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ABSTRACT: The ever-growing environmental concern has yielded the electro-
catalytic carbon dioxide reduction (eCO2R) center of research attention, as it offers
a possible pathway to achieve net-zero carbon emission and realize a post-fossil-fuel
society. The production of multicarbon (C2+) species with higher energy density is
more desirable but unfortunately presents a greater challenge. Other than the
catalyst itself, the electrolyte has also been demonstrated to exhibit nontrivial
impacts on eCO2R, a systematic understanding on the effect of which therefore
remains vital. In this Review, we thoroughly discussed the influence that
electrolytes might induce on eCO2R from three perspectives, namely, pH, cations,
and anions. Both experimental and theoretical efforts are included, along with the hypothesis on the fundamental working
mechanism. We also highlighted the challenges associated with understanding and harnessing the electrolyte effect, as well as
theoretical modeling and machine learning as interesting directions worthy of further research and exploration. We believe that this
Review can help to shed light on the rational design and optimization of electrolytes, thereby facilitating the activity tuning and
selectivity steering of eCO2R to valuable C2+ products.

1. INTRODUCTION
Electrochemical carbon dioxide reduction (eCO2R) has
received lots of research and industrial attention due to its
mild reaction conditions (e.g., room temperature and
atmospheric pressure) and the ability to produce valuable
fuels and chemicals leveraging electricity derived from
intermittent renewable sources (such as wind, solar, and tidal
energy).1−4 With the huge potential to facilitate the
replacement of coal-fired power generation with clean energy
generation, this technology remains vital in reducing industrial
carbon emissions. Up to now, remarkable progress has been
made in the production of C1 products (e.g., carbon monoxide
(CO),5−8 formic acid (HCOOH),9−13 methane (CH4),

14−16

methanol (CH3OH)17−19) from eCO2R, where decent activity
and Faradaic efficiency (FE) can be achieved as these reactions
generally involve fewer proton and electron transfers. The
generation of multicarbon (C2+) products that deliver higher
energy densities,20−22 however, presents greater economic
attraction and unfortunately also a larger challenge. The
involvement of more elementary steps and side reactions has
complicated the activity optimization and selectivity tuning
toward a specific product, yielding the study on this reaction
also of great scientific significance, as tailoring product
selectivity remains a key challenge in heterogeneous catalysis.
At present, a large number of experimental and theoretical

studies for eCO2R to C2+ products have been focused on the
development of catalysts (Cu-based and non-Cu-based

catalysts). In order to enhance the electrocatalytic perform-
ance, various efforts have been devoted to designing low-
coordination sites and defects,23 altering the size and shape of
the nanostructures,25 tuning the oxidation state,26,27 and
adding auxiliary metals.24 Apart from optimizing the catalyst
itself, tuning the electrolyte has alternatively been demon-
strated essential in improving C2+ production, as the influence
of the reaction microenvironment remains nontrivial. For
instance, it was recently found from experiments and
computational modeling that the activity of C2+ product
formation in eCO2R is dependent on both the pH and the
identity of ions present in the electrolyte solutions. By
rationally designing the pH and ions in the electrolyte, the
overpotential of C2+ products can potentially be drastically
reduced, improving the energetic efficiency of eCO2R to C2+
products.28−30 However, the effect of electrolytes on reaction
activity and selectivity can be convoluted and is often
dependent on many factors such as the reaction condition or
the catalytic system investigated. In addition, consensus is still
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lacking regarding the internal mechanism of the electrolyte
effect. It is therefore necessary to systematically understand the
effects that electrolytes might induce on eCO2R as well as the
corresponding working principles.
In this work, we present a comprehensive discussion

focusing on the electrolyte effect regarding the production of
C2+ species from eCO2R. The experimental and theoretical
evidence on the significance of C−C bond formation for C2+
production is first reviewed using CO dimerization as an
example, which yields *OCCO dimer as the initial backbone of
C2+ products. We then discuss how *OCCO formation and
other key elementary steps might be impacted by the
electrolyte from three perspectives, namely, pH, cations, and
anions (Figure 1). Lastly, possible future directions to enhance
eCO2R to C2+ products are envisioned and key challenges to
improve C2+ selectivity are identified.

2. C−C BOND FORMATION
C−C bond formation is deemed the most crucial step in C2+
production, which is likely to occur by the coupling of two CO
molecules as proposed by Schouten et al.31 Using operando
Raman spectroscopy combined with density functional theory
(DFT), Zhan et al. unraveled the potential dependence of the
Raman peak ratio of Cu−CO stretching and the restricted
rotation of adsorbed *CO. Such a ratio was further shown to
correlate with *CO coverage on the electrode surface, the
preferred binding sites of *CO, and the selectivity of C2+
product.32 Specifically, the higher Raman peak ratio at more
negative potential (or with higher CO concentration)
corresponded to a higher *CO coverage, as well as a larger
population of weakly bound *CO at the atop site. The DFT
calculations showed that when at least one *CO atop was
involved in the formation of *OCCO, the CO−CO coupling
exhibited substantial decrease in coupling barriers. Similarly,
leveraging the time-resolved surface-enhanced Raman spec-
troscopy technique, An et al. found a highly dynamic *CO
intermediate, with a characteristic Raman peak below 2060
cm−1, to predominantly associate with *OCCO formation
while the *CO intermediate with a characteristic Raman peak
at 2092 cm−1 was identified as the source of desorbed *CO
product.33 These works highlight the crucial role of specific
*CO binding configurations to trigger *OCCO formation, as
well as the highly dynamic nature of CO−Cu interactions
under different potentials. In addition, the existence of
*OCCO can be substantiated by the presence of its reduction
product *OCCOH, which was experimentally detected via
vibrational analysis using Fourier transform infrared spectros-
copy (FTIR) spectroscopy.34

Apart from experimental measurements, a great deal of
theoretical effort has also been devoted to highlighting the
significance of *OCCO. For instance, Calle-Vallejo et al.
utilized DFT calculations to propose that the formation of
*OCCO by coupling *CO with gas-phase CO via electron
transfer (ET) at Cu(100) is the rate-limiting step (RLS).35

Meanwhile, *OCCO was found to have good electron affinity
and remain susceptible to electron−proton decoupling,
explaining the high selectivity of electrochemical carbon
monoxide reduction (eCOR) toward ethylene (C2H4) at low
overpotentials. Alternatively, Montoya et al. adopted explicit
water layers to simulate electrochemical conditions on
Cu(111) and Cu(100) with the effect of solvents taken into
account. They demonstrated that the combined effect of
solvation and localized electric fields can thermodynamically
and kinetically reduce the energy required for the generation of
*OCCO from *CO, yielding the coupling of *CO the
preferred pathway instead.36 Similarly, Hedström et al.
demonstrated a significant stabilizing effect of solvation on
highly polar *OCCO using the implicit solvent model and the
hybrid solvent model,37 accentuating the key role of *OCCO
in eCO2R. Of course, many other C−C coupling intermediates
have also been found important and discussed elsewhere,38−40

such as *OCCHx,
41,42 *OCCHO,43−47 *CCO,22 *CH2CH2,

48

*COCH3,
49 etc. For simplicity, we will primarily focus on the

electrolyte effect on *OCCO in this Review, while many other
intermediates can be derived from it and exhibit similar
response to variations in the electrolyte.

3. ELECTROLYTE EFFECT
The choice of electrolyte can introduce a number of intriguing
impacts on the local reaction environment and thereby affect
the final activity and selectivity of eCO2R. For instance, the
composition and concentration of anions and cations can
induce variations in the local pH,50 electrostatic interactions,51

buffer capacity,52 and surface coverage.53 The entangled nature
of these factors often further complicates electrolyte
optimization and rational design, as it is hardly possible to
isolate a single effect. In this section, we will discuss how
various electrolyte-related properties (pH) and species
(cations, anions) can impact eCO2R.
3.1. pH Effect. pH describes the proton concentration in a

solution. Since many cathodic half-reactions in eCO2R involve
the transfer of proton−electron pairs, the availability of
protons presents one of the major factors influencing the
reaction activity and selectivity. Experimentally comparing the
onset potentials vs standard hydrogen electrode (SHE) of C2+
products in eCO2R and eCOR at pH = 7 and pH = 13 on Cu,
Wang et al. have interestingly discovered that C2+ formation
did not vary with pH and described this invariance as pH
independence.28 This coincides with the early experimental
observation by Hori et al., who found that the RLS to C2+
products such as C2H4 showed good linear correlations with
potential and was independent of pH on the SHE scale by
comparing the partial currents of different products (CH4,
C2H4, and C2H5OH) as a function of the electrode
potential.54,55 Previously, this pH independence of C2+
formation was thought to be related to the decoupling of
protons from electrons in the RLS, as well as the slower rate of
ET compared to proton transfer (PT).35,43 However, the very
broad energy distribution of adsorbates on the metal surface
leads to a smaller energy level difference in ET, implying a
rather facile ET which is unlikely to be the RLS in eCO2R.

56

Figure 1. Electrolyte effect for eCO2R to C2+ products.
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Alternatively, the pH independence can be rationalized by the
proton source. As revealed by Wang et al., who took the
Volmer reaction as an example, the activation energy is only
affected by the SHE potential when the proton involved
originates from water (Figure 2a).28 In the case of eCO2R, Liu

et al. further elaborated the pH effect on steering the product
selectivity.57 For a RLS involving proton-coupled electron
transfer (PCET) from water to adsorbate X under alkaline or
neutral conditions, the reaction rate based on the Butler−
Volmer equation can be expressed as

= *
+i

k
jjjjj

y
{
zzzzzR A

G e U
kT

expX
a
0

SHE

(1)

where A is the prefactor, θ*X is the coverage of *X, Ga
0 is the

activation energy at USHE = 0 V, β is the transfer coefficient
(i.e., the amount of charge transferred to the transition state),
USHE is the potential vs SHE, k is the Boltzmann constant, and
T is the reaction temperature. Under the assumption that the
elementary reaction steps prior to the RLS (m*CO + n(H2O +
e−) ↔ *X + nOH−) are in quasi-equilibrium, θ*X could then be
expressed in terms of θ*CO as

* = *
+i

k
jjjjj

y
{
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X CO

0
RHE

(2)

where m is the number of *CO involved in reactions before
the RLS, ΔG0 is the free energy of X* formation from CO at 0
V vs reversible hydrogen electrode (RHE), URHE is the
potential vs RHE, and n is the number of PCET steps before
RLS. Since URHE and USHE are interchangeable using the
Nernst equation ( = +U U n

kTRHE SHE
2.3 pH), θ*X will be pH-

dependent on the SHE scale if n > 0. Combining all above
expressions, the overall rate can be written as

= *
+ +i

k
jjjjj

y
{
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n
kT

eU nexp 2.3 pH)m
CO

a
0 0

SHE

(3)

When the C2 formation is limited by the protonation of
*OCCO, namely, the first PCET (n = 0), the overall reaction
rate becomes dependent only on USHE. And the C2+ products
will exhibit pH independence on the SHE scale. On the other
hand, the competing pathway to form C1 species exhibits a
different pH dependence because of the late RLS (i.e., n > 0)
for C1 formation.57 A pH-dependent microkinetic model using
energetics estimated via explicit solvent simulations was then
established, which showed qualitative and even semiquantita-
tive agreement with experimental observations (Figure 2b,c).
C2 production at low overpotentials was shown to be limited
by the first PCET further confirming the hypothesis of an
*OCCO mechanism, while a later PCET to form *CH in the
sequential reduction of CO (*CO → *CHO → *CHOH →
*CH) was found to limit C1 formation, resulting in a much
smaller enhancement in C1 activity when increasing pH at the
RHE scale. Consequently, high alkaline conditions can
effectively increase the selectivity of eCO2R and eCOR to
C−C coupling products. Further expanding this kinetic model
to the understanding of product selectivity among C2
hydrocarbons and oxygenates, Peng et al. also suggested that
the difference in RLSs for C2 hydrocarbon and oxygenate
formation bifurcating from a common dehydrogenated ketene
intermediate (*CHCO), as well as the potential dependence of
these RLSs, could rationalize the trend in C2 hydrocarbon/
oxygenate selectivity over a broad range of Cu-based
catalysts.21 Through explicit reaction thermodynamics and
kinetics calculation, they found the RLS for C2 oxygenate
formation to be *CHCO → CH2CO or *OCHCH (n = 0,
relative to *CHCO) while the RLS for C2 hydrocarbon
formation to be *CHCOH → *CCH (n = 1) at low
overpotential and *CHCO → *CHCOH (n = 0) at high
overpotential. The fact that the C2 hydrocarbon pathway
suffers from an additional energetic penalty from the
dehydroxylation step of CHCOH* under alkaline condition
presents the main reason for the exceptionally high selectivity
of any C2 oxygenate species (not just acetate as we discussed
later) at low overpotential. Based on the prerequisite that water
serves as the proton donor, these works present a general
understanding of the pH effect in neutral and alkaline
electrocatalysis.
In addition, different pH levels can also open up distinct

reaction pathways of eCOR toward C1 and C2+ products. For
instance, Xiao et al. adopted an implicit solvation model to
describe the realistic electrochemical interface on Cu(111) and
to obtain accurate starting electrochemical potentials.58 By

Figure 2. pH independence of C2+ products. (a) Activation energies
for Volmer reaction on the SHE and RHE scales, where protons in
PCET originate from H+ (acidic) or water (alkaline), respectively.
Reproduced from ref 28 with permission. Copyright 2018 American
Chemical Society. (b) Experimentally measured polarization curves
for eCOR on polycrystalline Cu at pH = 7 and pH = 13. (c) Predicted
polarization curves from the microkinetic model for eCOR at pH = 7
and pH = 13. Reproduced from ref 57 with permission. Copyright
2019 The Authors.
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comparing the kinetic activation energies, it was found that the
C1 pathway generates CH4 via *COH to *CHOH under acidic
conditions at pH = 1, while the C2+ pathway is kinetically
blocked. Under neutral conditions at pH = 7, the C2+
production is realized by the CO−COH coupling with a
common intermediate *COH sharing with the C1 pathway. At
high pH = 12, early C−C coupling forming adsorbed *OCCO
dominates, thereby kinetically inhibiting the C1 production and
increasing the selectivity of C2+ species.
Other than PCET, the chemical reaction catalyzed by

hydroxide (OH−) also plays an important role in the
generation of C2+ products. Online electrochemical mass
spectrometry (OLEMS) was utilized by Birdja et al. to
demonstrate that OH− promoted C2 and C3 aldehydes with a
Cannizzaro-type disproportionation, which led to the for-
mation of corresponding carboxylic acid and alcohol.59 Jouny
et al. found that the selectivity of acetic acid improved with
increasing electrolyte pH by varying the concentration of KOH
in the range 0.1−2.0 M (Figure 3a).60 Using labeled C18O gas,
they found that OH− can attack the ketene-like intermediate to
promote acetate production under highly alkaline conditions.
Full-solvent quantum mechanical calculations were also
performed to validate the viability of OH− reacting with
*CCO to produce acetate from a theoretical point of view,
where the energetic barrier was indeed found surmountable
(Figure 3b).61 Interestingly, Heenen et al. utilized ab initio
simulation to establish a coupled kinetic-transport model on
Cu and proposed a new reaction mechanism for acetate
formation, which was used to explain the experimental
observation that acetate selectivity increases with pH.62 They
suggested that *CHCO is simultaneously reduced and further
desorbed to ketene (CH2CO) in solution, and this stable

close-shell molecule reacts with OH− to form acetate anion
(CH3COO−). At the same time, both CH3COO− and the
electrode surface are negatively charged. The electrostatic
repulsion thereby leads to a preference for CHCOO− diffusing
into the electrolyte rather than readsorption and further
reduction to other C2 products. The presence of OH− in the
electrolyte can also have a non-negligible effect on the
generation of additional reduced products, such as C4 species.
For instance, Ting et al. reported that the high local pH could
promote acetaldehyde production, which is reduced to butanal
and finally 1-butanol through a base-catalyzed aldol con-
densation to crotonaldehyde (Figure 3c).63 Therefore, high pH
not only improves the selectivity of C2+/C1 but also modulates
the distribution within the C2+ products, where the influence
brought by local concentration of pertinent species remains
nontrivial.
While research evidence has suggested that increasing the

pH is an effective way to increase C2+ activity and selectivity,
we also note that the reaction between CO2 and OH− is an
additional modulator of local pH, which is greatly affected by
the mass transport of CO2 and OH−. Raciti and Lum et al.
have adopted a numerical model to reveal such a relationship
by plotting the C2+ selectivity map with local pH as a
descriptor on various oxide-derived catalysts.64,65 They found
that the hydrogen evolution reaction (HER) became dominant
at higher pH due to the mass transport limitation of CO2 and
the optimal local pH range laid around 9−10. In brief, the high
pH conditions and sufficient mass transport of CO2 remain
essential in promoting eCO2R to C2+ products. For practical
CO2 electrolysis, gas diffusion electrode (GDE)-based flow
cells have been developed to overcome the above CO2
transport limitation and improve the maximum achievable

Figure 3. Catalytic effect on chemical reactions in eCO2R. (a) Ratio of molar yield of acetate to total molar yield of eCOR on “oxide-derived”
copper at various KOH concentrations from 0.1 to 2.0 M. Reproduced from ref 60 with permission. Copyright 2018 The Authors. (b) Reaction
mechanism for the reduction of *CCO intermediate to acetate at high pH. Reproduced from ref 61 with permission. Copyright 2019 The Authors.
(c) Reaction mechanism of eCO2R to 1-butanol. For simplicity, the reaction steps involving multistep PCET are replaced by nH+ + ne−.
Reproduced from ref 63 with permission. Copyright 2020 The Authors.
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current density. Due to the drastic increase in operating
current density and the consumption of water as a proton
source, the local pH increases dramatically near the electro-
lyte/cathode interface even in an electrolyte with near-neutral
bulk pH. An excessively high local pH thus also increases the
susceptibility of CO2 to OH− attack to generate more
bicarbonate and carbonate, which in contrast induces a
decrease in eCO2R selectivity and overall carbon efficiency.
Therefore, the mass transport limitation of CO2 and high local
pH inextricably intertwine, resulting in complex influence on
the final eCO2R activity and selectivity. For the sake of
decoupling such a tangled influence, tandem reactor design
could be a promising direction by sequencing an alkaline
electrolyzer for eCOR to C2+ products after an acidic or solid-
oxide electrolyzer for eCO2R to CO.66 Such a flexible design
allows for targeted optimization of each electrolyzer and
circumvents the issue of side reaction between CO2 and OH−

that leads to detrimental carbonate formation and a decrease in
local pH.
3.2. Cation Effect. In the electrolyte, the supporting salt is

adopted to increase the solution ionic conductivity, which also
introduces anions and cations. From this section we begin to
elaborate on the effect brought by these ions, starting with the
cations. The most common cations in eCO2R are alkali metal
cations, which can affect the kinetic potential required for C2+
production by inducing variations in local pH.50 In bicarbonate
solutions, the hydration radius of cation increases as the cation

radius decreases, leading to improved cation adsorption. Such
enhancement can result in positive Outer Helmholtz Plane
(OHP) potential and promote HER, which in return impacts
the local pH and increases C2 selectivity.67,68 On the other
hand, a larger cation radius strengthens the Coulombic
interaction between the cation and the negative charge on
the cathode, causing the hydrolysis equilibrium constant (pKa)
of the cation to decrease and making it more susceptible to
hydrolysis to release protons. In this case, the buffered local pH
can also increase the concentration of CO2, and thereby
promote the eCO2R activity.69

In addition to local pH, cations have also been found to
influence the reaction through other factors, such as the
electrostatic field. As shown in Figure 4a, Resasco et al.
discovered that the rates of C2H4 and C2H5OH formation
increased monotonically with cation size by applying a
sufficiently low voltage (URHE = −1 V) in Cu(100).30 In
conjunction with DFT calculations, they rationalized this large
influence through the decreased reaction energies of
elementary steps involving species with strong dipole moments
caused by the cation-induced local electrostatic field. As typical
C2 intermediates such as *OCCO exhibit greater polarities
than C1 intermediates, they are more stabilized comparing to
C1 intermediates under the same electric field strength. The
cations therefore can enhance the selectivity of C2 products via
induced electrostatic field. The strength of such field is further
found to be dependent on the cation coverage at the

Figure 4. Cation effect for eCO2R to C2+ products. (a) Effect of different cations on the partial current density of the major product of eCO2R on
Cu(100) at −1.0 V vs RHE. Reproduced from ref 30 with permission. Copyright 2017 American Chemical Society. (b) Cation size as a function of
double layer capacitance on Au(111) single crystal electrode. Reproduced from ref 51 with permission. Copyright 2019 RSC Publishing. (c)
Dependence of *OCCHO binding energy on explicit surface charge density under DFT, capacitor and local field models. Reproduced from ref 73
with permission. Copyright 2020 American Chemical Society. (d) Nonelectric field effect of cations on eCO2R.
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Helmholtz plane. For instance, Ringe et al. have proposed a
multiscale modeling approach to quantitatively characterize the
effect of cation size on interfacial electric field.51 The cations in
the Helmholtz layer were revealed to affect the cation
concentration and double layer capacitance through mutual
repulsion with water. As shown in Figure 4b, the double layer
capacitance of the Au(111) electrode increased with
decreasing hydrated cations radius at the same potential of
zero charge (PZC), resulting in enhanced surface charge
density and consequently stronger interfacial electric field.
Similarly, Gunathunge et al. experimentally demonstrated that
the concentration of cation in the outer Helmholtz layer
increased with its size, and a stronger interfacial electric field
can be observed with attenuated total internal reflection
Fourier transform infrared spectroscopy (ATR-FTIR), leading
to a subsequent promotion in COR kinetics.70 At the same
time, the cation promoter effect was also revealed to be
potential- and structure-dependent, as discovered by Peŕez-
Gallent et al. using FTIR and DFT calculations.71 At low
overpotentials, larger cations steered eCO2R selectivity toward
C2+ products, where the onset potential showed great
sensitivity to cation size and electrode structure. However, at
high overpotentials the onset potential for methane remained
rather independent of the cation radius and electrode structure.
Along the same line, Ren et al. also investigated the variations
in optimal electrolyte concentration when potential changes,72

and it was demonstrated that lower cation concentrations were
required to balance the surface charge density to achieve the
same optimal field strength at a higher applied potential. In
addition to concentration and applied potential, the interfacial
electric field is also influenced by the spatial distribution of the
cations, as shown by Ludwig et al. with minima hopping
calculations. They revealed that the localized electrostatic field
was sensitive to the geometrical distribution of the surface
charge at a given charge density.73 With *OCCHO as an
example, they showed that its binding energy depended
strongly on the spatial distribution of cations at the same
surface charge density (Figure 4c), emphasizing on the
necessity of considering the local electrostatic field generated
by cations for C2+ production.
Besides the electrostatic effect, alkali metal cations can also

impact the production of C2+ chemicals through nonelectric
field interactions (Figure 4d). For instance, using spectroscopic
studies, Malkani et al.74 found that the eCOR rate varied with

K+, Rb+, and Cs+, despite the fact that they all possessed nearly
identical interfacial electric field strengths as represented by
Stark tuning rates, suggesting the existence of the nonelectric
field effect. They further hypothesized that such an effect may
be related to the structure of alkali metal cation and interfacial
water interactions, such as the looseness or tightness of the
hydration shell and the coordination with chelating agents such
as crown ethers, which affected the chemistry of alkali metal
cations with the reaction intermediates and consequently the
rate of reaction. Interestingly, Liu et al. proposed another
“cation intermediate complex” mechanism to rationalize alkali
metal cation promotion at the atomic/molecular level.75 Using
ab initio molecular dynamics (AIMD) simulation and free-
energy sampling technology, they demonstrated the existence
of a dynamic coordination structure formed by simultaneous
interaction between cations and the two O atoms in *OCCO,
which was found essential in promoting the formation C2
products.
In addition to alkali metal cations, organic cations are also

adopted in eCO2R to regulate C2+ production. Different from
alkali metal cations, organic cations generally exhibit a much
larger hydration radius, the hydrophilicity of which can be
tuned by adjusting their functional groups. And the catalytic
activity and selectivity of eCO2R can thereby be regulated in a
broader range than alkaline metal cations due to the large
variety of functional groups in organic cations. Moreover, other
than electrostatic interactions, organic cations can also provide
covalent and coordination interactions exhibiting specific
nonelectric field effect. For instance, Li et al. determined via
surface-enhanced infrared absorption spectroscopy and found
that the variation in interfacial electric field strengths
associated with the four different quaternary alkyl ammonium
cations (alkyl4N+) remained negligible.76 By analyzing the O−
D stretching bands of interfacial heavy water (D2O) on CO-
covered Cu electrode, they attributed C2H4 formation to the
presence of a water layer on the loading of different cations,
whose hydrogen bonding stabilized *OCCO and enhanced
eCO2R. It is therefore evident that cations can serve as
catalytic promoters in eCO2R.
3.3. Anion Effect. In addition to cations, anions in the

electrolyte can also improve the selectivity and activity of C2+
products by modulating the local pH. Hori et al. found that the
local pH at the electrode−electrolyte interface becomes higher

Figure 5. Anion effect for eCO2R to C2+ products. (a) Linear sweep voltammograms of Cu(100) electrodes in electrolytes containing different
anions. Reproduced from ref 53 with permission. Copyright 2018 John Wiley and Sons. (b) Coverage ⟨ΘGCHE⟩ of each relevant species on
Cu(100) as a function of URHE at pH = 7 with phosphate ion electrolyte. Reproduced from ref 79 with permission. Copyright 2019 American
Chemical Society.
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in nonbuffering KCl, KClO4, and K2SO4 electrolytes, resulting
in an increased selectivity for C2H4 on polycrystalline Cu.54

Other than modulating local pH, anions can also influence
eCO2R via their adsorption. For instance, Gao et al. mixed
KCl, KBr, or KI (nonbuffered) in KHCO3 (buffered) and
obtained electrolytes exhibiting similar local pH values.52

However, variations in the catalytic performance of preoxidized
Cu surface in these electrolytes were observed. The current
densities of C2H4 and CH3CH2OH production increased in
response to changes in the anions (Cl− → Br− → I−),
confirming that factors other than pH contributed to the
improvement in C2+ production, which was later hypothesized
to be anion adsorption. Similarly, Shaw et al. found that the
presence of adsorbed anions (F− and Cl−) can induce a
decrease of almost 0.2 eV in *CO binding via DFT
calculations,77 which was further confirmed by Huang et al.
According to the integrated charges of the CO adsorption
peaks in linear sweep voltammetry, *CO coverage increased
when the anion changed from ClO4

− → Cl− → Br− → I−
(Figure 5a),53 subsequently lowering the energetic barrier for
*OCCO formation. In addition, the adsorbed anion can
facilitate CO dimerization by modulating the electronic
structure of local Cu sites, causing the carbon atoms on the
*CO adsorbate on the adjacent adsorption sites to possess
opposite charges, thereby creating electrostatic attraction.
Apart from the electronic structure of active sites, anions can
also promote the formation of C2+ products by influencing the
electrode composition. For example, Qi et al. utilized a strong
carbonate electrolyte to modulate the composition of the
CuAg catalyst.78 The carbonate anions were responsible for
keeping the CO2 concentration above the saturation limit and
inhibiting the electrical displacement reaction that led to the
separation of the Cu and Ag phases, realizing the formation of
a stable CuAg alloy catalyst, which was found to exhibit
enhanced formation rates of *CO and *OCH2CH3 and can
produce C3 chemicals. The above works revealed that the
interaction between anions and catalysts can promote the
generation of C2+ products through different mechanisms.
However, the anion−catalyst interactions are not always
beneficial for C2+ production, as the anions can poison the
electrode surface under cathodic conditions especially when
they do not directly participate in eCO2R as carbonate and
bicarbonate anions. As demonstrated by Bagger et al., the
anion poisoning effect on eCO2R can be quantified by
describing the coverage of adsorbates as functions of
potential.79 As shown by AIMD80,81 simulations of explicit
electrolytes, the adsorption of *OCCOH, the trackable
intermediate right after *OCCO, can be suppressed by anion
adsorption (*OH, *HPO4, *PO4, *CO3) at low overpotential,
thereby limiting the onset potential of C2H4 generation (Figure
5b). The poisoning effect of anions is anticipated to induce a
great influence on C2 intermediates such as *OCCO and
*OCCOH that have to occupy two adsorption sites, making
them more prone to dissociation and desorption. Thus, the
anion poisoning effect remains nonnegligible in the synthesis
of C2+ products.

4. SUMMARY AND OUTLOOK
In summary, the generation of high-value multicarbon
products from eCO2R is a complex process that involves
multiple reaction steps, intermediates, and pathways, yielding it
highly sensitive to the electrolyte pH as well as the ions in
solution. In particular, *OCCO formation is found to be the

key intermediate in the conversion of CO2 to multicarbon
products, which exhibits dependence on both electrolyte pH
and ions to some extent. By affecting the availability of H+ and
OH− in the solution, pH is demonstrated to have a direct
influence on pathways involving PCET. The difference in RLS
can translate to variations in pH dependence of different
products such as C1 vs C2+ and C2 oxygenates vs hydrocarbons,
providing new possibilities to steer eCO2R selectivity. Apart
from the general effect to promote the production of C2+
chemicals via affecting PCET with water as the proton source,
alkaline pH condition also promotes chemical reactions such as
disproportionation reactions, offering new possibilities to
synthesize acetate and higher-order multicarbon products.
However, excessive pH can cause substantial CO2 con-
sumption and mitigate the overall catalytic performance of
eCO2R, and the inevitable reaction between CO2 and OH−

may shift the local pH beyond the optimal region. Therefore,
the high pH and CO2 mass transport need to be delicately
balanced in conventional one-pot CO2 electrolysis to ensure an
ideal C2+ production. Cations and anions in the electrolyte can
also improve selectivity for C2+ products by adjusting the local
pH. In addition, cations were mostly proposed to stabilize the
reaction intermediates with substantial dipole moments
through the generated electrical field, thereby enhancing C−
C coupling, which can lead to the final multicarbon
production. Such an effect was shown to be sensitive to a
number of factors, such as the cation size, the geometric
structure of electrodes, as well as the applied potential in
electrolyte. Cations can also impact eCO2R via the nonelectric
field effect, as they were demonstrated to interact with surface
adsorbates directly or indirectly. Similarly, anions were
proposed to influence the adsorbate binding energy, leading
to possible enhancement in the corresponding reaction
energetics. The adsorption of anions, on the other hand, can
poison the catalyst surface, necessitating a careful choice of the
anion type and concentration.
Though research of the electrolyte effect has progressed

considerably, there are still many challenges that deserve
further attention from researchers, from both aspects of
fundamental understanding and practical applications. Funda-
mentally, the effects of pH, cation, and anion are often
entangled due to the ion complexation and the exchange of
protons between ions and water. Disentangling their individual
contribution to catalytic performance still requires more efforts
with the assistance of advanced computations, in situ/
operando characterizations, and delicately designed model
experiments. While theoretical simulations are widely adopted
to understand the electrolyte effects, we argue that an effective
theoretical model of the electrified interface must adapt to the
dynamic variations in local pH, ion distribution, and interfacial
water structures. Recent advancement in characterizing and
modeling alkaline HER has demonstrated the dependence of
interfacial water structures, electric double layer properties, and
reaction kinetics on pH, potential bias, and ion concen-
tration.82,83 We look forward to similar progress in eCO2R.
Apart from pH, the ion in the electrolyte presents another
degree of difficulty in theoretical investigations. The presence
of some anions (e.g., phosphate and bicarbonate ions) that
buffer the interfacial pH can be used as proton donors, and
how the shift of proton donor from water to them can affect
PCET or PT barriers needs further exploration. Furthermore,
more efforts are required to study the ion adsorption effects,
where many current theoretical studies still lack the
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consideration of specific adsorption location of ions as well as
the influence of ion adsorption on the deformation or
reconstruction of catalytic surfaces. Moreover, beyond the
above three components of electrolyte effects, the effects of
other nonaqueous (co)solvents such as ionic liquids, if
applicable, deserve further theoretical investigations since
some experimental studies have unraveled distinct electro-
catalytic behaviors in an aprotic environment.84,85 Finally, we
would like to emphasize that given the extreme complexity of
interfacial electrolyte chemistry and the large variety of
reaction pathways for eCO2R, the full explicit modeling
presents a grand challenge of theoretical electrocatalysis. A less
computationally intensive approach to navigate through the
vast chemical complexities therefore remains vital.
In addition to fundamental understanding, better leveraging

of the beneficial electrolyte effects in practical applications of
eCO2R also asks for continuous future efforts. High pH in
general promotes C2+ production, but the reaction between
OH− and CO2 becomes more pronounced simultaneously,
leading to carbonate formation and irreversible acidification of
the electrolyte. The resulting carbonates can block the reactor
channels while the acidified electrolyte can induce a switch of
product selectivity from C2+ to C1 and hydrogen. As we
pointed out before, the tandem reactor design that decouples
the whole process into two individual units for eCO2R to CO
and eCOR to C2+ provides a feasible way of separate process
optimization, mitigating the detrimental carbonation at high
pH. However, an issue that cannot be circumvented by the
tandem reactor engineering is the adoption of anion exchange
membrane for alkaline electrolysis. So far, the ionic
conductivity and durability of the anion exchange membrane
are still incomparable to those of proton exchange membranes,
limiting the catalytic performance of the second alkaline
electrolysis unit in a tandem system. The improvement of
membrane materials is thereby necessary. Additionally, the
corrosion or aging effect on catalysts and other cell
components under highly alkaline conditions remains non-
negligible, making it imperative to investigate and improve the
stability of eCO2R catalysts (e.g., Cu) under practical
conditions (e.g., high current density, higher temperature,
and larger potential bias). Implementing the benefits of ion
effects in practical CO2 electrolysis, such as the local reaction
microenvironment modulation to obtain more C2+ products,
also has potential risks of increasing the separation cost and
cell voltage, due to salt precipitation and possibly decreased
electrolyte conductivity. The combination of solid-electrolyte-
based reactors and ion-immobilization strategies could be a
promising solution to simultaneously inhibit salt contami-
nation and modulate reaction microenvironments. Never-
theless, similar to the challenges for fundamental under-
standing, the impacts on eCO2R introduced by electrolytes are
usually convoluted, making it extremely hard to disentangle
and isolate various effects experimentally, which also places
implicit obstacles on the systematic optimization and rational
design of electrolytes. We thus encourage future research to
consider the catalyst, the electrolyte, and the reactor in a
comprehensive codesign scheme.
With the rapid development of artificial intelligence,

machine learning (ML)-based techniques start to bring in
new opportunities to ease the computational burden of
reaction exploration and system optimization in other sectors
of chemical research such as secondary batteries,86−88 as they
can help to simplify the detailed modeling of complex reaction

mechanisms as well as to learn important patterns from vast
experimental and computational data. The boosted computing
power can also potentially allow for more realistic simulations
of the electrical interfaces. More importantly, a tight linking of
experiments, theory, and machine learning can greatly facilitate
data reproducibility and reusability. Overall, we believe that
such a multidisciplinary research approach can greatly improve
our understanding of the field and promote research efficiency
while conserving resources. eCO2R, as a promising technology
lighting the sustainable future, will definitely benefit from that.
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