteriorates. Only their direct
children in the network will have had access to the holder key of their manifest.
If a party is left without direct children in the network, even though they can
still answer pull-questions, no one will be able to identify them. Because the real
identity of the party is lost, they can no longer be held liable for their answers.
This makes the answers given by them less trustworthy, unless they choose to
make themselves available for audits.

As an opt-in feature, companies could store their data on something like
IPFS to ensure data perseverance.

13This is only partially correct: if the TV manufacturer is gone, and so is the screen man-
ufacturer, the info owned by its peers may only be partial.
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Glossary

cirbase The platform implementation on which all of Circularise is build on..
2, 17–19, 21

circoin The Circularise token. 17

cirlabel The Circularise label. 9, 10, 17, 21, 26, 27, 32, 34–36, 40

auditor A party that checks whether participants provide the correct and con-
sistent answers.. 5, 14, 23

bluepaper Our business paper.. 4

Circularise The network, protocol, company and product. 1, 5, 8, 10–22, 28,
41–44, 46, 47, 49

Diffie-Hellman key exchange Protocol for exchanging a secret through a
public channel Diffie and Hellman (1976). 14, 15, 37, 38, 54

group A listing or categorisation of a bunch of parties. Examples include
recycler, retailer, etc. Any party can unilaterally decide to create a group
of e.g. recyclers. Party P’s Recycler Group is Party A, Party B, Party
C.... 2, 8, 14–16, 19–26, 29, 30, 41, 42, 45

inquirer The party initiating a Q&A session. Not expected. Quite possibly
Spanish. 12, 14, 19, 21, 22, 26, 36–38, 40–42, 44

introducer A party that is authorised to classify other parties (and thus in-
troduce them to the system). 30

manifest Metadata for a specific product stage. 9, 17–19, 21, 22, 25–27, 29,
32–37, 40–42, 44–47, 49, 50

network link A manifest-link that links a product-manifest to one of its input-
manifests. 18, 21, 22, 26–28, 32–36, 43, 46, 47

orphaned information Information whose owner has left the network. 13

participant The main user of the Circularise network. These are the guys that
ask questions and/or provide answers. 1, 3, 11, 17–26, 28–32, 34–36, 38,
40–46, 49

party The user of the Circularise network. 3–5, 7–11, 13, 15–19, 26, 28, 30, 32,
36, 40–47, 49
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product link A manifest-link that links a product-manifest to a higher level
entity such as a brand, category, product or Stock Keeping Unit (SKU).
18, 21, 27, 28, 32, 33, 42

pull-question Questions which require navigating through the tree to obtain
an answer. 2, 19, 25, 26, 36, 37, 41, 42, 44, 46, 47, 53

push-question Questions for which the answer is provided upfront along with
the manifest. 2, 18, 19, 21, 25, 34–36, 41, 44, 46

quiz master The owner of a question category.. 20, 21, 31, 32

respondent The party providing (one of) the answer(s) to a Q&A session. 14,
22, 26, 36–38, 41, 42, 44, 46, 47

Acronyms

CAS Content Addressable Storage. 12

EIP Ethereum Improvement Proposal. 38

IPFS InterPlanetary File System. 12, 13

QA pair question/answer pair. 2, 25, 27, 34, 35, 41, 45, 46

SKU Stock Keeping Unit. 50

TC pair topic/commitment pair. 2, 25–27, 36, 41, 44–46

ZKP Zero-Knowledge Proof. 1, 13, 14

zkSNARK Zero-Knowledge Succinct Non-interactive Argument of Knowledge.
2, 11, 12
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A Zero-Knowledge proofs of ranges

This appendix summarizes the methods that we adapt from (Chan et al., 1998)
and (Boudot, 2000) to prove that a number belongs to a given interval without
sharing any extra information about the number. We treat the protocols in
order of increasing precision of the desired range that an unshared number x
can be proven to lie in.

To ease introduction of the protocols that follow, some definitions are in
order. We define E(x1, r1) to be a commitment to the value x1, which can be
computed by knowing (x1, r1) but for which it is computationally infeasible to
find any other pair (x2, r2) such that E(x1, r1) = E(x2, r2). Unless otherwise
indicated, N is a sufficiently large composite number with a factorisation that is
unknown by both Alice and Bob. Let g be an element with high cardinality from
Z∗n and h generated by g such that for h = ga mod N and g = hb mod N a
and b are unknown for the challenger. Also take E = E(x, r) = gxhr mod N to
mean a commitment of x ∈ [a, b], with r being a random integer from [−2sN +
1, 2sN − 1]. H is some hash-function with an output length of 2t bits. Security
parameters t, l, s, known by both Bob and Alice, are chosen in such a way
to satisfy the security requirements for any specific exchange. In his work,
Boudot defines a number of protocols for a proof of knowledge PK(variables :
predicate) which states a zero knowledge proof that given a number of variables,
the predicate holds. PK[square] allows us to show that a commitment hides a
squared number, and is taken from (Boudot, 2000).

Protocol: PK[CFG](x, r : E = E(x, r) ∧ x ∈ [−2t+lb, 2t+lb]). For this
protocol, a = 0.

1. Alice chooses ω ∈R [0, 2t+lb− 1] and η ∈R [−2t+l+sN + 1, 2t+l+sN − 1].

2. Alice computes W = gωhη mod N

3. Alice computes C = H(W ) and c = C mod 2t

4. Alice computes D1 = ω + xc and D2 = η + rc.

5. If D1 ∈ [cb, 2t+lb − 1], Alice sends (C,D1, D2) to Bob. Otherwise start
over with new choices of ω and η.

6. Bob verifies that D1 ∈ [cb, 2t+lb − 1] and C = H(gD1hD2E−c) and can
subsequently conclude that x ∈ [−2t+lb, 2t+lb].

Protocol: PK[WithTol.](x, r : E = E(x, r) ∧ x ∈ [a − θ, b + θ] For this

protocol, θ = 2t+l+1
√
b− a.

1. Ẽ = E/ga mod N , E = gb/E mod N

2. Then: x̃ = x− a and x = b− x.

3. Ẽ = gx−ahr mod N

4. Compute x̃1 =
⌊√

x− a
⌋
,x̃2 = x̃− x̃21
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5. x1 =
⌊√

b− a
⌋
,x2 = x− x21

6. Then it holds that: x̃ = x̃21+x̃2, where 0 ≤ x̃2 ≤ 2
√
b− a, and: x = x21+x2,

where 0 ≤ x2 ≤ 2
√
b− a

7. Randomly select r̃1, r̃2 ∈ [−2sn+ 1, 2sn− 1] with r̃1r̃2 = r.

8. r1, r2 ∈ [−2sn+ 1, 2sn− 1] with r1, r2 = r.

9. Ẽ1 = E(x̃21, r̃1), Ẽ2 = E(x̃2, r̃2)

10. E1 = E(x21, r1), E2 = E(x2, r2)

11. Send Ẽ1 and E1 to Bob. He computes Ẽ2 = Ẽ/Ẽ1 and E2 = E/E1

12. Now PK[square](x̃1, r̃1 : Ẽ1 = E(x̃21, r̃1)) and PK[square](x1, r1 : E1 =

E(x21, r1)) to prove that both Ẽ1 and E1 hide a square.

13. With θ = 2t+l+1
√
b− a, execute: PK[CFT ](x̃2, r̃2 : Ẽ2 = E(x̃2, r̃2) ∧ x̃2 ∈

[−θ, θ]) and PK[CFT ](x2, r2 : E(x2, r2) ∧ x2 ∈ [−θ, θ]).

14. Bob now knows Ẽ1, E1 hide positive numbers because they hide squares.
Ẽ2, E2 hide numbers which are greater than −θ. Alice must know the
values hidden by Ẽ and E, as she could not have known x̃ and x other-
wise. Ẽ is the sum of the numbers hidden in Ẽ1 and Ẽ2, and likewise for
E,E1, E2, convincing Bob that both Ẽ and E hide numbers greater than
−θ. Bob is convinced that Ẽ hides x̃, and E hides x. So x̃ = x− a ≥ −θ
and x = b− x ≥ −θ. Then x ∈ [a− θ, b+ θ].

Protocol: PK(x, r : E = E(x, r) ∧ x ∈ [a, b] For this protocol, T =
2(t + l + 1) + |b − a|, known by both Bob and Alice. For convenience, θ′ =
2t+l+T/2+1

√
b− a.

1. Alice computes x′ = 2Tx, r′ = 2T r.

2. Both Alice and Bob compute E′ = E2T .

3. Execute PK[WithTol.](x
′, r′ : E′ = E(x′, r′) ∧ x′ ∈ [2Ta− θ′, 2T b+ θ′]

4. Seeing θ′ < 2T leads Bob to be convinced that if x′ ∈ [2Ta− θ′, 2T b+ θ′],
then x′ ∈ (2Ta− 2T , 2T b+ 2T )

5. Given that Alice does not know the factorisation of n, x′ = 2Tx, so x ∈
(a− 1, b+ 1). As x ∈ Z, this implies that x ∈ [a, b].
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B Ring Signatures

This appendix describes the ring signature protocol. In his paper Shamir pro-
vides examples for RSA (Rivest et al., 1978) and the Rabin crypto system (Ra-
bin, 1979), but basically any asymmetric encryption algorithm fits this purpose.
In this paper we describe the ring signature scheme using Schnorr’s elliptic curve
signatures (Schnorr, 1991).

For the case of elliptic curve signatures, recall that a curve is defined by a
sextuple of parameters 〈p, a, b,G, n, h〉, where G is the base point of the curve.
Given a private key S, one can compute the public key P using P = [S]G, where
[S] is the S-th multiple of the point G given the elliptic curve. The keypoint
here is that it is easy to compute P given S and G, but infeasible to compute
S (hence being a trapdoor function).

Given a messagem, a curve 〈p, a, b,G, n, h〉 and a set of public keys {P0, . . . , Px−1},
someone with access to one of the public keys’ private key can create a signature
on m proves that it was created by someone with access to one of the private keys
(though it will not be known by which). Starting at their own key (assume P0),
a random point on the curve is chosen as a starting point given by Q1 = [k]G.
Q1 is used in combination with m to form the input of a hashing function H14

for which the output r1 is used to calculate the next point on the curve. This
next point is given by Q2 = [s1]P1 +[r1]G for which s1 is randomly chosen. The
computation is repeated for each public key. The last point Qx−1 is then the
starting point for the value r0. As the computation should form a ring, instead
of choosing s0 random, a value should be found such that [k]G = [s0]G+ [r0]P0.
It holds that P0 = [S]G, it follows that [k]G = [s0]G + [r0 ∗ S]G and thus
s0 = k − r0S.

By now, there is a value s and r for each public key, which can be used
in a circular computation where regardless of where you start, you end up at
the same r as you started with. All that is left is shifting the indices, such
that it becomes obfuscated which public key was the starting point (effectively
obfuscating who the signer is).

Algorithm 14: Asking a pull-question

1 input : message m ,
2 curve 〈p, a, b,G, n, h〉 ,
3 pub l i c keys {P0, . . . , Px−1} ,
4 p r i v a t e key S
5

6 take random k ∈ {1, . . . , n− 1}
7 for i = 0 to x− 1
8 i f i == 0
9 l e t Q = [k]G

10 else
11 l e t Q = [si]G + [ri]Pi

12 end

14Usually SHA-256 is used, but any cryptographically secure hashing algorithm suffices.
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13 l e t ri+1 = H(xQ||yQ||m)
14 take random si+1 ∈ {1, . . . , n− 1}
15 end
16 l e t r0 = rm
17 remove rx , sx
18 l e t s0 = k − rS mod n
19 s h i f t i n d i c e s o f s and r randomly
20 return 〈r0, s0, . . . , sx−1〉
21 end

A verifier obtainsm, {P0, . . . , Pm−1} and the created signature 〈r0, s0, . . . , sx−1〉.
The signature can then be verified by computing the ring with Qi+1 = [si]G+
[ri]Pi and ri = H(xQi

||yQi
||m). A signature where r0 = rm is a valid signature.

C Diffie-Hellman Key Exchange

This appendix describes the Diffie-Hellman key exchange for secret key ex-
change.

The protocol:

1. Alice sends Bob two prime numbers g and N .

2. Alice creates a secret number a and computes A = ga mod N

3. Bob creates a secret number b and computes B = gb mod N

4. Bob and Alice exchange A and B

5. Bob can now compute secret s with s = Ab mod N

6. Alice can do the same with s = Ba mod N

The secret s is now shared by Alice and Bob with nobody else being able to
construct it under the strong RSA assumption.
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