
The Complete Guide to

in Enterprises & Startups

Executive Summary
Despite its reputation, JavaScript is suitable for writing large scale applications in a

variety of business environments – from startups to large corporations. To be able

to do that, software engineers often use the language's superset – TypeScript.

To be able to run programs on the backend, though, Node.js is needed, and it’s

exceptional at that as well. It is able to handle a large amount of simultaneous

connections, even despite seemingly not being able to.

There are few benefits that all business environments appreciate, and few of them

that will be appreciated in particular only by a specific one.

As such, the universal pros are:

1. (Design-time) Type Safety

2. Talent Availability

3. Faster apps written in fewer lines of code

4. One language across the stack

5. Smaller teams doing the same amount of work

6. Performance

7. Scalability

As for enterprises, they will surely fall in love with microservices, and how easy

everything is to implement with JavaScript; and startup engineers will enjoy the

increased iteration speeds, and the big number of packages offered by the npm

(Node Package Manager).

Table Of Contents
Executive Summary

Chapter 1: Why did everybody start looking towards JavaScript more favorably?

Chapter 2: Let’s Start With JavaScript’s History

1. JavaScript’s Infancy

2. Asynchronous actions in the browser

3. jQuery – building for different browsers without a headache

4. 2009 – arguably the most important year for the ecosystem since the release

5. The First Event – ECMAScript 2009

6. The Second Event – The Birth Of Node.js

7. TypeScript Comes To The Rescue

Chapter 3: The World of Business and JavaScript

1. Why Use JavaScript Across Your Stack?

2. Talent Pool? Talent Ocean.

3. A Deep Candidate Pool

4. Apps That Run Faster, Built Quicker With Fewer Lines Of Code

5. The Same Language On The Backend & Front-end

6. Fewer Developers Required - PayPal’s Success Reducing The Number Of Developers To
Ship

7. Better Performance

8. Effortless Scalability

9. TypeScript

Chapter 5: JavaScript’s Benefits For Enterprise Corporate Settings

itmagination.com Table Of Contents

https://www.itmagination.com

1. Microservices

2. Microservices – Containers

3. Microservices – Serverless Computing

Chapter 6: JavaScript’s Benefits For Startups

1. Fast Iteration Speed & Time To Market

2. Abundance Of Third Party Packages

Chapter 7: Industry-standard JavaScript Frameworks

1. Front-end: React - Vue - Angular

2. Hybrid: Next.js - Nuxt.js

3. Backend: Nest.js - Express - Fastify

4. Unit Testing: Jasmine - Jest - Mocha

5. End-to-end testing: Cypress - Nightwatch.js

Chapter 8: Future Directions & Conclusions

About ITMAGINATION

itmagination.com Table Of Contents

https://www.itmagination.com

A Short Introduction
JavaScript can be regarded as the most universal general-purpose programming

language available on the market today. Of course, an obvious area where it shines

the most is web front-ends. React.js, Angular, Vue, or Svelte are usually the default

choices for creating unforgettable experiences. That’s the most traditional use case,

though far from the only one. The language has come an extremely long way from

being used as only a facilitator of interactions on websites to a fully-fledged,

universally useful programming language.

Now, it’s really hard to use the services of a company that does not use JavaScript

or TypeScript in its technology stack. It is indeed a challenge. Web backends and

mobile apps are obvious use-cases. It gets even more surprising when you find out

that there are libraries allowing you to do some machine learning, or work with

embedded systems [sic!].

The purpose of this e-book is to introduce you to the world of JavaScript in both

enterprise and startup settings.

We will be addressing the following questions, and many more, in the following

pages.

itmagination.com Table Of Contents

https://github.com/sorrycc/awesome-javascript#machine-learning
https://www.espruino.com/
https://www.espruino.com/
https://www.itmagination.com

Why did everybody start
looking towards JavaScript
more favorably?

1. What needed to change?

2. What were the key moments in its history?

3. What are some of the most popular frameworks?

4. What is the future of the ecosystem?

Let’s Start With
JavaScript’s History
Over the course of the language’s lifetime there were a number of events that were

revolutionary. There were moments of gradual evolution as well. Nearly all of the

efforts were fueled by the army of open source contributors that worked on a solid

foundation given to them by ECMA.

itmagination.com Table Of Contents

https://www.itmagination.com

JavaScript’s Infancy

In the Ice Age of the Internet, every website was static. Until 1995, there

was no way of making websites dynamic; meaning that it was

impossible to change the content of a webpage in response to different

conditions.

That’s why in 1995, JavaScript was created. Brendan Eich, the language’s creator,

was given a simple task – to make interactivity possible. Eich’s creation had a clear

goal, and as such fulfilled it. For a long time, that was it.

As the father of JavaScript, Brendan Eich, said:

Asynchronous actions in the browser

To put it mildly, however, reacting to the simplest of events was not at the top of

people’s bucket lists. At one point, people woke up, realizing that more can be

done. Instead of reloading pages to show new information, they thought: “maybe

itmagination.com Table Of Contents

https://thenewstack.io/brendan-eich-on-creating-javascript-in-10-days-and-what-hed-do-differently-today/
https://www.itmagination.com

we can make the process more efficient and faster?” There had to be a way to

prevent websites from reloading to get and process new data, right?

The first time when such an innovation was implemented to a wider audience was

when Microsoft allowed Internet Explorer 5 to make HTTP requests. In 1999, they

implemented an “object” called “XMLHTTP” which allowed for getting data from an

external source without reloading the page.

What was the reason for its implementation? Long story short, MSFT did that just so

Outlook’s website fetched emails in the background. The long-term effects were

much more than making one website run better. Other companies followed in

Microsoft’s footsteps. In 2002, Mozilla implemented the “XMLHttpRequest” to

Mozilla Application Suite 1.0. The latter implementation was the one that was

embraced wider, and later even used by Microsoft itself.

According to Monika Mazurczak, Front-end Developer at ITMAGINATION:

itmagination.com Table Of Contents

https://www.itmagination.com

There was still an additional big problem to address. There were large differences in

JavaScript engine implementations, and there were even different language flavors

for each browser!

Netscape had JavaScript, while IE had Jscript, for example. Even though MSFT’s

implementation was to some degree compatible with JavaScript (as both were

based on the ECMAScript specification), the implementation was fundamentally

different.

jQuery – building for different

browsers without a headache

In 2006, the world witnessed the birth of a solution that aimed to address the

problem of JavaScript’s interoperability. Fourteen years ago, jQuery saw the light of

day, abstracting the differences in implementations.

itmagination.com Table Of Contents

https://www.itmagination.com

The image you see above was how jQuery handled the differences in

implementations between browsers. What you see below is just calling the

jQuery.ready() function after a page finishes loading.

Do you know what it looks like now? Thanks to the standardization of

implementations, it is pretty straightforward. There are a few ways to go about this,

and this is one of them:

itmagination.com Table Of Contents

https://www.itmagination.com

jQuery would become the most popular JavaScript library, and by a large margin. It

still is the most popular library by market share to this day, where it is present on

approximately 79.8% of the top 10k popular websites.

In comparison, React.js, which is widely regarded as a modern standard for

front-end development, is used on 43.7% of the top 10,000 most popular pages.

When it comes to the front-end side, jQuery was the final important step to get the

ball rolling. Consistency across browsers allowed developers to create the apps

they wanted to, but previously couldn’t.

2009 – arguably the most important

year for the ecosystem since the

release

Three years later, in the arguably most important year for the whole JavaScript

world, there were two events that changed the ecosystem.

One of these events was the initial release of Node.js, the other one being the first

major revision of the language – ECMAScript 2009 (better known as ES5) saw the

light of day.

itmagination.com Table Of Contents

https://trends.builtwith.com/javascript/jQuery
https://trends.builtwith.com/javascript/jQuery
https://www.itmagination.com

The First Event – ECMAScript 2009

ES5 brought many features that were absolutely necessary. Strict mode, essential

operations on arrays such as filter, map, and reduce (“The Holy Trinity of Functional

Programming”), the JSON object, property getters & setters, and much more that is

outside of the scope of this eBook. It was a revolution, and a welcome one.

The Second Event – The Birth Of Node.js

The creation of Node.js made JavaScript a language that is relevant because the

runtime enabled us to execute scripts outside of browsers in addition to in-browser

execution. Interestingly, it was not the first attempt at allowing execution of

JavaScript on the server side.

Netscape’s Live Wire was the first one, but since it might be the first time you have

heard about it; that says something about the solution’s popularity. While it does

warrant an honorary mention, we won’t dedicate much more space to it.

Now that JavaScript was ready for serious use, there was one more aspect that

needed to be fixed before the language could see some serious enterprise

adoption. The language is dynamic, without a type system.

You see, when you are thinking about writing an app that will get bigger than your

standard starter projects, you will run into problems sooner or later. Strongly typed

languages, such as Java or C# give you a layer of safety – they will catch some bugs

themselves, without having to involve you, the developer, in any way. That’s

because they will ensure the correctness of the code themselves during design, and

compilation.

itmagination.com Table Of Contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://dev.to/mlevkov/the-holy-trinity-map-filter-and-reduce-381e
https://dev.to/mlevkov/the-holy-trinity-map-filter-and-reduce-381e
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://www.chicagotribune.com/news/ct-xpm-1997-07-18-9801160234-story.html
https://www.chicagotribune.com/news/ct-xpm-1997-07-18-9801160234-story.html
https://www.itmagination.com

TypeScript Comes To The Rescue

There were some attempts at making JS more predictable, however, Microsoft

might have proposed the best solution to date. Typescript, JavaScript’s superset,

saw the light of day for the first time in 2012. Its purpose was to facilitate the

development of large applications.

It has some features that made it extremely popular among the pros.

First of all, since C# and TypeScript were created by the same person, they share

some similarities. Of course, don’t expect the two to be twins. Second of all,

migration from JavaScript to TypeScript is easy – you can migrate your codebase

step by step.

Third of all, TypeScript integrates with e.g. React and Vue on the front-end

seamlessly. On the backend, all major libraries work with TypeScript out of the box.

Nest.js uses TS by default; while Express.js and Fastify have their additional type

definitions for you to install and forget.

itmagination.com Table Of Contents

https://www.telerik.com/blogs/uncovering-typescript-for-c-developers
https://www.telerik.com/blogs/uncovering-typescript-for-c-developers
https://www.itmagination.com

The World of Business
and JavaScript
The world of business consists of a seemingly infinite number of companies of

varying sizes and revenue. Different needs, and wants. There are beyond numerous

ways of categorizing firms, however here we will use the distinction on the basis of

size.

There are many definitions for a startup. Some emphasize its size, some innovation,

yet the universal aspect of all startups is their rapid growth. Companies like these

have one common goal in mind – rapid growth. Everything else seems to be

irrelevant, as these firms can even generate losses for years (a ride hailing giant

comes to mind) – it’s not their goal to be profitable (yet).

Often portrayed on the other end of the business spectrum, there are big

corporations. It is often thought that their goals are much different from the goals

of startups. We will argue, however, that the goal is the same – creating value. It’s

only the path that changes. As such, there are plenty of pros that come with the use

of JavaScript that companies of all sizes enjoy.

itmagination.com Table Of Contents

https://www.itmagination.com

Why Use JavaScript Across Your Stack?

Talent Pool? Talent Ocean.

As it’s the case with startups, large companies can also have a problem with

staffing. Even though they have more resources than the small players, they often

need a lot more talent, too. Luckily, our language is convenient in terms of

recruitment as well.

Apart from being loved by large organizations’ software development teams,

JavaScript is also the leading language in terms of developer affinity. Its simplicity,

low barriers of entry, general availability of learning resources, and its universality

make it a popular choice among programmers, both experienced and fresh.

Furthermore, JavaScript is the leader in GitHub’s “State of the Octoverse” study,

being the most popular language since 2014 (the latest release was in 2020).

TypeScript placed 4th, ahead of of C#, PHP or Ruby, and behind Java, Python, and of

course, JavaScript.

In StackOverflow’s Summary from the same year, JavaScript remained the most

popular language for the eighth year in a row [sic!]. When it comes to affinity,

TypeScript places second, behind Rust, and ahead of Python.

Those are just some indicators of how deep the talent pool can be. One “catch” is

that the bulk of JavaScript’s popularity on GitHub could be attributed to frontend

engineers, ITMAGINATION’s Chief Innovation Officer, Marcin Dąbrowski adds.

itmagination.com Table Of Contents

https://octoverse.github.com/
http://insights.stackoverflow.com/survey/2020
https://www.itmagination.com

A Deep Candidate Pool

When recruiting JavaScript developers, you can expect a wide pool of them. There

are approximately 13.8 million of them, which is the highest number in the world.

The number is increasing, as well. Last October (October 2020), the number was at

12.4 million.

Because of the language’s gentle learning curve, the tempo is unlikely to slow down.

Unless a major world catastrophe occurs, things won’t change – which is why

planning for the future with JavaScript at the center is neither short-sighted nor

irresponsible. It’s a safe investment.

Apps That Run Faster, Built Quicker

With Fewer Lines Of Code

You might think that this header is a lie. I would not blame you. It is completely

true, however – and there are documented cases that prove this statement is true.

In 2013, PayPal wrote an article about their journey with Node.js. They managed to

rebuild their app in JavaScript twice as fast, with fewer people. On top of that, there

were 33% fewer lines of code, and it consisted of 40% fewer files (!).

Not only that – the app could serve twice the amount of requests versus the Java

based application. Interestingly, the Node.js app utilized only one of the cores,

itmagination.com Table Of Contents

https://www.theregister.com/2021/04/26/report_developers_slashdata/
https://www.theregister.com/2021/04/26/report_developers_slashdata/
https://web.archive.org/web/20180326002331/https:/www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.itmagination.com

while Java used… 5 of them [sic!]. If you are not impressed by now, pages were

served 200ms faster.

Node.js in general does not require many resources to run and is quite fast.

Artur Łabudziński, Senior Node.js & JavaScript Software Developer at

ITMAGINATION, shared how he is impressed by the language's performance and

Google’s great work on their V8 engine – the foundation of Node.js.

itmagination.com Table Of Contents

https://www.itmagination.com/blog/pros-cons-full-stack-javascript-development-in-2021-video
https://www.itmagination.com/blog/pros-cons-full-stack-javascript-development-in-2021-video
https://www.itmagination.com

Since 2013, there were a lot of improvements made to the language, and runtime,

which most likely further improved performance.

The Same Language On The Backend

And The Front-end

Many companies use frameworks such as Express.js, Fastify or Nest.js on the

server-side, and React, Angular or Vue on the client-side. They don’t stop there

either. React Native/NativeScript often serve them when creating mobile apps.

Electron allows them to create desktop apps. Even though they have the resources

to have dedicated teams working in native languages for all platforms, they choose

not to. Why?

itmagination.com Table Of Contents

https://www.itmagination.com

To begin with, if all software engineers specialize in the same language, then

everybody understands each other. Traditionally this wouldn’t be the case with one

team developing in C#/Java and the other in JavaScript. This created artificial divides

that are difficult to overcome. At PayPal, back in 2013, front-end and backend

teams were unified “into one team which allow[ed] [them] to understand and react

to [their] users’ needs at any level in the technology stack.” Teams can share their

experiences, often 1:1, which leads to faster bug fixes, for one.

Additionally, there is the economic benefit of smaller spending since the teams are

smaller.

This is a crucial aspect for smaller businesses. Maintaining two separate teams is

costly. Startups have many assets – though an excess of money is usually not one of

them. As such, many new, rapidly growing companies opt-in to use Node.js on the

back-end and on the front-end. The choice of Node.js is not subpar by any means at

all.

It also is the most natural choice browsers can execute JavaScript only – technically

you can use other languages to add interactivity to web pages, though it’s a bit too

early for that yet. As such, you have to use JavaScript on the back-end as well as on

the front-end if you want to use the same language everywhere.

This way, teams are smaller, more agile, and communicate better.

itmagination.com Table Of Contents

https://web.archive.org/web/20180722225153/https:/www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://web.archive.org/web/20180722225153/https:/www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://webassembly.org/
https://webassembly.org/
https://www.itmagination.com

Fewer Developers Required - PayPal’s

Success In Reducing The Number Of

Developers To Ship

With their transition, they made sure that there is only one team writing code in

one language only. Back then, full-stack JavaScript developers were truly a rare find.

There were more popular stacks, such as Java & Java Server Faces (currently Jakarta

Server Faces) or .NET + Angular.js.

Nowadays, developers working on both sides of an application are more common,

and they enjoy certain popularity. They can save big companies a lot of money

while the app maintains the same level of quality.

As a result, there are fewer team members and overall a smaller number of teams

required.

itmagination.com Table Of Contents

https://www.itmagination.com

Better Performance

Node.js is fast. How fast? In the TechEmpower benchmark, JavaScript took second

place with “just-js.” Of course, the project itself is a bit of a curiosity, though of

course the app will work. It’s faster than drogon written in C++, and ntex or actix

written in Rust [sic!]. es4x took 18th place, while Fastify took 58th place. Both of them

are JavaScript frameworks – the latter being the most popular out of all three JS

frameworks we mentioned with e.g. Microsoft picking it up.

Effortless Scalability

There are three main ways to scale an app:

- Cloning

It’s when you have each clone of the same app handle some of the work. It’s the

easiest approach, and it’s highly effective

- Decomposing

It’s the practice of breaking down an app to have multiple, smaller, apps that do the

same job. The term is commonly associated with microservices.

- Splitting

It’s when you want each clone of the app to handle only a part of the data you split

the app, then. E.g. each clone would take care of users based on their location, or

language.

itmagination.com Table Of Contents

https://www.techempower.com/benchmarks/#section=data-r20&hw=ph&test=composite
https://github.com/TechEmpower/FrameworkBenchmarks/tree/master/frameworks/JavaScript/just
https://reactiverse.io/es4x/
https://www.fastify.io/
https://www.itmagination.com/blog/node-js-changed-corporate-software-engineering
https://www.itmagination.com

Back to Node.js – it is the king of scalability. Authors of the runtime heavily

emphasize the capability of apps to grow. It’s the core feature of the piece of code,

and even one of its heavily promoted features. On the project's about page, in the

first sentence, we can read that “ […] Node.js is designed to build scalable network

applications.”

One of its built-in modules, “cluster”, provides a ready-to-go way of utilizing all of

your machine's processor cores. Yes, even despite the fact that JavaScript does not

have a way to use more cores than 1! Utilizing all of the resources of a single server

is therefore easy as pie.

The way it works is that it will split the main application among several related

processes that will communicate with the main one using inter-process

communication. If you are curious about how the messaging works exactly, head

over to Node’s documentation.

Not only cloning is easy – after all JavaScript is one of the hegemons of

microservices. For all of the intricacies of scaling Node.js apps, this article is a great

resource.

TypeScript

Most of “serious” apps, libraries, and frameworks are written in TypeScript (TS) –

JavaScript’s superset which provides design-time type safety. Design-time means as

much as type safety during code editing.

itmagination.com Table Of Contents

https://nodejs.org/api/cluster.html
https://nodejs.org/api/process.html#process_process_send_message_sendhandle_options_callback
https://www.itmagination.com/blog/pros-cons-full-stack-javascript-development-in-2021-video
https://www.itmagination.com/blog/pros-cons-full-stack-javascript-development-in-2021-video
https://www.freecodecamp.org/news/scaling-node-js-applications-8492bd8afadc/
https://www.freecodecamp.org/news/scaling-node-js-applications-8492bd8afadc/
https://www.itmagination.com

To give a simple example of problems that could have occurred, should TypeScript

have not been created:

If in C#, you write

Console.WriteLine(11 + "1");

Console.WriteLine(11 - "1");

Nothing will compile, and you won’t be able to evaluate the expression, because

you get an error. Using a plus is fair game in C#, since it’s string concatenation.

Using a minus will get you in trouble. Fair enough.

In Python we cannot use plus or a minus.

print("11" + 1)

print("11" - 1)

This simple code will not run correctly, because we will get a “TypeError.”

Now in JavaScript, things get interesting. What we get from

console.log(11 + "1");

console.log(11 - "1");

is 111 and 10 respectively. No errors, no problems.

itmagination.com Table Of Contents

https://www.itmagination.com

Even though these examples are trivial to say at the very least, they illustrate a

bigger issue, and give a taste of what could happen should Microsoft have not

created their language (TypeScript) in 2012. Luckily, they did, which made wrapping

heads around large codebases much easier. What would TypeScript do with the

snippet (please notice how it’s the same as the JavaScript one)?

console.log(11 + "1");

console.log(11 - "1");

The answer is: nothing at all. We would get an error when compiling our code, and

our editor would complain as well. The wider community also fell in love, quickly

converting numerous projects to TypeScript, and adding type definitions for

libraries and frameworks that did not transition. As a result, you can enjoy type

safety 99% of the time. Artur Łabudziński, Senior Node.js & JavaScript Developer at

ITMAGINATION recommends using TypeScript in even the smallest of projects in

this recent video interview where we discussed the current state of full-stack

JavaScript Development.

In the case of TypeScript, the benefits largely outweigh any possible negatives.

Simplicity, speed, cost-efficiency. All while maintaining (design-time) type safety. To

be clear, what are the possible drawbacks of adopting the superset?

We are mainly talking about time expenditure. Sometimes it will be necessary to

declare type definitions for packages that do not have those. (Partial) Design-type

safety can be achieved in JavaScript as well, using JSDoc comments, though it won’t

itmagination.com Table Of Contents

https://www.itmagination.com/blog/pros-cons-full-stack-javascript-development-in-2021-video
https://www.itmagination.com/blog/pros-cons-full-stack-javascript-development-in-2021-video
https://www.itmagination.com

be as good as TypeScript one. Lastly, your .ts files will need to be transpiled to

JavaScript. Albeit it does not take long, it is slightly inconvenient.

itmagination.com Table Of Contents

https://www.itmagination.com

JavaScript’s Benefits For
Enterprise Corporate
Settings
In the software engineering world, there comes to mind one aspect that is liked

more in large organizations rather than by the small ones. Microservices are an

excellent way to scale apps, though they are a bit hard to maintain and test.

Microservices

Up until recently, the general consensus was to build apps using a monolithic

architecture. To put it simply, all parts of the app were closely dependent on each

other, leading to an important problem. If one part of the app failed, all of the app

failed.

itmagination.com Table Of Contents

https://www.itmagination.com

That is one of the primary reasons enterprise teams started embracing the

microservices architecture. All parts of the app were separate, thus if one feature

stopped working, the app remained functional. There are two primary ways the

separation is achieved – containers and serverless functions.

Microservices – Containers

When teams are looking to make their apps more independent from the

environment from which they are working on, they turn to containers.

They still require some consideration as to what and where they run, though not

that much. In general, containerization is a reliable way to ensure we remove the

very well-known problem with software engineering - “but it runs on my computer”.

itmagination.com Table Of Contents

https://www.itmagination.com

Unsurprisingly, it is where JavaScript & Node.js rule as well. Node.js requires little to

run – little RAM and configuration, among others. Developers also have a web

server in the standard library, giving developers a lot of room to maneuver without

needing to refer to 3rd party code. Even if you decide to use a library, such as

Express.js, they are usually just thin layers on top of the built-in Node’s Http library.

Create. Build. Use PM2 for managing the production app. Done.

Microservices – Serverless Computing

Serverless functions are another step in abstracting the “where” away. Solutions,

such as Azure Functions or AWS Lambdas are a bit of a radical step in separating

features and functions. They are also traditionally preferred by enterprise users. In

fact, in 2020, around 80% of AWS users from bigger companies use Lambdas.

The biggest users embrace them heavily, as debugging can be an issue that is not

worth it for the smaller teams, but fault tolerance, isolation, and is heavily desired

by the bigger teams. They scale better, are quicker to deploy, and we can avoid any

lock-ins.

An important metric here is the cold start, which is what happens when your

functions are idle for a longer while. As it turns out, the only language that can

compete with JavaScript is Python.

To end with, serverless functions are about the most cost efficient from all

microservices solutions, as one pays only as much as one uses instead of paying up

front for a month.

itmagination.com Table Of Contents

https://pm2.keymetrics.io/
https://www.datadoghq.com/state-of-serverless-2020/
https://www.datadoghq.com/state-of-serverless-2020/
https://mikhail.io/serverless/coldstarts/aws/
https://mikhail.io/serverless/coldstarts/aws/
https://www.itmagination.com

JavaScript’s Benefits For
Startups
Software engineering teams at startups need a language and an environment that

will enable them to iterate quickly while keeping the costs down.

No better environment comes to mind than JavaScript & Node.js. As such, the list of

rapidly growing companies that rely on some of the frameworks & solutions to

create value. Electron is one example of work efficiency (not without drawbacks).

itmagination.com Table Of Contents

https://www.itmagination.com

Expo enables teams to reuse code between native mobile applications and web

applications (Twitter).

What are the pros in faster and smaller environments, exactly, however?

Fast Iteration Speed & Time To Market

The time it takes to develop is a crucial metric for both big and small, though

players that only begin to set up a foothold in a new market benefit from this key

metric more than the giants.

In the world of rapid growth, and startups, there is a key term – Minimum Viable

Product or MVP. What is it? It is the creation of services or products with basic

features with the purpose of gaining customers’ attention.

As such, the more advanced features are supposed to be developed with time, and

are therefore omitted. On top of that, it might happen that the product-market fit

isn’t quite there, which

Rapidly growing companies are increasingly often looking to JavaScript with

TypeScript. Not only are they generally unproblematic with the correct testing

approach - they also enable companies to write code faster than with other popular

languages.

We already mentioned how PayPal marveled at the development speed of their

team migrating their backend from Java to JavaScript. In short, not only did it take

them less time to write the same functions – they did that in fewer lines of code. It

itmagination.com Table Of Contents

https://www.itmagination.com/blog/qaops-in-the-agile-age-using-automated-manual-testing
https://www.itmagination.com/blog/qaops-in-the-agile-age-using-automated-manual-testing
https://www.itmagination.com/blog/node-js-changed-corporate-software-engineering#fewer-developers-required
https://www.itmagination.com/blog/node-js-changed-corporate-software-engineering#fewer-developers-required
https://www.itmagination.com

happened all the way back before TypeScript. Imagine the results should the same

switch occur now!

Additionally, deployment to production is simple, due to the fact you don’t need to

compile the codebase. You also don’t need to set up a separate web server, such as

Apache. You upload the code, you spin up PM2 (production process manager; helps

manage apps), and you’re pretty much good to go.

Abundance Of Third Party Packages

There is a game in the JS community. Pick a word and check if an npm package

exists with a given name. Of course, not quite literally – the point being their

breadth of packages is unprecedented, and extraordinary.

For startups, this means there is a safety net in terms of ready-made solutions.

Components, libraries, packages, modules – whatever you need is there. In fact, in

April 2020, there were more than 1.3 million of them! The package manager makes

the installation a breeze as well – both in local scenarios and in e.g. containers. In

case you don’t fancy this particular solution – no worries. You have got yarn, and

pnpm at your disposal.

itmagination.com Table Of Contents

https://www.npmjs.com/package/pm2
https://web.archive.org/web/20210615160143/https:/blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html
https://yarnpkg.com/
https://pnpm.io/
https://pnpm.io/
https://www.itmagination.com

Industry-standard
JavaScript Frameworks
Now that you know why startups are choosing JavaScript, it’s time to show you our

choice of production-ready, and battle-tested web frameworks.

The JavaScript ecosystem is famous for having a package for every occasion, which

is why we will continue to show our choices of libraries & frameworks for all

different purposes. Only the ones, however, which are ready for serious use, and

the ones that you are safe to bet on.

Front-end

React

The most popular out of the three frameworks. It is also regarded as the most

“flexible” one. In the past, it used to be only about the view layer of the app.

Currently, with the planned introduction of Server Components it might become a

light full-stack framework.

React Pros

+ The most popular

+ An ocean of third-party extensions for every purpose

itmagination.com Table Of Contents

https://reactjs.org/blog/2020/12/21/data-fetching-with-react-server-components.html
https://www.itmagination.com

+ Loved by the dev community

+ Business logic is easy to reuse in React Native apps

React Cons

- Can be a bit heavy

- Mixing JavaScript, HTML, and CSS directly together

- Not too fast

- A limited list of first-party plugins

When To Use React

Software engineers from companies of all sizes choose React, because of its

extensive community support, and the depth of the talent pool. You can’t go wrong

with picking React.

React GitHub Repository

https://github.com/facebook/react

Vue

Vue is the most community-run framework out of the three we list in this section. It

is the creation of Evan You, the main decision-maker, and the author of other

libraries & frameworks, such as Vite or Vitepress.

itmagination.com Table Of Contents

https://github.com/facebook/react
https://twitter.com/youyuxi
https://vitejs.dev/
https://github.com/vuejs/vitepress
https://www.itmagination.com

Associated with the lowest learning curve out of the three most popular

frameworks, it gained traction in China, after which it gained popularity in the West.

You can think of it as being an option in between React and Angular.

Vue Pros

+ Can do what you need it to do; it is the most flexible out of the three

+ An ecosystem of first-party frameworks extending Vue’s functionality

Vue Cons

- The least popular in startup & enterprise settings in the West

- Handles introductions of new major versions poorly

When To Use Vue

Vue tends to be used together with PHP backends quite often. The talent pool is

smaller than in the case of React or Angular developers, however you still won’t

have much of a problem finding developers who are proficient with Vue.

Go for Vue if you know you won’t want to reuse code between the web app and a

native mobile app, as the options for Evan You’s framework are somewhat poor

and/or not well-maintained (Weex, Vue Native, Nativescript-Vue).

Vue GitHub Repository

https://github.com/vuejs/vue

itmagination.com Table Of Contents

https://github.com/vuejs/vue
https://www.itmagination.com

Angular

The last front-end framework in this section. It is the heaviest and has the most

features built-in. With Google’s backing, it is the most popular in big companies. Its

use in the biggest of projects is heavily emphasized with every aspect of the

framework written in TypeScript.

An interesting fact is that a lot of internal Google projects use AngularDart, a port of

the framework written in Dart.

Angular Pros

+ The most regularly released out of the three

+ Entirely written in TypeScript

+ Heavily Opinionated

+ A CLI generator

Angular Cons

- Heavily Opinionated

- Heavy

- Slow

- Not universally liked among developers

When To Use Angular

itmagination.com Table Of Contents

https://github.com/angulardart/angular
https://dart.dev/
https://www.itmagination.com

Angular is the heaviest among the three mainstream frameworks, and has the most

specific use case. You want to use it almost only if you know your front-end is going

to get really large.

Angular GitHub Repository

https://github.com/angular/angular

Hybrid

Next.js

Next.js, one of the most popular React frameworks that got its popularity for

making React development effortless. There are numerous built-in features such as

hybrid static & server rendering, static HTML export, API routes (enables you to

build an API with Next.js), and many, many more.

Next.js Pros

+ No configuration needed

+ Fast time-to-market

+ Much better SEO than with plain React

+ A great solution for both startups and enterprises

Next.js Cons

- Opinionated routing — you’re forced to use page-based routing

itmagination.com Table Of Contents

https://github.com/angular/angular
https://nextjs.org/docs/basic-features/pages#server-side-rendering
https://nextjs.org/docs/basic-features/pages#server-side-rendering
https://nextjs.org/docs/api-routes/introduction
https://www.itmagination.com

- Few third-party plugins

When To Use Next.js

Next.js provides an opinionated setup for developing React apps that is used by the

biggest thanks to its simple hybrid rendering. It is often used by those looking to set

up a quick MVP because of its smart defaults. This showcases the ability of the

framework to be a smart choice for all React development purposes.

Next.js GitHub Repository

https://github.com/vercel/next.js

Nuxt.js

Nuxt.js to Vue.js is what Next.js is to React.js. It simplifies, and turbocharges the

framework bringing some much appreciated features to the framework letting you

focus more on development.

Nuxt.js Pros

+ No config needed

+ Fast time to market

+ Much better SEO than with plain Vue.js

+ A great choice for startups and enterprises alike

+ Tight collaboration with the creator of Vue.js

Nuxt.js Cons

itmagination.com Table Of Contents

https://github.com/vercel/next.js
https://www.itmagination.com

- Opinionated routing – you’re forced to use page-based routing

- Few third-party plugins

When To Use Nuxt.js

Nuxt.js is “The Intuitive Vue Framework.” It makes use of the same page-based

routing, and is about as opinionated as its React counterpart.

As such, the same use case applies. If you are developing a Vue.js app, and want to

focus only on that, you might appreciate the set of smart defaults and the config..

Nuxt.js GitHub Repository

https://github.com/nuxt/nuxt.js

Backend

Nest.js

Nest.js is a framework that goes best with Angular, and will feel familiar for all

Angular developers. Not only is it similar in all that it's built entirely in TypeScript. It

is also built with big applications in mind, and has an enormous number of

first-party modules.

The authors of the framework did prepare numerous guides on how to implement

some of the most important features, however. They should serve as a facilitator of

adoption for startup engineers, and new learners alike.

itmagination.com Table Of Contents

https://github.com/nuxt/nuxt.js
https://www.itmagination.com

Nest.js Pros

+ Heavily opinionated

+ Designed to be reliable

+ Feels great with combination with Angular

Nest.js Cons

- Heavily opinionated

- Few third-party plugins

- Not as popular among developers

When To Use Nest.js

Nest.js is best used when paired with Angular. As a consequence, it’s best to use it

in projects of a bigger caliber. Using it in smaller projects is usually overkill.

Nest.js GitHub Repository

https://github.com/nestjs/nest

Express

Express is perhaps the most popular backend framework there is, in the world of

Node.js. It is, almost always, the first framework that every JavaScript developer

learns on their journey, and often is enough to quickly get your MVP up and

running.

itmagination.com Table Of Contents

https://github.com/nestjs/nest
https://www.itmagination.com

Unfortunately, it is not recommended using it in bigger projects, as the framework

is not ideal for that purpose. For one, it currently does not support async/await,

which is a must to handle many requests at the same time.

To make matters worse, the last release of the library (v.4.17.1) was… May 26th,

2019 (!), and Express v5 has been in alpha since 2014 (!). The library is a good

starting point for your own internal library, or for an MVP. For other uses, the other

options on the list are better options for you.

Express Pros

+ Heavily unopinionated

+ Likely the most popular backend framework in the Node.js world

Express Cons

- Heavily unopinionated

- Likely dead or on life support

- No async/await

When To Use Express

Use when developing your hobby projects, or as a starting point for your internal

library.

Express GitHub Repository

https://github.com/expressjs/express

itmagination.com Table Of Contents

https://github.com/expressjs/express
https://www.itmagination.com

Fastify

Just as the name suggests, the main focus of this library is on speed. It also claims

to be focused on developer experience while lowering the cost of the

infrastructure. It definitely delivers on the promises, being the fastest out of all

major backend Node.js frameworks.

Fastify Pros

+ Built-in Validators

+ Lightning fast

+ A rich plugin ecosystem

+ Opinionated with a way out

Fastify Cons

- Not as popular

- Not many companies use it

When To Use Fastify

When speed is a number one concern for you, and you stick to JavaScript only, the

library is for you. It is the fastest mainstream JavaScript framework, and has a rich

ecosystem of plugins. In case you want to use TypeScript, you still can.

Fastify GitHub Repository

https://github.com/fastify/fastify

itmagination.com Table Of Contents

https://www.fastify.io/benchmarks/
https://www.fastify.io/benchmarks/
https://github.com/fastify/fastify
https://www.itmagination.com

Unit Testing

Jasmine

A “[s]imple JavaScript testing framework for browsers and node.js” is what we will

start off with. It runs everywhere that JavaScript runs, making it incredibly flexible.

What’s more is that the library has no external dependencies, making it low

overhead.

Jasmine Pros

+ No external dependencies

+ Whatever you’re working on — you can test it with Jasmine

+ Built-in assertion library

Jasmine Cons

- Plenty of configuration required

- Slightly unintuitive reports

- Does not have in-built support for rerunning failed tests

When To Use Jasmine

Since it is the most universal position on the list, when in doubt, use Jasmine.

Jasmine GitHub Repository

https://github.com/jasmine/jasmine

itmagination.com Table Of Contents

https://github.com/jasmine/jasmine
https://www.itmagination.com

Jest

Jest is a library “with a focus on simplicity.” As such, it is zero-config, and provides

helpful error messages, when your tests go wrong.

Supported by Facebook, it enjoys great popularity among JavaScript developers,

and works out of the box with the most popular libraries. When compared to

Jasmine, however, the support for libraries is not that great.

Jest Pros

+ Great documentation

+ Simple

+ Visual regression tests

+ Easy coverage report

Jest Cons

- Can be difficult to get used to it, learning it for the first time

- Does not support as many libraries as Jasmine

When To Use Jest

If you want to have an easy time testing, go for Jest. It used to come as a default

option with React apps created with create-react-app.

Jest GitHub Repository

https://github.com/facebook/jest

itmagination.com Table Of Contents

https://github.com/facebook/jest
https://www.itmagination.com

Mocha

Mocha is a library that is often called “Mocha/Chai” as it is used with Chai, an

assertion library, the most often. Another library emphasizing its simplicity, it did

not fare very well after the introduction of Jest. It is even perhaps a bit unfair to

compare the two together – after all Mocha is a test runner, and as such, it requires

other libraries to work.

Originally designed to support Node.js testing, its capabilities are now much wider,

supporting Node.js, and the browser code as well. It can also perform a plethora of

testing, since it can perform integration, and end-to-end tests as well. We included

it here, in this section because it is its most common use case.

Mocha Pros

+ Simple

+ Easy support for generators

+ Easy asynchronous testing

+ You may choose between a wide variety of assertion libraries

Mocha Cons

- Reliance on third-party packages (it is not a con in itself, since it was not

designed to be a test runner only)

- Intimidating for beginners

When To Use Mocha

itmagination.com Table Of Contents

https://www.itmagination.com

Slightly less popular than the aforementioned options, it is also the most flexible,

since it is technically a test runner only, and as such, you may pair with the assertion

library of your choice.

Mocha GitHub Repository

https://github.com/mochajs/mocha

End-to-end testing

Cypress

An evolved library for evolved testing for anything that runs in a browser. It

simplified how you performed end-to-end testing – previously you had to use many

different frameworks. With cypress all you require is just the base framework –

everything is bundled together!

Cypress Pros

+ Doesn’t use Selenium

+ Uses JavaScript for defining tests

+ Easy to use

+ Fast to configure

Cypress Cons

- Doesn’t use Selenium

itmagination.com Table Of Contents

https://github.com/mochajs/mocha
https://www.itmagination.com

- Does not provide support for Safari; runs tests in Chrome only

When To Use Cypress

When in doubt – use Cypress. It’s a solid option, with many benefits. It’s a safe bet

for all of your end-to-end testing purposes.

Cypress GitHub Repository

https://github.com/cypress-io/cypress

Nightwatch.js

Another one of the easy frameworks. It leverages the W3C WebDriver API to

perform all predefined commands. It has a clean syntax which feels intuitive,

therefore it feels easy to pick up.

There is an option to use Selenium, though by default it uses the standard

WebDriver API. A huge advantage of the framework is that it can mimic Firefox &

Chrome.

Nightwatch.js Pros

+ Can use different browsers

+ An integrated solution

+ Selenium as an opt-in

Nightwatch.js Cons

- Does not provide support for Safari

itmagination.com Table Of Contents

https://github.com/cypress-io/cypress
https://www.itmagination.com

- Not as popular

When To Use Nightwatch.js

Out of the two, go for Nightwatch if you are designing your app in the

Behavior-Driven Design way.

Nightwatch.js GitHub Repository

https://github.com/nightwatchjs/nightwatch

itmagination.com Table Of Contents

https://github.com/nightwatchjs/nightwatch
https://www.itmagination.com

Future Directions &
Conclusions

After a long and rocky history,

JavaScript grew up from being an ugly

duckling to a beautiful swan.

Throughout the years, there were two parties which made it perhaps the most

dominating general -purpose programming language. Those two parties were

open-source contributors, and ECMA. The resilience, and dedication of developers

has lifted the language out of a big slump, bridging and fixing its gaps. ECMA gave

them a solid foundation to build on, augmenting the language with requested

features.

What does the future of JavaScript hold?

The future of JavaScript is not exactly clear. It seems as if the case for its popularity

depends mostly on the WebAssembly project’s future. Long story short, it is

possible for some time to compile languages, such as C++ or Rust to the code that

browsers can use. Its use has some severe limitations, however, as e.g. you cannot

itmagination.com Table Of Contents

https://webassembly.org/
https://www.itmagination.com

access the DOM (page’s structure) and you are restricted to relatively new browsers

only.

It might turn out that JavaScript will stop being the only programming language

being able to execute in browsers’ engines. If this happens, the superiority of Eich’s

creation might be challenged, although there will be one aspect of it that will

remain true – the simplicity of the language.

Is there a time where I don’t want to

be using JavaScript?

Yes. JavaScript won’t always be a good choice. For instance, if you run a startup

developing software for embedded devices or machine learning, then you might

want to reconsider the choice of JavaScript for your core product. Here, even after

all these years C, and C++ are key. Similarly, in the world of game development, you

want to see games being developed in any dynamic language. These are all highly

specialized areas, though, therefore if you belong to the ~95% of businesspeople,

the language created by Brendan Eich is always going to be a good choice for

businesses of all sizes.

itmagination.com Table Of Contents

https://www.itmagination.com

About ITMAGINATION
We help our clients innovate by providing professional custom software design &

development services, building data solutions, and extending their IT team’s

capacity. Our team works based on Scrum & Agile principles.

We have over 13 years of experience in delivering business value across various

industries and have a portfolio of over 500 successful projects delivered to more

than 250 clients around the globe.

Established in 2008, we are one of the fastest-growing technology services

companies in the CEE region, featured in both Deloitte’s Fast 50 CE and the

Financial Times’ FT 1000.

itmagination.com Table Of Contents

https://www.itmagination.com

itmagination.com Table Of Contents

https://www.itmagination.com

itmagination.com Table Of Contents

https://www.itmagination.com

itmagination.com Table Of Contents

https://www.itmagination.com

itmagination.com Table Of Contents

https://www.itmagination.com

