
ar
X

iv
:2

01
0.

02
38

7v
1 

 [
cs

.L
G

] 
 5

 O
ct

 2
02

0
1

Metadata-Based Detection of Child Sexual Abuse
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Abstract—In the last decade, the scale of creation and dis-
tribution of child sexual abuse medias (CSAM) has exponen-
tially increased. Technologies that aid law enforcement agencies
worldwide to identify such crimes rapidly can potentially result
in the mitigation of child victimization, and the apprehending
of offenders. Machine learning presents the potential to help
law enforcement rapidly identify such material, and even block
such content from being distributed digitally. However, collecting
and storing CSAM files to train machine learning models has
many ethical and legal constraints, creating a barrier to the
development of accurate computer vision-based models. With
such restrictions in place, the development of accurate machine
learning classifiers for CSAM identification based on file meta-
data becomes crucial.

In this work, we propose a system for CSAM identification on
file storage systems based solely on metadata - file paths. Our
aim is to provide a tool that is material type agnostic (image,
video, PDF), and can potentially scans thousands of file storage
systems in a short time. Our approach uses convolutional neural
networks, and achieves an accuracy of 97% and recall of 94%.
Additionally, we address the potential problem of offenders trying
to evade detection by this model by evaluating the robustness of
our model against adversarial modifications in the file paths.

Index Terms—child sexual abuse medias; child exploitation;
CSAM; file path; file storage systems; cloud storage; machine
learning; neural networks.

I. INTRODUCTION

INTERNATIONAL law enforcement handle millions of

child sexual abuse cases annually. Hotlines internationally

have received and reviewed over 37 million child sexual abuse

files in 2017, alone [5]. Despite the 2008 Protect our children

act [20], the numbers of CSAM in digital platforms have

dramatically grown in the last decade[30]. Online sharing plat-

forms have facilitated[24] the explosive growth of CSAM cre-

ation and distribution [6]. Every platform for content searching

and sharing, including social material, likely has CSAM on it

[15]. This is an issue that affects society in larger numbers than

expected. Recent studies reported alarming statistics, where

25% of girls and 17% of boys in the U.S. will experience

some form of sexual abuse before the age of 18 [27].

As the scale of the problem grew, technology became

essential in CSAM identification. Technology giants such as

Microsoft, Apple, Facebook, and Google have made detection

and removal of CSAM one of their top concerns, and work
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with non-profits such as Project VIC International 1, Thorn 2

and the Internet Watch Foundation3 to create tools to combat

CSAM proliferation.

With the COVID-19 pandemic, experts have observed that

the distribution of CSAM in social material and video con-

ference apps has significantly increased [25]. Distributors use

coded language to trade links of CSAM hosted in plain sight

on content sharing platforms such as Facebook, YouTube,

Twitter, and Instagram using cryptic language to evade the

current detection tools [6], [25].

A. Preventing Distribution of Undiscovered Material.

The identification of CSAM is an extremely challenging

problem. It starts with the fact that it can manifest in different

types of material: images, videos, streaming, video conference,

online gaming, among others. CSAM still undiscovered and

unlabeled on the internet is potentially several magnitudes

greater than previously identified CSAM. New material is

created daily and digital platforms have a large role to play in

the detection and and removal of this material.

Multiple approaches to the CSAM identification problem

using computer vision-based methods have appeared in the

literature in the past years [28], [16], [32]. Although these

approaches appear promising, they lack evaluation in real-

world big data unbalanced data sets; data sets with ethnicity

diversity, and time efficiency and scalability evaluation. To

keep up with all new forms of CSAM content distribution [6],

all these factors must be carefully evaluated and taken into

consideration.

B. Our Contributions

Given the complexity of the problem of detecting CSAM, it

is essential to analyze different aspects of the CSAM distribu-

tion. This paper proposes statistical models that compute the

likelihood that a file path is associated with a CSAM file. An

advantage of this approach is that it does not require posses-

sion of the raw CSA image or video for training machine

learning models. Specifically, we accomplish the following

tasks:

• Train and compare several machine-learning based mod-

els that analyze metadata from file storage systems and

determine a probability that a given file has child sexual

abuse content.

1https://www.projectvic.org
2https://www.thorn.org
3https://www.iwf.org.uk
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• Analyze the robustness of our models against commonly

used techniques for avoiding detection in text-based ma-

chine learning classifiers. We study the resilience of our

models against black-box attackers (attackers that have

no knowledge of the models and their parameters) and

against attackers that have knowledge about words that

have a high probability to appear in CSAM file paths.

• We train our models on a real-world data set containing

over one million file paths. It is the largest file path data

set ever used for CSAM detection to date. Our classifiers

achieve recall rates over 94% and accuracy over 97%.

Our results demonstrate, for the first time, the practicality

of using file paths for CSAM detection in storage systems.

II. RELATED WORK

A. PhotoDNA Hash

Identification of CSAM via statistical algorithms is a fairly

recent approach. At the turn of the century, laws targeting

online exploitation were introduced and refined (COPA in the

US, Crime and Disorder Act UK)[7], but the first widely

used methodology was released in 2008. Known widely as

PhotoDNA[17], the technology was developed by Dr. Hany

Farid and Microsoft.

In PhotoDNA, an image is converted to a long string of

characters by a fuzzy hash algorithm, and this hash could

then be compared against other hashes to find identical or

similar images without people having to view the images

and compromising the victim’s identity. This system is still

one of the most widely used methods for detecting images

worldwide, databases of hashed CSAM images are used to

identify identical or similar images on many digital platforms,

including search engines, social networks, and file storage

platforms. The advantage of PhotoDNA Hash is that it has

a low false-positive detection rate, but it has some clear

drawbacks. It only works on known CSAM that has gone

through its hashing algorithm, and identification of new CSAM

is still primarily a manual labeling endeavor. Labelers have to

be trained and wellness programs have to be developed to

counter the psychological impact of viewing these images.

B. Machine Learning for Image Identification

Since PhotoDNA’s first development, computer vision mod-

els have undergone a revolution resulting in novel machine

learning based models for pornography and CSAM detection

[19], [16], [32], [22]. The current approaches either combine a

computer vision model to extract image descriptors [28], train

computer vision models on pornography data [9], perform a

combination of age estimation and pornography detection [16]

or synthetic data [32]. However, due to legal restrictions in

maintaining a database of CSAM images, all current works

are based on either unrealistic images [32], or validated by

authorities in very small [28], [16], [9] data sets that hardly

represents the true data distribution in the internet [6].

C. Machine Learning Based on Complementary Signals and

Metadata

While significant efforts have focused on the images them-

selves, some researchers have looked for complementary

signals and metadata that could help in CSAM identifica-

tion. For example, queries that bring up CSAM in search

engines, or conversations that imply grooming or trade in

CSAM[26]. Other efforts have used textual signals to identify

where CSAM might be located, such as keywords related

to website content[29], using NLP analysis[23], [21], [2],

conversations[4]. Our work falls into this category.

D. File Path classification

To the best of our knowledge, there is only a single paper

that describes an attempt to identify CSAM based solely on file

paths [2]. While pioneering, this work was based on a small

data set containing only 9,000 CSAM file paths, and their

best model achieves recall rates lower than 80% for CSAM

file paths. High recall rate is critical for this application.

Additionally, the work in [2] does not address the question

of classifiers robustness against noise introduced at test time

(adversarial attacks).

E. Robustness Against Adversarial Attacks

Whenever a machine learning classifier is used for detecting

malicious behavior or content, it is important to consider

the possibility that inputs to the model have been modified

in an adversarial way. Adversarial inputs to a classifier are

inputs that have been modified in an intentional way to

make detection of malicious activity harder. An adversary can

intentionally flip characters of words that most likely contain

signal for helping in the classification task, e.g. using Lo7ita

instead of Lolita.

Our proposed techniques are based on classification of file

paths. Thus, it is important to study the effects of adversarial

inputs in the classifier performance.

Such a question is not new in natural language processing

and the effect of random modifications to a classifier’s inputs

have been previously studied in the context of text classifica-

tion [1], machine translation [3] and word embedding [11].

In this paper, we study the robustness of our model in

two different situations. One where such an adversary has no

knowledge of model’s parameters [8], or even the score output

generated at test time [12]. We call this a black-box adversary.

Additionally, we also present an analysis where the adver-

sary has some knowledge of the models and uses it to target

regions of the file path that most likely contain signals for

classification.

III. DATA SET DESCRIPTION

Our approach to identifying CSAM file paths is based on

supervised learning. Thus, it is necessary to build a pre-

labelled data set (CSA versus non-CSA). Moreover, we also

need separating the data set according to storage system

precedence. This is done to guarantee independence of samples

in train and test time.
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Our data set was provided by Project VIC International and

consists of 1,010,000 file paths from 55,312 unique storage

systems. The data extraction from all storage systems utilizes

a forensics technique known as file carving. File carving

recovers files by scanning the raw bytes of a storage system

and reassembling them. This process comprises examining the

header (the first few bytes) and footer (the last few bytes) of a

file. File carving is utilized for recovering files and fragments

of files when directory entries are corrupt or missing. Forensics

experts use this in criminal cases for recovering evidence.

Particularly in CSA cases, law enforcement agents can often

recover more images from the suspect’s storage system using

carving techniques.

The data set includes the following columns:

• File path: This column contains the entire file path for

a given file. File paths are strings that contains location

information of a file (folders) in a storage system, as well

as the file name. Examples of file paths in our data set:

C:\Users\SomeUser\Pictures\Seattle.png

D:\ExternalHD\Files \Pictures\Seattle.png

• Label: The data set provided by Project VIC contains 4

different labels to identify the type of content in the file.

The labels are defined as:

[0] Non-pertinent

[1] Child Abuse Material (CSAM)

[2] Child Exploitive/Age Difficult

[3] CGI/Animation Child exploitive

TABLE I
QUANTITY OF FILE PATHS IN EACH LABEL CLASS

Label Number of file paths

0 717,448

1 33,901

2 250,724

3 7,927

Our system aims to identify all classes of CSA-related mate-

rial. For the purposes of model training and model evaluation,

we created binary labels (CSAM vs non-CSAM). Labels 1,2

and 3 are mapped to CSAM (292,552 file paths); label 0 is

mapped to non-CSAM (717,448 file paths).

A. File Path Characteristics

We describe file path characteristics that will help us define

technical aspects of our classification models such as the

size of the character embedding vectors in our deep neural

networks models.

Figure1 shows the distribution of file path lengths in the

data set. Only 4,685 file paths have more than 300 characters.

For this reason, we truncate the file path by discarding the

initial characters and keeping only the last 300 characters for

training, validation and testing.

The majority of the data set presents English terms and

words. Using the language identification library Fasttext [14],

we identified words in over 10 languages, including Russian,

German, Swedish, Spanish, Polish, Italian, Japanese, Chinese

and Portuguese. The variety of languages and alphabets used

Fig. 1. Number of characters in each file path

in the file paths define the size of the character embedding

layer in our models.

B. Cross Validation Data Split

We use a K-Fold Cross Validation methodology in our

experiments with K=10. To guarantee independence of file

paths in the different partitions of the data, we create the

random data folds by splitting the data by storage system

information, as illustrated in Fig 2.

The storage system identification for each file path is done

as follows. We check if the information before the first back-

lash corresponds to external storage system or a laptop/desktop

file system. If we are unable to extract the identifying factors

before the first backlash, we extract the information of the first

two backlashes and use it as the storage system identifier.

IV. FILE PATH-BASED CSAM CLASSIFIERS

We investigated three approaches for CSAM file path clas-

sification.

• The first approach is based on extracting bag-of-words

from the file paths following by a traditional supervised

machine learning classifier (logistic regression, boosted

decision trees, and naive Bayes);

• The second approach is based on computing n-grams

from each file path and presenting these n-gram vectors

to a traditional supervised machine learning classifier

Fig. 2. Data split for K-fold cross validation. The data is partitioned by
storage system ids. File paths from a same storage system are all assigned
to a same data fold. The data folds in the orange shaded areas represent the
training data in each iteration, and the data folds in the blue shaded areas
represent the test data.
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(logistic regression, boosted decision trees, and naive

Bayes);

• The third approach is based on character-based deep

learning models. This approach uses a character quanti-

zation of each file path and presents it to a deep learning

model architecture.

We now describe how the input data (file path) is repre-

sented in each one of these approaches and the deep learning

architectures that were used.

A. Data Input Representation

a) Bag-of-Words and TF-IDF: For each file path, we

consider a “word” to be a sequence of alphanumeric characters

that are separated by a dash, slash, colon, underscore or

period. The bag-of-words model is constructed by selecting

the 5,000 most frequent ”words” from the training subset. For

the standard bag-of-words, we use the counts of each word as

the features. In the TF-IDF (term-frequency inverse-document-

frequency) [13] version, the term-frequency (TF) is the number

of times a term occurs in a given document. The inverse-

document frequency-component (IDF) is computed as:

IDF(t) = log
1 + n

1 + df(t)
+ 1

where n is the total number of documents in the document

set, and df(t) is the number of documents in the document

set that contain term. For each term it is computed the

product of the TF and IDF components. The resulting TF-

IDF vectors are then normalized by the Euclidean norm. The

data set of vectorized file paths is used as input to three

different learning algortihms: logistic regression, naive Bayes

and boosted decision trees.

b) Bag-of-Ngrams and TF-IDF: We extract from each

file path string its n-grams, for n ∈ {1, 2, 3}. The set of n-

grams of a string s, is the set of all substrings of s of length

n. The bag-of-ngrams models are constructed by selecting

the 50,000 most frequent n-grams (up to 3-grams) from the

training subset for each data set. The feature values are

computed the same way as in the bag-of-words model. The

data set of vectorized file path n-grams is used as input to

three different learning algortihms: logistic regression, naive

Bayes and boosted decision trees.

c) Character-Based Quantization: As input to the deep

neural networks models, we use sequences of encoded charac-

ters. We use the same approach proposed in [33]. An alphabet

of size m is defined as the input language, which is quantized

using 1-of-m encoding. Each file path is then transformed into

a sequence of such m sized vectors with fixed length 300, and

any characters exceeding length 300 is ignored. If the file path

name is shorter than 300, we pad with zeroes on the left. In

our data sets, over 99% of the file paths have length less than

300 characters, as shown in Figure 1.

Characters that are not in the alphabet are quantized as all-

zero vectors. The alphabet used in all of our models consists of

m = 802 characters, which includes English letters, Japanese

characters, Chinese characters, Korean characters and special

alphanumeric characters. The alphabet is the set of all unique

characters in the training data.

All deep neural network architectures start with an embed-

ding layer that learns to represent each character by numerical

vector. The embedding maps semantically similar characters to

similar vectors, where the notion of similarity is automatically

learned based on the classification task at hand.

B. Deep Learning Architectures

Deep Neural Networks in combination with character em-

beddings have succeeded in several short text and string

classification tasks. From natural language text [33] to domain

classification [31], deep neural networks architectures have

outperformed traditional methods in several applications.

In our work, we use two architectures of deep neural

networks: convolutional networks and long-short term memory

networks.

a) Convolutional Neural Networks: Convolutional Neu-

ral Networks (CNN) are known for state-of-the-art advances in

image processing, and apply to inputs of grid-like topology.

One-dimensional CNNs are a natural fit when the input is

text, treated as a raw signal at the character level [33]. CNNs

automatically learn filters to detect patterns that are important

for prediction. The presence (or lack) of these patterns is

then used by the quintessential neural network (multilayer

perceptron, or MLP) to make predictions. These filters, (also

called kernels) are learned during backpropagation. An intu-

itive example in image processing is a filter which detects

vertical edges, while in text processing the filters detect sub-

strings, or n-grams. The underlying operation of CNNs is

elementwise multiplication, performed between each filter and

sub-sections of the input. The resulting values indicate the

degree to which these sub-sections match the filters. In this

manner, the filters are convoluted over the input to form an

activation map, which represents the locations of discovered

features.

b) Long Short-Term Memory Networks: We train an

depp neural network architecture that uses a recurrent neu-

ral network layer, namely long-short term memory (LSTM)

networks. The variant of LSTM used is the common “vanilla”

architecture as used in [31].

LSTM is a type of recurrent neural network that can capture

combinations of letters. This characteristic can be critical to

discriminating CSA file paths from non-CSA file paths. This

flexible architecture generalizes manual feature extraction via

n-grams, for example, but instead learns dependencies of one

or multiple characters, whether in succession or with arbitrary

separation.

The LSTM layer can be thought of as an implicit feature

extraction, as opposed to explicit feature extraction (e.g., n-

grams) used in other approaches. Rather than represent file

paths names explicitly as a bag of n-grams, for example, the

LSTM learns patterns of characters (or in our case, embedded

vectors) that maximize the performance of the second classi-

fication layer.

c) Implementation Details: Figures 3 and 4 show de-

tailed information of both architectures(charCNN and charL-

STM), including data dimensions and the number of weights

in each layer.
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Fig. 3. Diagram of the deep neural network architecture with CNN layers
used for training one of our charCNN model. All data dimensions and number
of weights in each layer of our charCNN model are indicated in the above
diagram.

Fig. 4. Diagram of the deep neural network architecture with LSTM layer
used for training one of our charLSTM model. All data dimensions and
number of weights in each layer of our charLSTM model are indicated in
the above diagram.

V. EVALUATION

We present our results for all our classifiers in Table II.

All performance metrics were measure using a 10-fold cross-

validation methodology. For each of our classifiers, we report

the mean and the standard deviation of the area under the ROC

curve (AUC), accuracy, precision, and recall for predicting

CSAM files. We focus on two primary metrics for model

comparison: Recall and AUC. Additionally, we assess all

machine learning models’ generalization by looking into the

standard deviations over the cross-validation folds.

A. Traditional Machine Learning

There are significant advantages of traditional machine

learning models in comparison with deep neural networks.

Understanding how well these models perform can help sci-

entists and investigators leverage one of such models’ most

remarkable characteristics: feature interpretability. The most

relevant predictive tokens, or n-grams, can give clues about

relevant vocabulary words in the data set and be leveraged

in other CSAM detection systems. On table II, we observe

that the model trained with bag-of-words and bag-of-ngrams

operates in similar AUC and accuracy ranges. When analyzing

recall rates of traditional models, we note that both naive

Bayes models have the highest rates, with the lowest stan-

dard deviation. The naive Bayes with bag-of-ngrams features

presents the best recall of all traditional models, of about 91%.

Among the other models trained using bag-of-ngrams, naive

Bayes presents a much smaller recall standard deviation (σ =

0.085) when compared to logistic regression (σ = 0.20) and

boosted decision trees(σ = 0.20).

In figure 5, we compare side by side the ROC curves of

all the models. The ROC curve illustrates the operation of a

binary classifier as its discrimination thresholds vary. Although

the evaluation of CSAM classification models heavily relies on

recall rates, when deployment a model in an environment that

potentially analyses hundreds on thousands of file systems,

and consequently millions of file paths, precision rates must

be analyzed. The burden of having several thousands of false

positives can result in an inefficient process and potentially

delay investigations and discovery of true positives. By an-

alyzing the traditional models’ ROC curve, we observe that

boosted decision trees overall performs better than the two

other techniques.

B. Deep Neural Networks

We were able to achieve the best performance across all

categories with deep neural network architecture. We trained

two different architectures: our first architecture utilizes CNNs

and the second LSTMs. The LSTM model achieves results

very similar to the bag-of-words naive Bayes classifier. How-

ever, our CNN model consistently outperformed all the other

models, both in mean performance metrics across all folds

and in the smallest standard deviation. The resulting ROC

curve also indicates a model that operates with a higher recall

for multiple ranges of false-positive rates. The recall of over

94% and precision over 93% makes this model an excellent

candidate as an investigative tool in environments with large

volumes of storage systems.

VI. MODEL ROBUSTNESS TO ADVERSARIAL INPUTS

In classical machine learning applications, we assume that

the underlying data distribution is stationary at test time.

However, there are multiple scenarios where an intelligent,

adaptive adversary can actively manipulate samples.

In the scenario of CSAM file path identification, it is easy

to imagine a scenario where perpetrators include typos and

modifications to the file paths to evade vocabulary blacklists

and even machine learning-based CSAM detection mecha-

nisms. We address this problem by simulating attack scenarios

where an adversary actively changes the file paths to elude the

classifiers.
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TABLE II
PERFORMANCE METRICS FOR VARIOUS MODELS

Features Algorithm AUC Accuracy Precision Recall

Mean σ Mean σ Mean σ Mean σ

Bag of Words Logistic Regression 0.967 0.035 0.922 0.062 0.904 0.090 0.787 0.202

Bag of Words Naive Bayes 0.972 0.011 0.927 0.032 0.875 0.070 0.859 0.114

Bag of Words Boosted Trees 0.982 0.013 0.934 0.062 0.903 0.096 0.827 0.203

Bag of N-grams Logistic Regression 0.980 0.021 0.931 0.060 0.919 0.088 0.793 0.202

Bag of N-grams Naive Bayes 0.958 0.023 0.929 0.032 0.839 0.083 0.913 0.085

Bag of N-grams Boosted Trees 0.983 0.015 0.931 0.060 0.906 0.094 0.822 0.203

Character quantization CNN 0.990 0.011 0.968 0.019 0.938 0.034 0.943 0.060

Character quantization LSTM 0.977 0.029 0.930 0.072 0.862 0.144 0.846 0.213

Fig. 5. ROC curves of all models trained in our experiments. Each subplot shows the roc curves of all models trained in the 10-fold cross validation procedure
for a same machine learning technique.

We present two different flavors of the adversarial attack.

In the first scenario, we consider an adversary that does not

have any knowledge about the CSAM file detection mecha-

nism, or access to its scoring results. The adversary makes

random changes to characters in the file paths. The number of

modifications allowed in the file path is the adversary’s budget.

The determination of an adversary budget is a challenging task

since we want to enable the adversary to make the maximum

amount of changes, without compromising the human com-

prehension of the meaning of the string of characters. Based

on previous results, we believe that this amount lies between

10% and 15% of the length of the file path [12]. To stress-test

our models, we also analyze the performance of our models

under a 20% change.

In the targeted keywords scenario, we consider that the

adversary has access to a vocabulary that is highly correlated

with the CSAM samples in the training set. The adversary

makes targeted character substitutions only on the terms that

are good predictors for each class. The adversary’s goal is

to cause a decrease in the confidence output of the scoring

algorithm and, consequently, result in a wrong label attribution

to a specif file path. In this scenario, the adversary can modify

up to four keywords, one character per keyword.

A. Adversarial Examples

Given a model F : X → Y , which maps the input space X
to the set of labels Y , a valid adversarial example xadv is gen-

erated by altering the original data example x ∈ X and should

conform to the following requirements: F(xadv) 6= F(x) and

S(xadv,x) ≤ ǫ, where S : X × X → R+ is a similarity

function and ǫ ∈ R+ is a constant modeling the budget

available to the adversary, the total number of modifications

allowed.

B. Threat Model

In our threat model, the attacker is not aware of the model

architecture, parameters and does not have access to the

confidence scores output of the model [10]. In our first setting,
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the only knowledge the adversary has about the model is the

input space X and the output space Y .

In the targeted keywords setting, we assume that the ad-

versary also has some knowledge of the training data. The

training data originates from storage systems confiscated from

perpetrators. In that case, we can assume other malicious

entities have access to similar or identical data and understand

the vocabulary of keywords used to identify the files. We

describe details of the adversary’s knowledge in section VI-D.

C. Adversarial Examples with Random Modifications

The adversarial examples are generated by randomly se-

lecting a position in the file path string, and substituting the

character in the selected position by a random alphanumeric

character. This technique has been previously used to attack

language models [3]. We evaluate our models for an adver-

sarial budget of 10%, 15%, and 20% of file path length. For

example, an adversary with a budget of 10% would modify 3

characters the file path data/10 fold data split/dataset, which

is 31 characters long. A randomly modified file path, with

ǫ=10%, is data/10 f9ld dkta split/datoset.

D. Adversarial Examples with Random Modifications in Tar-

geted Keywords

In our experiments, we assume an adversary has access to

the training data set, and uses the training data to identify

character sequences that are highly correlated to CSAM file

paths.

In this attack, we generate a list of tokens that are highly

correlated with CSAM file paths, and we assume that the

adversary has access to this list. We create the list of highly

correlated tokens using Odds ratio, a widely used technique

in information retrieval, and used for feature selection and

interpretation of text classification models [18].

To generate this list, the first step of the attack is to identify

which tokens are more likely to appear in CSAM file paths. We

extract all tokens from the data set of file paths as described

in section IV-A. For all keywords, we calculate the odds of

the keyword being part of a CSAM file path and the odds of

the keyword being part of a non-CSAM file path. The Odds

ratio of a keyword k is defined as ORk, and is computed as:

ORk =
odds of k appear in CSAM file

odds of k appear in non-CSAM

The list of CSA keywords, Tcsa, comprises all keywords with

Odds ratio greater than two. We make this list available to the

adversary. We rank the keywords by Odds ratio and make the

ranking available to the adversarial as well.

To create an adversarial example from an existing file path

f , the adversary generates Kcsa = Tcsa

⋂
Tf , where Tf is the

set of tokens of f . The file path modification occurs as follows:

The adversary selects the word k ∈ Kcsa with the highest

ranking. The adversary randomly modifies one character in k

by randomly selecting a position in the keyword string, and

substituting the character in the selected position by a random

alphanumeric character. We denote by k̂ the keyword with one

randomly modified character. The adversary replaces k with k̂

in the file path f . The adversary repeats this procedure for the

next highest ranked keyword in the set Kcsa. The number of

allowed keyword replacements is determined by the budget ǫ.

E. Evaluation under adversarial examples

We evaluate the impact of adversarial modifications in

test samples in the model’s performance. We are especially

interested in understanding which machine learning techniques

are more robust when the data is adversarially modified at test

time. All attacks target only CSAM file paths, and therefore

we only evaluate the variation in recall rates. Additionally,

we analyze the mean deviation in confidence scores for all

models.

a) Random Modifications: Under this scenario, an ad-

versary randomly modifies a percentage of the file path by

randomly selecting characters and replacing them with random

characters. A reasonable adversary budget in this scenario is

between 10 % and 15%. Previous works have also consid-

ered this percentage range for perturbing text strings [12].

Considering that most file paths have a length between 40

and 200 characters, this results in changing between 6 and 30

characters in each file path. To stress-test our models, we also

analyze the performance of our models under a 20% change.

Table III shows details on the confidence score variations

for different adversarial budgets.

Figure 6 demonstrates the variation in recall rates as the

percentage of random flipped characters increases. For an

adversarial budget of 15%, we observe a decrease in recall

rates of 0.02 for bag-of-words and naive Bayes and 0.07 in the

CNN model. Interestingly, bag-of-ngrams naive Bayes suffers

an increase in recall rates after flipping a percentage of the

characters in the file path. This phenomenon results from the

fact that modifications in the file paths can also increase the

model’s confidence score output. The boosted decision trees

models undergo the most significant decrease in recall rates.

A possible model overfitting can explain this to this specific

data set distribution. In the case of 20% of flipped characters,

the deep neural networks models’ recall rates decrease ≈ 0.1,

and bag-of-words naive Bayes decreases ≈ 0.05, and bag-of-

Fig. 6. Recall decrease as adversary budget increases in black box setting
for different models.

data/10_fold_data_split/dataset
data/10_f9ld_dkta_split/datoset
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TABLE III
MODEL ROBUSTNESS TO ADVERSARIAL RANDOM MODIFICATIONS WITH DIFFERENT LEVELS OF ADVERSARIAL BUDGET: 10%, 15% AND 20%

Features Algorithm Budget: 10% Budget: 15% Budget: 20%

Mean σ Mean σ Mean σ

Bag of Words Logistic Regression 0.05 0.19 0.09 0.24 0.13 0.28

Bag of Words Naive Bayes ≈0 0.25 0.03 0.29 0.07 0.32

Bag of Words Boosted Trees 0.16 0.35 0.26 0.40 0.35 0.40

Bag of N-grams Logistic Regression 0.05 0.11 0.08 0.13 0.12 0.15

Bag of N-grams Naive Bayes -0.01 0.18 -0.01 0.2 -0.02 0.21

Bag of N-grams Boosted Trees 0.12 0.30 0.19 0.35 0.26 0.38

Character quantization CNN 0.03 0.13 0.05 0.18 0.08 0.22

Character quantization LSTM 0.05 0.22 0.09 0.27 0.13 0.31

TABLE IV
MODEL ROBUSTNESS TO ADVERSARIAL TARGETED KEYWORDS MODIFICATIONS WITH DIFFERENT LEVELS OF ADVERSARIAL BUDGET: 1 ,2,3 AND 4

WORDS IN THE FILE PATH

Features Algorithm Budget: 1 Budget: 2 Budget: 3 Budget: 4

Mean σ e Mean σ Mean σ Mean σ

Bag of Words Logistic Regression 0.01 0.03 0.02 0.05 0.03 0.05 0.03 0.06

Bag of Words Naive Bayes ≈0 0.05 ≈0 0.06 ≈0 0.07 ≈0 0.07

Bag of Words Boosted Trees 0.01 0.06 0.02 0.07 0.02 0.08 0.03 0.09

Bag of N-grams Logistic Regression 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02

Bag of N-grams Naive Bayes ≈0 0.05 ≈0 0.06 ≈0 0.06 ≈0 0.07

Bag of N-grams Boosted Trees ≈0 0.05 0.01 0.06 0.01 0.07 0.01 0.07

Character quantization CNN ≈0 0.02 ≈0 0.03 ≈0 0.03 ≈0 0.04

Character quantization LSTM ≈0 0.04 ≈0 0.05 ≈0 0.05 ≈0 0.06

Fig. 7. Recall decrease as adversary budget increases in white box setting
for different models.

ngrams naive Bayes, once again presents an increase in its

recall rate.

b) Targeted Keywords: Having access to a list of highly

correlated keywords with CSAM file paths, Tcsa, will permit

the adversary to make targeted changes in the CSAM file

paths. This experiment allows the adversary to change one

character per keywords, up to 4 keywords per file path. The

recall variation as a function of the adversarial budget is

illustrated in figure 7.

As indicated in figure 7, the most significant drop in

accuracy happens for budget = 1. This is justified by the

fact that the adversary also has access to the Odds ratio for

each keyword. For budget = 1, the adversary will modify

the keyword with the largest Odds ratio; for budget = 2, the

adversary will modify the keywords with the two largest Odds

ratio, and so on.

Overall, the targeted changes in the file paths result in small

changes in the recall rates. Logistic regression and boosted

decision trees have more considerable recall variations than

naive Bayes and deep neural networks models.

Confidence score variation details are described in table IV.

It is easy to observe that the mean change in confidence score

in less than 0.1 for all models and all budgets. However, we see

examples in our experiments where a single change resulted

in a drastic drop in the confidence score.

We conclude that, without access to the model output, it

is hard to craft an adversarial example close to the original

sample, even when an adversary has access to a list of

keywords highly correlated with the positive class.

VII. CONCLUSION

In this paper, we present a system for CSAM identification

based solely on file paths. CSAM identification systems based

on file paths have the advantage of not working directly

with CSA photos or videos, thus providing a a classifier

that is medium agnostic, of easy maintenance and reduced

legal restrictions for acquiring and using a data set. To the

best of our knowledge, our classifier is the first of the kind

to achieve precision and recall rates over 90%, making an

ideal candidate for deployment in investigations and detection

of CSAM content in file storage systems. Our results have

been evaluated with a data set consisting of over one million

entries obtained from real investigations all over the world.

Our experiments show that our proposed models generalize

well to identifying CSAM content in file storage systems and

are robust to some adversarial attacks introduced at test time.

We believe that this method, along with PhotoDNA hash,

computer vision tools, and other forensics tools, should form

part of a global toolset that enables organizations to fight the

distribution of CSAM. Its purpose is to be a fast identifier
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that allows investigation agencies and technology companies

to find images and videos in file storage systems quickly. This

speed in detection can potentially reduce repeated victimiza-

tion of abused children.

Online child sexual abuse imagery falls into a category

of images that should not be distributed or be present in

file storage systems. Although this is a complex problem to

solve given the distributed nature of the internet, automated

tools and machine learning-based systems can help technology

companies and investigation agencies rapidly identify and take

the appropriate actions.
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