Strategic Partner

Hord Smart Contract
Audit

Date: April 7,2021
Report for: Hord
By: CyberUnit.Tech

This document may contain confidential information about IT systems and intellectual
property of the customer as well as information about potential vulnerabilities and
methods of their exploitation.

The report containing confidential information can be used internally by the customer, or
it can disclose publicly after all vulnerabilities are fixed - upon the decision of the
customer.

Scope and Code Revision Date

Repository https://github.com/hord/smart-contracts
) contracts/token folder
AlCE contracts/governance folder
IIITEL (e 9089a001409601b7821b72fa94d9f5db50355b50
Commit
Initial Audit 31.03.2021
Date
Secondary | o5 0 01 05dch236d30758000bff9e60da584c0c0
Audit Commit
Secondary
Audit Date 07.04.2021

https://github.com/hord/smart-contracts

Cyber Security
Strategic Partner

www.cyberunittech

Document
Introduction

Scope

Executive Summary
Severity Definitions
AS-IS overview
Audit overview
Conclusion
Disclaimers

o o o o o N

10

CYBER 3

www.cyberunittech

This report presents the findings of the security assessment of Customer™ s smart
contract and its code review conducted between March 24th 2021 - March 31st 2021;
Secondary audit conducted between April 5th 2021 - April 7th 2021

The scope of the project is Hord smart contracts, which can be found in repo:
https://github.com/hord/smart-contracts

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the widely known vulnerabilities that considered (the
full list includes them but is not limited to them):

Reentrancy

Timestamp Dependence

Gas Limit and Loops

DoS with (Unexpected) Throw

DoS with Block Gas Limit
Transaction-Ordering Dependence
Style guide violation

Transfer forwards all gas

ERC20 API violation

Compiler version not fixed
Unchecked external call - Unchecked math
Unsafe type inference

Implicit visibility level

https://github.com/hord/smart-contracts

CYBER 4
Yz, UNIT

www.cyberunittech

According to the assessment, Hord smart contracts security risk is low.

Several critical, high, medium issues were found for the smart contract during initial audit,
however, were fixed or accepted for the secondary audit.

Our team performed an analysis of code functionality, manual audit and automated
checks with Slither and remixed IDE. All issues found during automated investigation
manually reviewed and application vulnerabilities presented in the Audit overview
section. A general overview presented in the AS-1IS section and all encountered matters
can be found in the Audit overview section.

Risk Level Description

Critical vulnerabilities are usually straightforward to exploit

Critical and can lead to tokens loss.

High-level vulnerabilities are difficult to exploit. However,
High they also have a significant impact on smart contract
execution, e.g. public access to crucial functions.

Medium-level vulnerabilities are essential to fix; however,

Medium they can't lead to tokens loss.

Low-level vulnerabilities are mostly related to outdated

Low or unused code snippets.

Lowest / Code | Lowest-level vulnerabilities, code style violations and
Style / Best info statements can’t affect smart contract execution
Practice and can generally be ignored.

www.cyberunittech

Context is a standard contract for providing execution context.

HordToken is a smart contract for custom ERC20 token.
Contract HordToken is Context, IERC20, IERC20Metadata.

HordToken has following parameters and structs:

mapping (address => uint256) private _balances;

mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;

string private _name;

string private _symbol;

HordToken contract has following functions:

constructor - public function that mints total supply to specified address, sets
token parameters

name - public view function that returns token name

symbol - public view function that returns token symbol

decimals - public view function that returns 18

totalSupply - public view function that returns token total supply

balanceOf - public view function that returns user balance

transfer - public function that calls internal transfer function

allowance - public view function that returns spender allowance for account
approve - public function that calls internal approve function

transferFrom - public function that calls internal transfer for specified spender;
changes approved amount

increaseAllowance - public function that calls internal approve to increase spender
allowance

decreaseAllowance - public function that calls internal approve to decrease
spender allowance

_transfer - internal function that performs token transfer
_mint - internal function that mints new tokens

_burn -internal function to burn tokens

_approve - internal function to change allowance
_beforeTokenTransfer - internal function without any logic

CYBER

Cyber Security
Stra c Partner

www.cyberunittech

HordCongress is a smart contract for governance.

HordCongress has following parameters and structs:

string public constant name = "HordCongress";
IHordCongressMembersRegistry membersRegistry;
uint public proposalCount;

mapping (uint => Proposal) public proposals;

struct Proposal

o uintid;
address proposer;
address[] targets;
uint[] values;
string[] signatures;
bytes[] calldatas;
uint forVotes;
uint againstVotes;
bool canceled;
bool executed;
mapping (address => Receipt) receipts;

O O O O O O 0O O O

O

struct Receipt
o bool hasVoted,;
o bool support;

HordCongress contract has following functions and modifiers:

onlyMember modifier - checks whether address is in members registry
setMembersRegistry - public function that sets address for members registry
propose - public function that creates new proposals. Has onlyMember modifier.
castVote - public function that calls internal cote cast

execute - public function that executes proposal. Has onlyMember modifier.
cancel - public function that cancels proposal. Has onlyMember modifier.
_castVote - internal function to cast the vote

get actions - public view function that returns proposal data
getMemberRegistry - public view function that returns member registry address
add256 - internal view function for preventing addition overflows

sub256 - internal view function for preventing subtraction overflows

receive - external payable function to receive Ether

CYBER 7
== UNLT

Strateg
www.cyberunittech

HordCongressMembersRegistry is a smart contract for managing Hord congress
members.

HordCongressMembersRegistry has following parameters and structs:

string public constant name = "HordCongressMembersRegistry";
address public hordCongress;

uint256 minimalQuorum;

mapping (address => bool) isMemberInCongress;
apping(address => Member) public address2Member;

address[] public allMembers;

struct Member
o address memberAddress;
o bytes32 name;
o uint memberSince;

HordCongressMembersRegistry contract has following functions and modifiers:

onlyHordCongress modifier - checks whether address is Hord Congress

constructor - public function that initializes starting members and sets Hord
Congress address

changeMinimumQuorum - public function that changes minimal quorum amount
for proposal. Has onlyHordCongress modifier

addMember - public function that calls addMemberInternal. Has
onlyHordCongress modifier

addMemberInternal - internal function for adding new members to registry

removeMember - public function that removes Hord member. Has
onlyHordCongress modifier

isMember - public view function that returns true if address is member

getAllMemberAddresses - public view function that returns a list of all member
addresses

getMemberInfo - public view function function that returns member info

getMinimalQuorum - public view function function that returns minimal quorum
value

CYBER 8

www.cyberunittech

10.

11

12.

[Fixed in 9151ecb] castVote and _castVote have no onlyMember modifier, thus,
any addresses can vote on the proposals. One member will be enough to execute
any proposal.

[Fixed in 9151ecb] All new proposals can be cancelled by rogue member. If a
malicious member sees a new proposal, he calls cancel and it’s cancelled. It wiill
also be impossible to remove him from members. Proposal should be canceled
only in case of reaching some threshold for negative votes.

[Fixed in 9151ecb] removeMember function has no event emitted.

[Fixed in 915lecb] increaseAllowance contains integer overflow in the 3rd
parameter of _approve function. It's possible to decrease allowance or set it to O
via increaseAllowance function.

[Risk accepted by Customer] setMembersRegistry can be called by anyone
before legit call. It's recommended that only specified address could set
members registry address.

[Not an issue] When a new member is added, minimum quorum sets to all
members, however, it should be increased by 1.

[Fixed in 9151ecb] _beforeTokenTransfer function has an empty body, however,
called for each transfer. The function should be removed.

[Fixed in 9151ecb] _mint and _burn functions are implemented and can’t be ever
called. It's recommended to use standard openZeppelin templates with required
functionality.

[Risk accepted by Customer] Hord Congress contract has pragma experimental
ABIEncoderV2;it's not recommended to use experimental pragma for production
contracts.

[Fixed in 9151ecb] propose function checks address membership twice - in the
modifier and in the function body. Double check wastes extra gas.

[Risk accepted by Customer] Solidity version is not locked, it’'s recommended to
lock pragma to specific version.

[Fixed in 915lecb] Member struct doesn’t need to store member address
because it’s stored in address2member mapping. Storing it in struct will waste
extra gas.

https://github.com/hord/smart-contracts/commit/9151ecb05dcb236d3075800cbff9e6cda584c0c0
https://github.com/hord/smart-contracts/commit/9151ecb05dcb236d3075800cbff9e6cda584c0c0
https://github.com/hord/smart-contracts/commit/9151ecb05dcb236d3075800cbff9e6cda584c0c0
https://github.com/hord/smart-contracts/commit/9151ecb05dcb236d3075800cbff9e6cda584c0c0
https://github.com/hord/smart-contracts/commit/9151ecb05dcb236d3075800cbff9e6cda584c0c0
https://github.com/hord/smart-contracts/commit/9151ecb05dcb236d3075800cbff9e6cda584c0c0
https://github.com/hord/smart-contracts/commit/9151ecb05dcb236d3075800cbff9e6cda584c0c0
https://github.com/hord/smart-contracts/commit/9151ecb05dcb236d3075800cbff9e6cda584c0c0

CYBER 9
bkl UI\IIT

www.cyberunittech

13. [Risk accepted by Customer] SafeMath library is not explicitly used within
contracts. For example, Hord Congress implements custom overflow protection
functions, which, potentially, may increase gas usage.

14. [Fixed in 9151ecb] It's recommended for getMemberInfo to have an address as
param so anyone could view info for any address.

https://github.com/hord/smart-contracts/commit/9151ecb05dcb236d3075800cbff9e6cda584c0c0

CYBER 10

Cyber Security
Stra c Partner

www.cyberunittech

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. For the contract, high-level description of functionality presented in As-is
overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the
reviewed code.

Security engineers found several critical, high, medium issues during the initial audit. All
of the findings were fixed or accepted by Customer for the secondary audit. The overall
risk is low.

CYBER 1

Cyber Security
Stra c Partner

www.cyberunittech

The smart contracts given for audit have analyzed following the best industry practices
at the date of this report, concerning: cybersecurity vulnerabilities and issues in smart
contract source code, the details of which disclosed in this report, (Source Code); the
Source Code compilation, deployment and functionality (performing the intended
functions).

The audit doesn't make warranties on the security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of the system, bug
free status or any other statements of the contract. While we have done our best in
conducting the analysis and producing this report, it is essential to note that you should
not rely on this report only. We recommend proceeding with several independent audits
and a public bug bounty program to ensure the security of smart contracts.

Smart contracts are deployed and executed on a blockchain platform. The platform, its
programming language, and other software related to the smart contract can have its
vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee specific security of
the audited smart contracts.

