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ABSTRACT

Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis and
primarily affects the lungs, as well as other body parts. TB is spread through the air when an infected
person coughs, sneezes, or talks. Medical doctors diagnose TB in patients via clinical examinations
and specialized tests. However, coughing is a common symptom of respiratory diseases such as TB.
Literature suggests that cough sounds coming from different respiratory diseases can be distinguished
by both medical doctors and computer algorithms. Therefore, cough recordings associated with
patients with and without TB seems to be a reasonable avenue of investigation. In this work, we utilize
a very large dataset of TB and non-TB cough audio recordings obtained from the south-east of Africa,
India, and the south-east of Asia using a fully automated phone-based application (Hyfe), without
manual annotation. We fit statistical classifiers based on spectral and time domain features with and
without clinical metadata. A stratified grouped cross-validation approach shows that an average Area
Under Curve (AUC) of approximately 0.70 ± 0.05 both for a cough-level and a participant-level
classification can be achieved using cough sounds alone. The addition of demographic and clinical
factors increases performance, resulting in an average AUC of approximately 0.81±0.05. Our results
suggest mobile phone-based applications that integrate clinical symptoms and cough sound analysis
could help community health workers and, most importantly, health service programs to improve TB
case-finding efforts while reducing costs, which could substantially improve public health.

Keywords tuberculosis · cough · prediction · audio · machine learning · deep learning

1 Introduction

Tuberculosis (TB) is one of the leading causes of death worldwide, with an estimated 1.5 million deaths in 2020 alone [1].
TB has a significant impact on economic development, has a disproportionate impact on vulnerable populations, and is
increasingly due to drug resistant strains which are more difficult to treat. Thus, the eradication of TB is essential to
save lives, reduce poverty, protect the most vulnerable, and safeguard against the spread of drug-resistant forms of the
disease [2].

A major impediment to TB eradication is the difficulty in finding cases. Approximately 40% of people with TB are
not diagnosed or reported to public health authorities because of challenges in accessing health facilities or failure
to be tested or treated when they do. The development of low-cost, non-invasive digital screening tools would help
to address this challenge. Cough has traditionally been used to identify people who may have TB and to monitor
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treatment [3, 4, 5]. Advances in acoustic AI promises to passively detect and monitor cough and thus improve case
finding [6, 7, 8, 9]. Furthermore, classification of coughs based on their sound may identify which individuals are
most likely to have TB and thus help triage who should be prioritized for microbiological testing. Several previous
studies have demonstrated the potential for cough sounds to be used to screen for TB [10, 11, 12, 13, 14, 15, 16, 17],
though these were typically done in small samples and limited settings. Further development and evaluation of the
diagnostic accuracy of AI algorithms for distinguishing tubercular from non-tubercular coughs are critical to move the
field forward.

The CODA TB DREAM Challenge [18] is a major opportunity for advancing cough based diagnostics for TB. In brief,
the Challenge collected data from people who presented to clinics across 7 countries with new or worsening cough for at
least 2 weeks. Elicited coughs were recorded using the Hyfe Research app [19]. Individuals were then comprehensively
evaluated for TB with molecular and culture testing of their sputa. The Challenge made this data publicly available so
that AI experts could use it to develop and test algorithms to predict TB status using features extracted from elicited
coughs, either in the presence or absence of demographic and clinical factors used routinely for TB screening. The
Challenge released a training data set that could be used to develop diagnostic algorithms. Groups who complied with
the constraints of the Challenge submitted these algorithms to SAGE who evaluated their performance using a hold-out
data set. In contrast, because the authors were involved in the data collection and excluded from participating in the
official challenge, in this work we exclusively used the publicly available training data to develop and test our diagnostic
algorithms.

Specifically, we attempted to predict TB using the training dataset made available in the CODA TB DREAM challenge,
including (a) cough audio recordings (Cough-only Experiment) and (b) demographic and clinical metadata along with
cough audio recordings (Cough+Metadata Experiment). Clinical data includes a list of variables that are allowed to
be used in the prediction model, such as age, sex, heart rate, temperature, and others. Well-known machine learning
algorithms were used for both tasks. Cough audio recordings were modeled using low-level descriptors (LLDs), i.e.
features extracted from audio signals and represent basic properties of the sound, such as its pitch, loudness, and timbre.
Some common examples of LLDs in audio analysis include spectral features that describe the energy distribution
of a specific part of the audio waveform, such as spectral centroid, flatness, spread, and others. On the other hand,
spectrotemporal features describe the distribution of energy over time across different frequency bands. Examples of
features in this category include Mel-frequency cepstral coefficients (MFCCs), linear prediction coefficients (LPCs),
log-mel spectrograms, and chroma features[20]. Furthermore, temporal LLDs that describe time-domain characteristics
of the audio signal, such as zero-crossing rate, energy, and amplitude envelope, are also used. Such feature sets have
been successfully used in automatic cough detection [21, 22].

In Cough-only Experiment, we additionally used deep learning algorithms (two-dimensional convolutional neural
networks - 2D-CNNs) [23] operating on spectrotemporal features obtained from the cough audio signals. Different
convolutional architectures are trained on the spectrotemporal representations in a similar manner to neural networks
trained on images for tasks such as object detection [24] and image segmentation [25]. In audio processing, a
spectrotemporal representation is suitable as an image-like input, as proved in many works [26, 27, 28, 29]. Such
approaches have also been successfully applied in cough recognition [30, 31]. In Cough+Metadata Experiment, the
presence of metadata in tabular form led us to an approach that trains models jointly with metadata and cough audio
features. For this, we used conventional ML models (not CNNs) that are able to handle tabular data well. Areas
under Receiver Operating Curve (ROC-AUCs) are provided as performance metrics, for two reasons: (a) ROCs are a
convenient way to assess the trade off between sensitivity and specificity when projecting the use of a diagnostic tool in
screening versus confirmation use cases, and (b) AUC evaluates the ability of a classifier to prioritize positive instances
over negative instances in terms of ranking, compared to other measures such as accuracy, which assesses the correct
identification of true and false positives based on a specific decision threshold. AUC is considered a more inclusive
measure of performance, regardless of the threshold chosen.

The rest of the paper is organized as follows: Section 2 presents the details of the dataset. Section 3 discusses our
approach for Cough-only Experiment while Section 4 does the same for Cough+Metadata Experiment. Finally, Section
5 discusses the results and Section 6 concludes this work.

2 Dataset

The data are from health centers in 7 countries (India, Philippines, South Africa, Uganda, Vietnam, Tanzania, Mada-
gascar). The clinical research included the evaluation of all individuals who were 18 years of age or older and visited
outpatient health centers for any health concern. Those who had a new or worsening cough that persisted for a minimum
of two weeks were selected to participate in the study.
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During the initial visit, a survey was conducted to gather standard demographic and clinical information from the
participants. Additionally, samples of sputum were collected for tuberculosis TB testing. As part of the study, the
participants were requested to cough, and the cough sounds were recorded using the Hyfe Research app. The app guides
the participants with a countdown (3-2-1) and prompts them to cough, capturing approximately half a second of the
"explosive" sounds within a five-second timeframe. This process is repeated five times. Cough sounds identified as
coughs by the Hyfe cough prediction algorithm are included for analysis. It is important to note that the number of
solicited coughs may vary for each participant depending on how many times they coughed during each five-second
recording interval. Moreover, the act of producing a solicited cough may trigger additional coughing, so the cough files
in this dataset comprise a combination of solicited and spontaneous coughs. The sampling frequency of all recordings
is 44100 Hz but the signals are sub-sampled for each experiment (more information in the following sections). In total,
9772 sounds were analyzed. A statistical review of the dataset is illustrated in Table 1.

Table 1: Statistical review of the dataset.

Metric TB+ TB- Total
Participants 297 810 1107
Total coughs 2930 6842 9772
Average number of coughs/participant (± std) 10.06 (± 6.48) 8.65 (± 5.15) 9.03 (± 5.7)
Minimum number of coughs/participant 3 3 -
Maximum number of coughs/patient 50 37 -
Total duration of coughs (minutes) 24.41 57.01 81.43

Moreover, in Table 2 we present a list of demographic and clinical metadata used as features in Cough+Metadata
experiment.

Table 2: Demographic and clinical data used as features in Cough+Metadata experiment.

Clinical or demographic datum Description Unit of measurement

Age Age calculated as date of collection - date of birth if known.
If date of birth is unknown, reported age at time of collection. Years

Sex Sex at birth reported by participant Binary (male or female)
Height The height of the participant Centimeters
Weight The weight of the participant Kilograms
Reported duration of coughing Self reported duration of current cough (days) Days

Prior TB Self reported status of whether the participant had or
been told to have TB Binary (yes or no)

Prior TB (Pulmonary) Self reported status of whether the participant had or
been told to have pulmonary TB Binary (yes or no)

Prior TB (Extrapulmonary) Self reported status of whether the participant had or
been told to have extrapulmonary TB Binary (yes or no)

Prior TB (Unknown) Self reported status of whether the participant had or
been told to have neither pulmonary nor extrapulmonary TB Binary (yes or no)

Hemoptysis Self reported status of whether the participant has ever
coughed blood Binary (yes or no)

Heart Rate The heart rate of the participant measured at baseline Beats per minute
Temperature The temperature of the participant measured at baseline Celsius

Smoke last week Self reported status of whether the participant used combustible
tobacco and/or vaping products in the last 7 days. Binary (yes or no)

Fever Self reported status of whether the participant had felt or experienced
fever in the last 30 days. Binary (yes or no)

Night sweats Self reported status of whether the participant had experienced
fever in the last 30 days. Binary (yes or no)

Weight loss Self reported status of whether the participant had experienced
weight loss in the past 30 days. Binary (yes or no)

3 Features

In this work we have utilized a series of audio features. The literature review suggests many different feature sets
for compactly modeling sounds signals but most of these features were invented for audio, music, and speech signal
use cases. Cough is a non-stationary signal, that is, it quickly changes over time. Thus we need to process it in short
segments (the so-called frames) that are approximately stationary. Stationarity implies that temporal and spectral
characteristics inside a frame do not significantly change. The length of each frame should be long enough to reliably
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estimate a feature set but short enough to ensure the measured features are representative of the whole frame. For these
reasons, the usual frame length is around 20− 50 ms. For example, a 50-ms window slides on the cough waveform
with a step of 25 ms (the so-called step or hop size or frame rate). This way, we have a 50% overlap between successive
frames. Finally, each frame is windowed (multiplied by a function in time that has desirable properties in the spectral
domain) by a Hamming window. This process is illustrated in Fig. 1. However, this approach leads to a large number of
features per audio signal. Statistical summarization is a convenient way to reduce their number.

3.1 Low Level Descriptors

To avoid the dimensionality curse [32, 33], we would like to focus on features that are relatively low in number but
sufficiently representative of the cough audio signal. There seems to be an agreement that temporal and spectral features
(jointly termed as acoustic features) combined are useful up to a certain level [34]. For our task we choose a set of
LLDs consisting of temporal features like energy, Zero Crossing Rate, and Intensity, enriched by a more complex set of
LLDs that includes Spectral measures (flux, entropy, 90% rolloff, centroid, spread), and spectrotemporal measures such
as Mel-Frequency Cepstral Coefficients (MFCCs) and log-filterbank spectrograms.

We will now briefly discuss the selected acoustic features and their properties that make them suitable for our task.
In what follows, we consider an audio frame x[n] and a chosen windowing function w[n] with support in [n−N,n+N ].

Figure 1: Feature Extraction Pipeline.

3.1.1 Temporal Features

(a) Energy: the energy of a frame is a measure of the audio signals "size" or "strength", and is defined as

E =
1

2N + 1

+∞∑
n=−∞

x[n]2w2[n] (1)

(b) Zero-crossing Rate: the ZCR provides some rough information about the frequency distribution of the speech
signal and is defined as the number of times a signal crosses the horizontal (time) axis: a high frequency signal
should have a high number of zero crossings while a low frequency signal should have a low number of zero
crossings. ZCR denotes the rate of sign-changes of the signal during the duration of a particular frame. The
mathematical definition of ZCR is

ZCR =
1

2N + 1

+∞∑
n=−∞

1

2
|sgn(x[n])− sgn(x[n− 1])|x[n]w[n] (2)

where sgn[·] is the signum function.

(c) Intensity: the acoustic intensity of a sound is a physical quantity that can be defined as the average flow of
energy (power) through a unit area measured in Watts per square meter. The human auditory system can detect
a wide range of intensities, starting from 10−12 Watts per square meter and reaching up to 10 Watts per square
meter. These two extremes correspond to the threshold of hearing and the threshold of pain, respectively.

4



Predicting Tuberculosis from Real-World Cough Audio Recordings and Metadata

Expressed in dB, the intensity of a signal x[n] in air is defined as

I = 10 log10
1

P0

[
1

N

+∞∑
n=−∞

(x[n]w[n])2

]
(3)

where P0 equals 2× 10−5 Pa.

3.1.2 Spectral Features

(a) Spectral Centroid: the spectral centroid (SC) is simply the center of gravity of the spectrum of a frame. It is
computed considering the spectrum as a distribution which values are the frequencies and the probabilities
to observe these frequencies are the normalized amplitude values. Let X[k] be the N-point Fast Fourier
Transform of the audio frame. Then the SC is defined as

SC =

∑N−1
k=0 kX[k]∑N−1
k=0 X[k]

(4)

(b) Spectral Spread: the spectral spread (SS) denotes the second central moment of the spectrum of the speech
frame. The spectral spread describes the average deviation of the spectrum around its centroid, which is
commonly associated with the bandwidth of the signal. Noise-like signals have usually a large spectral spread,
while individual tonal sounds with isolated peaks will result in a low spectral spread. It is defined as

SS =

√√√√∑N−1
k=0 (k − C)2X[k]∑N−1

k=0 X[k]
(5)

(c) Spectral Roll-off: the 90%-spectral roll-off is the frequency so that 90% of the signal energy is contained
below this frequency.

(d) Spectral Entropy: the Spectral entropy (SE) of a signal is a measure of its spectral power distribution. The
concept is based on the Shannon entropy, or information entropy, in information theory. The SE treats the
signal’s normalized power distribution in the frequency domain as a probability distribution, and calculates the
Shannon entropy of it. The Shannon entropy in this context is the spectral entropy of the signal. We can define
the spectral entropy in terms of power spectrum and probability distribution of a signal. If S[k] = |X[k]|2 is
the power spectrum of an audio frame, then P [k] is its probability distribution given by

P [k] =
S[k]∑N−1
i=0 S[i]

(6)

Finally, the SE is given by

SE = −
∑N

m=1 P [m] log2 P [m]

log2 N
(7)

(e) Spectral Flux: the spectral flux (SF) is a measure of how quickly the power spectrum of a signal is changing,
calculated by comparing the power spectrum for one frame against the power spectrum from the previous
frame. More precisely, it is usually calculated as the 2-norm (also known as the Euclidean distance) between
the two normalized spectra. If Xt[k] is the normalized power spectrum of frame t, then SF can be calculated as

SF [k] =

(
k=b2∑
k=b1

|Xt[k]−Xt−1[k]|P
)1/P

(8)

where b1 and b2 are the band edges, in frequency bins, over which we calculate the SF. Usually, b1 = 0 and
b2 = N , and P = 2.

3.1.3 Spectrotemporal features

(a) Log-mel spectrogram: The log-mel spectrogram is a specific type of spectrogram that combines two transfor-
mations: the Mel scale and the logarithmic compression. To create a log-mel spectrogram, the audio signal is
first divided into short overlapping frames. Then, the Fourier transform is applied to each frame, resulting in
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a spectrogram. Next, the spectrogram is transformed to the mel scale using a filterbank that converts linear
frequency values to mel scale values. This mel scale is defined as

Mel(f) = 2595 log

(
1 +

f

700

)
(9)

and is a perceptual scale of pitches judged by listeners to be equal in distance from one another. The log-mel
spectrogram provides a concise representation of the audio signal that captures both frequency and temporal
information.

(b) Mel-frequency Cepstral Coefficients: Similarly to the log-mel spectrogram, Mel Frequency Cepstral Coeffi-
cients (MFCCs) model the spectral energy distribution in a perceptually meaningful way, that is, MFCCs is a
cepstral representation where the frequency bands are not linear but distributed according to the mel scale.
Following computation of log-mel spectrogram, the Discrete Cosine Transform (DCT) is applied on the list of
mel-log powers, as if it were a signal. The MFCCs are the amplitudes of the resulting signal.

Parameters for generating all features are shown in Table 3 and an example of TB vs non-TB cough recordings,
downsampled to 22050 Hz, along with their corresponding spectrotemporal representations is depicted in Figure 2.
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Figure 2: Audio recordings, log-mel spectrograms, and mel-frequency cepstral coefficients for two cough sounds, one
from a TB patient (upper three panels), and one from a healthy patient (lower three panels).

For standard ML models that require vectorized inputs, a set of statistics will be applied on these LLDs in order to
summarize features from all frames of the audio signal. Let v = {x1, x2, x3, · · · , xN} denote a sample LLD consisting
of N values. We define:

1. mean: the average value of an LLD

x̂ =
1

N

N∑
n=1

xn (10)

2. standard deviation: measures the amount of variation or dispersion of an LLD

s =

√√√√ 1

N − 1

N∑
n=1

(xn − x̂) (11)

3. skewness: measures the asymmetry of the sample distribution of an LLD about its mean

b1 =
1
N

∑N
n=1(xn − x̂)3[

1
N−1

∑N
n=1(xn − x̂)2

]3/2 (12)
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4. kurtosis: measures the "tailedness" of the sample distribution of an LLD

g2 =
(N + 1)N

(N − 1)(N − 2)(N − 3)
·
∑N

n=1(xn − x̂)4[∑N
n=1(xn − x̂)2

]2 − 3
(N − 1)2

(N − 2)(N − 3)
(13)

and these will be the final features for each audio signal. Reasons for such a selection are ease of implementation, either
directly or by open-source software, robustness, and relevance to the task.

Table 3: Feature extraction parameters.

Parameters for temporal and spectral features
Frame Size Hop Size FFT size

0.05 s 0.025 s 1024
Number of Features Window Type Sampling Frequency

62 per frame Hanning 16000

Parameters for spectrotemporal features
Frame Size Hop Size FFT size

0.04 s 0.02 s 2048
Number of Filters or Coefficients Window Type Sampling Frequency

128 or 13 Hanning 22050

4 Experiments

Implementations are carried out in Python [35], (v. 3.9), using LibROSA [36] (v. 0.9.2), Tensorflow [37] (v. 2.10),
and Sci-kit Learn APIs [38] (v. 1.22), while mathematical details can be found in [39, 23]. A list of machine learning
models and their hyperparameters (tuned or fixed) are shown in Table 4. All classifiers are used for both experiments
except for CNNs, which are only utilized in the Cough-Only experiment.

4.1 Cough-only Experiment

In the first experiment, TB prediction should be based on audio cough sounds only. Given the amount of available
recordings (9772 files), deep learning approaches (CNNs) are also suitable for the classification task, along with
conventional machine learning algorithms. The latter use high-dimensional vectors of temporal and spectral features as
mentioned in Section 3, while CNNs use spectrotemporal representations of cough sounds as input features. A 10-fold
stratified grouped cross-validation (CV) was selected to examine model performance. The proposed CV scheme ensures
that coughs from each participant were either in the train set or the test set (and not in both). Different CNN-based
architectures are tested but the one shown in Fig. 3 is the one with the best average AUC results. Cough predictions are
also averaged per participant.

Regarding training, a batch size of 32 was chosen along with a number of 40 epochs for training, a number small
enough to prevent overfitting. Approaches with a validation set resulted in slightly worse performance, probably due
to reducing the training set size. When training a model, it is often useful to lower the learning rate as the training
progresses. We choose the Cosine Decay with restarts [40] scheduler that applies a cosine decay function with restarts
to an optimizer step, given a provided initial learning rate (set to 0.0001). It requires a step value (set to 4000) to
compute the decayed learning rate. The selected optimizer was Adam [41] with a binary cross-entropy loss function.

In Figure 4 we present a boxplot of AUCs averaged over a 10-fold cross-validation, assessing both isolated cough
sounds and aggregated per participant. It should be noted that while the CNN outperforms other methods on average in
isolated cough classification (AUC 0.70± 0.05), when coughs are aggregated, a simple Logistic Regression achieves a
higher average AUC (0.69± 0.07).

4.2 Cough+Metadata Experiment

In this experiment, we decided to jointly train a model on both the demographic and clinical metadata and the cough
audio features. Since training 2-dimensional spectrotemporal data jointly with tabular data (metadata) is feasible but
not straightforward, log-mel spectrograms and MFCCs were flattened to a 1-dimensional vector and concatenated to the
rest of features in a tabular form.
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Table 4: Machine learning models with their hyperparameters.

Algorithm Hyperparameters (constant and tuned)

Logistic Regression (LR)
Solver: LBFGS
Penalty: L2
C: tuned from 10−5 to 1.0

Support Vector Machine (SVM) C: tuned from 0.01 to 5
γ: tuned from 10−1 to 10−5

Multi-Layer Perceptron (MLP)

α: tuned from 10−5 to 1.0
Hidden layer size: 5
Neuron number: tuned from 256 up to 4 per layer, in decreasing order
Solver: Adam
Learning rate: 0.001
Activation: ReLU

Random Forest (RF)

Estimators: tuned from 100 to 500
Maximum number of features: tuned between square root and log2
Maximum depth: tuned between 4, 6, and 8
Split criterion: tuned between Gini and Entropy

AdaBoost (AB) Number of estimators: tuned from 10 to 500
Learning rate: tuned from 10−4 to 1.0

CNN
(Cough-Only experiment)

Convolution layers depth: tuned from 2, 3 and 4
Filter size: [16, 32], [16, 32, 64], [16, 32, 64, 128] (first to last layer)
Kernel size = 3× 3
Batch Normalization: tuned between yes and no
(in between convolution and activation layers)
Pooling: tuned between Max and Average
Dropout: tuned between 0.25 and 0.5 (between dense layers)
Activation: ReLU
Number of dense Layers: 3
Neuron number in dense layers: [1024, 256, 128]
(first to last layer)

In this section, we briefly present the classification pipeline we follow in this experiment. Features are extracted,
stacked, statistically summarized, and fed to the classifiers as inputs. Feature scaling is performed whenever necessary.
We use stratified 5-fold cross-validation to tune hyperparameters. Final predictions are made on several hold-out test
sets, defined by a stratified, grouped 10-fold cross-validation split. Hyperparameters were tuned in a nested stratified
grouped 5-fold cross-validation.

In Figure 5 we present a boxplot of AUCs for our 10-fold CV, assessing both isolated cough sounds and aggregated
per participant. An ensemble model, AdaBoost, achieves an average AUC of 0.82 ± 0.05 and an average AUC of
0.81± 0.04 is obtained per cough sound and per participant, respectively.

5 Discussion

Figures 4 and 5 show that clinical and demographic data increase average AUC performance in both cough-based and
participant-based classification. More specifically, in Cough-only experiment, none of the conventional ML methods
showed a mean or median AUC greater than 0.70 on a cough-basis classification. On the contrary, the CNN model
achieved a mean and median AUC just above 0.70. On a participant-basis classification, all models performed better on
average, suggesting that aggregating probabilities might be beneficial to the prediction system. In Cough+Metadata
experiment, AUC distributions are less spread out and both the average and median AUC is well above 0.80 for all
models but MLPs. It is interesting to note that Adaptive Boosting (AB) performs best on average in single cough
classification but similarly to simpler models (LR, SVM) when aggregating cough probabilities. This behavior is
consistent in other models as well, indicating that weighted averaging of probabilities might worth exploring. Overall,
one may conclude that Multi-Layer Perceptrons (MLPs) seem to perform worst in all cases and Logistic Regression
(LR), a simple, fast, and well-known statistical model performs quite well compared to more advanced models such as
Adaptive Boosting (AdaBoost) and ensemble learning methods such as Random Forests (RFs).
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Figure 3: Best CNN architecture. [MxN,L] under each Conv 2D block denote the filter size and the number of
filters, respectively. p = 0.5 under each Dropout block denotes the dropout probability while "size" and "strides" are
parameters of the MaxPooling layer. Finally, numbers under Dense layers provide the number of neurons for each layer.

LRc SVMc MLPc RFc ABc CNNc LRp SVMp MLPp RFp ABp CNNp
Models

0.55

0.60

0.65

0.70

0.75

0.80

AU
C

AUC performance: cough (left panel) vs participant (right panel)

Figure 4: Cough-only experiment: boxplots of AUC values for all models. Left: per-cough assessment. Right: per-
participant assessment. Red solid and green dashed lines denote mean and median value, respectively. For model
abbreviations, see Table 4.

6 Conclusions and Future Work

In this work, we present Hyfe’s approach for diagnosing TB based solely on the publicly available training data from
the CODA DREAM Challenge. We demonstrate the potential of both deep learning approaches and conventional
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LRc SVMc MLPc RFc ABc LRp SVMp MLPp RFp ABp
Models

0.70

0.75

0.80

0.85

0.90
AU

C

AUC performance: cough (left panel) vs participant (right panel)

Figure 5: Cough+Metadata experiment: boxplots of AUC values for all models. Left: per-cough assessment. Right:
per-participant assessment. Red solid and green dashed lines denote median and mean value, respectively. For model
abbreviations, see Table 4.

features from audio processing as predictors for tuberculosis, along with standard demographic and clinical metadata.
Results are encouraging, especially for models trained on both audio and tabular data. To our knowledge, this is
the first study that compares machine learning techniques on such a diverse, large, automatically collected dataset
of cough audio recordings. Importantly, our results on Cough+Metadata experiment are particularly relevant to TB
control programs given the complexity and poor performance of conventional sputum microscopy [42]. If confirmed in
larger community-based studies, our results suggest that the accuracy of cough sounds is sufficient for triaging which
coughing patients should be prioritized for definitive TB diagnostic evaluation. This effort was not exhaustive and there
are many improvements and alternatives which might further improve the audio analysis, starting from enriching the
feature set and up to selecting different classifiers and feature selection schemes that have not been discussed in this
work. In addition, there remain questions such as the optimal number of features, the most appropriate features that
can model cough sounds adequately, the best classifier in terms of complexity, convergence speed, and accuracy, and
the parameters of the analysis, among others. Moreover, the dataset used in his study provides a baseline dataset for
researchers and engineers interested in developing statistical learning methods for TB prediction. These preliminary
results suggest that mobile phone-based apps that integrate clinical symptoms and cough sound analysis could help
community health workers to identify TB patients. If integrated into digital health systems [43, 44] of low-resource
countries with a high burden of TB, such as Nikshay [45, 46, 47] in India, such devices would also allow TB control
programs to better understand the epidemiology and clinical management of those suspected of having TB.
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