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ABSTRACT
A persistent cough is a symptom that appears in several res-
piratory illnesses, but it can be difficult to monitor its fre-
quency and severity accurately over a long period of time.
The conventional approach involves subjective assessments
by healthcare providers or patients reporting their coughing.
As an alternative, Hyfe suggests an approach that embeds a
microphone in wearable devices. Edge Impulse is selected as
a development platform since it specializes in embedded de-
vices for sensors, audio, and computer vision. The platform
allows for the deployment of optimized ML on a wide range
of hardware, from MCUs to CPUs and custom AI acceler-
ators. Experiments are conducted to identify a classification
method small in size and memory footprint while maintaining
high performance. Hyfe’s full dataset consisting of millions
of cough/non-cough sounds is provided as a training/test set
for experimentation. Based on this data, we propose novel
cough detection methods using deep neural networks. Each
sound is represented using Mel-Filterbank Energies (MFE).
Experiments concluded that feature extraction and classifica-
tion can be performed in less than 100 ms for an audio snippet
of 0.5 s sampled at 16 kHz, with sensitivity of almost 91% and
specificity of 99.7%. These results show that reliable and ef-
ficient cough detection in real-time on embedded devices is
attainable.

Index Terms— Cough classification, acoustic signal,
neural network, wearables, Edge Impulse

1. INTRODUCTION

Coughing is a prevalent and significant symptom reported by
patients, and chronic coughing can have negative effects on
both health and quality of life. Monitoring cough symptoms
is crucial for detecting and treating respiratory conditions like
COPD, asthma, pulmonary fibrosis, and tuberculosis. While
subjective tests have been developed to assess the frequency
and severity of coughs, these methods can be unreliable due
to factors like patient mood and vigilance.

Cough counting using a computer or a mobile device al-
lows subjective evaluation and observation to identify and
quantify coughs in an automatic way. Digital Signal Pro-
cessing (DSP) is applied in many works for this task [1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] since manual counting
is a very laborious and error-prone task while it suffers from
inter-expert subjectivity in classification.

Nevertheless, objective tools for studying coughs are cur-
rently lacking, but some systems, such as the Leicester Cough
Monitor[1] and VitaloJAK[15], use wearable devices and al-
gorithms to detect coughs from patient audio recordings.
However, these systems can be semi-automated and require
manual tuning or verification by personnel, and their valida-
tion is often limited to small datasets collected in artificial
environments or with proprietary hardware. Recent interest
in using deep learning techniques for automatic cough detec-
tion shows promise, but many of these methods have limited
validation or use custom hardware for data collection.

Over the recent years, a group of technologies has emerged
which enables running compact and well-tailored machine
learning models on low-power microcontrollers. These mi-
crocontrollers can use machine learning to analyze sensor
data right where it is generated, leading to more intelligent,
faster, and less energy-consuming embedded applications.
These applications can make decisions on their own instead
of relying on cloud computing and waiting for a response.
This idea is called TinyML, which is another term for embed-
ded machine learning. Edge Impulse (EI) [16] leverages the
TensorFlow ecosystem [17, 18] to train, optimize, and deploy
deep learning models onto embedded devices. Despite being
designed for non-expert engineers, EI follows a philosophy of
being customizable and adaptable by machine learning spe-
cialists who can contribute their expertise through techniques
such as hand-crafted model architectures and loss functions,
and customized operator kernels.

In this work we describe Hyfe’s attempts to identify and
develop a classification method small in size and memory
footprint while maintaining high performance. Among oth-
ers, EI allows feature computation based on Mel-Filterbank
Energies (MFEs), a set that is commonly used in audio pro-
cessing. We developed neural models trained on MFE fea-
tures aiming for a model that is lightweight, accurate, fast,
and able to be deployed on many edge devices. For our pur-
poses, the target device is an ARM Cortex M33 running at
128 MHz.

The rest of the paper is structured as follows: Section 2
describes the methodology, Section 3 presents the experimen-
tal setup and discusses the results, and Section 4 discusses
integration with Hyfe SDK. Finally, Section 5 illustrates on-
hardware challenges and real-time performance of the cough
detection SDK pipeline and Section 6 concludes this work
and suggests future directions.



2. METHODOLOGY

Hyfe’s event detector [19] has been used to identify acoustic
events in large sessions of audio. These events can be either
cough or non-cough sounds. In order to compactly represent
the audio input, MFEs were chosen. MFE features model the
spectral energy distribution in a perceptually meaningful way
(take into account human perception on the construction of
the frequency scale), that is, MFEs are representations where
the frequency bands are not linear but distributed according
to the Mel-scale. This Mel-scale is defined as

Mel(f) = 2595 log

(
1 +

f

700

)
(1)

where f is the frequency in Hz, and Mel(f) is the corre-
sponding Mel-frequency. The Mel-scale is a perceptual scale
of pitches judged by listeners to be equal in distance from one
another. The Mel-filterbank is a set of triangular overlapping
filters applied to the power spectrum (or magnitude spectro-
gram). These filters are spaced evenly on the Mel scale and
are designed to mimic the non-linear sensitivity of the human
auditory system to different frequencies. For each center fre-
quency, we create a triangular filter, where the filter response
is unitary at the center frequency and linearly decreases to
0 at the neighboring center frequencies. Each triangular fil-
ter in the Mel-filterbank is multiplied element-wise with the
power spectrum (or magnitude spectrogram). The result is the
so-called set of Mel-filterbank energies (MFEs), where each
coefficient represents the energy in a specific frequency band
on the Mel scale.

We trained three kinds of neural networks: Alison-based
models (that is, models that rely on 2D-convolutional layers
and have similar neural architecture to Alison, the current pro-
duction model of Hyfe), 2D-CNNs (that is, models that also
employ 2-dimensional convolutional layers but do not strictly
follow Alison’s architecture) and Fully Connected Deep Neu-
ral Networks (that is, models that consist of fully connected
layers with dropout layers in-between). We also tested 1D-
Convolutional Neural Networks but they were consistently
performing poorly compared to the aforementioned models.
Furthermore, we also used global pooling methods [20] in an
attempt to reduce size and remove dense layers in the CNN-
based models.

Besides performance, we are also very interested in low
latency and small memory footprint. Thus we include in-
ference time, peak RAM usage, and FLASH usage, along
performance metrics, as provided by Edge Impulse platform.
We remind that our current target chip is Nordic nRF5340
(Cortex-M33, 128MHz). The nRF5340 stands as the inaugu-
ral wireless System-on-Chip (SoC) to incorporate dual Arm
Cortex-M33 processors. With its tandem of versatile proces-
sors, extensive advanced features, and the ability to function
in temperatures reaching 105 C, it emerges as the prime selec-
tion for LE Audio, professional lighting, sophisticated wear-

ables, and intricate Internet of Things (IoT) applications.

3. EXPERIMENTAL SETUP AND RESULTS

Cough sound duration is set to 0.5 s. The full dataset has been
uploaded to EI platform and downsampled from 44.1 kHz to
16 kHz, encoded in 16-bit PCM files. An overview of this
dataset is shown in Table 1.

Dataset
Train Test

Cough 85,705 560
Non-cough 3,388,168 7,191

Table 1. Dataset details.

A random 10% of the training dataset was selected as a
validation set. Since we had no control on the split, some
leak occurs in the validation set and validation performance
is biased. However, test set contains no information from the
training or validation set and thus model performance is ob-
jective.

For MFE extraction, we used an analysis window of 0.05
s with a hop size of 0.05 s, which is the maximum separation
between frames without loss of information. The number of
MFEs used were 40. An FFT of 256 bins was used in the
spectral representation. An example of MFE features for two
sounds is shown in Fig. 1.

A total of 40 MFE features were used as inputs to the
models. The models were trained using Adam optimizer [21]
using a categorical cross-entropy loss function. We employed
a learning rate of 0.0001, and a variable batch size depend-
ing on the architecture but most of the models were trained
with a batch size of 512. The network was set to be trained
for 100 epochs. The model with the minimum validation loss
was considered as the best one and moved to be evaluated on
the test set. Python [22] and TensorFlow [17] were used in
these experiments. EI platform provides confusion matrices,
accuracy, precision and recall for each class as outputs. ROC-
AUCs could not be computed from the platform, although
they could be monitored for the validation set (and all of them
were very close to 0.999).

Let us define TP as true positives (correctly classified
coughs), TN as true negatives (correctly classified non-
coughs), FP as false positives (incorrectly classified non-
coughs as coughs), and FN as false negatives (incorrectly
classified coughs as non-coughs). To measure classification
performance, we present

• Sensitivity (or True Positive Rate - TPR): the probabil-
ity of classifying a sound as cough, conditioned on the
sound truly being a cough sound, i.e.

Sensitivity =
TP

TP + FN
(2)



Fig. 1. MFE features for (a) a cough sound, (b) another im-
pulsive event [obtained from Edge Impulse platform].

• Specificity (or True Negative Rate - TNR): the proba-
bility of classifying a sound as non-cough, conditioned
on the sound truly being a non-cough, i.e.

Specificity =
TN

TN + FP
(3)

• Precision (or Positive Predictive Value - PPV): the
fraction of sounds truly classified as coughs among all
sounds classified as coughs, i.e.

Precision =
TP

TP + FP
(4)

and

• F1-score (for both classes): the harmonic mean of pre-
cision and sensitivity, i.e.

F1-score =
2TP

2TP + FP + FN

= 2
Precision × Sensitivity
Precision + Sensitivity

(5)

Table 2 presents the performance of a small but representative
subset of the actual models developed.

The chosen model in terms of performance and latency
is a 2D-convolutional neural network followed by a series of

fully connected layers. It achieved a sensitivity of 90.9%, a
specificity of 99.7%, at a total (feature extraction plus classi-
fication) latency time of less than 100 ms.

4. SDK INTEGRATION

Hyfe has developed a Software Development Kit (SDK) that
allows third parties to integrate Cough Detection into their
own devices. It is programmed in C++ and has no external
dependencies. It can therefore be built on all platforms: Win-
dows, Linux, Mac OS, Android, iOS and embedded targets.

Table 2 presents model performance on audio chunks post
event detection. In a real world scenario, audio is feed into
the SDK in real-time, which then runs event detection on the
audio stream and then feeds the events found as 0.5 audio
chunks to the classification model (classifier). Since coughs
missed by the event detector will never reach the classifier, the
sensitivity of the event detector is a multiplicative factor to the
sensitivity of the classifier when calculating the overall per-
formance of the SDK. The SDK validation process involves
feeding pre-recorded, hand-labeled, audio files (of lengths be-
tween 30 s and 5 minutes) and comparing the output of the
SDK with the hand-labeled annotations.

However, there is always a trade-off between true positive
and false positive rate in classification tasks. Adjusting the
trade-off requires to tune the decision threshold (DT). DT is
a value that determines how the model assigns input data to
one of the two possible classes or categories (cough and non-
cough). However, the decision threshold is not always fixed at
0.5, as one may assume. It can be adjusted based on the spe-
cific requirements of the problem and the trade-offs between
different types of errors (Type I error: false positive, and Type
II error: false negative). This is especially relevant in situa-
tions where the cost of false positives and false negatives is
not equal. Thus, we present overall sensitivity versus false
positives per hour (FPph) at specific thresholds in Table 3.

5. REAL TIME COUGH DETECTION ON AN
EMBEDDED TARGET

Running real-time cough detection on embedded devices
presents many challenges. Among them, one that stands out
is the trade-off between accuracy and real-time audio pro-
cessing feasibility. Can a good enough model which can run
in real-time on a severely under-resourced, in terms of com-
putation, environment be devised? Table 4 shows the amount
of time each component takes in the execution pipeline.

The maximum number of cough events that can be de-
tected in a 500 ms input audio chunk equals 3. Of course,
the actual number of events found in such a chunk varies de-
pending on the acoustic environment. Table 5 illustrates the
differences in CPU usage for three different acoustic scenes.



Test set Performance: ARM Cortex-M33, 128 MHz

Model /Metrics F1-score
(C/NC) Sensitivity Specificity Precision Inferencing

Time
Peak RAM

usage
FLASH
usage

MFE
latency

MFE
RAM

Total
latency

DNN 0.89 / 0.99 82.3% 99.7% 0.96 25 ms 2.0K 187.9K 17 ms 7.3K 42 ms
Alison 0.92 / 0.99 88.8% 99.6% 0.95 149 ms 23.0K 208.4K 17 ms 7.3K 166 ms

Reduced Alison1

with GAP 0.92 / 0.99 88.6% 99.7% 0.96 69 ms 20.9K 58.1K 17 ms 7.3K 86 ms

Reduced Alison2

with GMP 0.92 / 0.99 89.1% 99.6% 0.95 67 ms 20.8K 58.1K 17 ms 7.3K 84 ms

Reduced Alison3

with GAP 0.91 / 0.99 89.3% 99.4% 0.93 79 ms 21.2K 67.8K 17 ms 7.3K 96 ms

2D-CNN
plus Dense1

0.94 / 1.00 91.3% 99.7% 0.96 97 ms 19.3K 309.1K 17 ms 7.3K 114 ms

2D-CNN
plus Dense2

0.93 / 1.00 90.9% 99.7% 0.96 78 ms 19.3K 172.6K 17 ms 7.3K 95 ms

Table 2. Model performance using MFEs. Selected model in red.

Hyfe SDK Performance of 2D-CNN plus Dense
Sensitivity FPph DT

85.29% 3.58 0.5
82.72% 2.26 0.6
81.99% 1.88 0.7
80.51% 1.51 0.75

Table 3. Sensitivity vs False Positives per Hour (FPph) at a
specific Decision Threshold (DT) on an ARM Cortex-M33.

6. CONCLUSIONS AND FUTURE WORK

Edge Impulse platform is used to develop and train models
for cough classification on an ARM Cortex-M33. A variety
of neural architectures were tested, ranging from simple fully
connected to complex two-dimensional convolutional neural
networks. Besides model performance, inference time and
small memory footprint are crucial factors for edge devices.
Our best model (2D-CNN model followed by a fully con-
nected network) achieved a sensitivity of 90.9% with speci-
ficity of 99.7% when trained on Mel-Filterbank Energy fea-
tures. Feature extraction and classification is performed in
less than 100 ms for a 0.5 s sound signal sampled at 16000
Hz. Using Hyfe’s SDK, cough detection requires 108.8 ms,
on average, with a sensitivity of 81.99% and 1.88 false pos-
itives per hour. This work demonstrates that reliable and ef-
ficient cough detection in real-time on embedded devices is
attainable. Further work can be focused on increasing sensi-
tivity while approximately maintaining the same performance
on hardware.
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