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A B S T R A C T   

Purpose: Recent developments in the field of artificial intelligence and acoustics have made it possible to 
objectively monitor cough in clinical and ambulatory settings. We hypothesized that time patterns of objectively 
measured cough in COVID-19 patients could predict clinical prognosis and help rapidly identify patients at high 
risk of intubation or death. 
Methods: One hundred and twenty-three patients hospitalized with COVID-19 were enrolled at University of 
Florida Health Shands and the Centre Hospitalier de l’Université de Montréal. Patients’ cough was continuously 
monitored digitally along with clinical severity of disease until hospital discharge, intubation, or death. The 
natural history of cough in hospitalized COVID-19 disease was described and logistic models fitted on cough time 
patterns were used to predict clinical outcomes. 
Results: In both cohorts, higher early coughing rates were associated with more favorable clinical outcomes. The 
transitional cough rate, or maximum cough per hour rate predicting unfavorable outcomes, was 3⋅40 and the 
AUC for cough frequency as a predictor of unfavorable outcomes was 0⋅761. The initial 6 h (0⋅792) and 24 h 
(0⋅719) post-enrolment observation periods confirmed this association and showed similar predictive value. 
Interpretation: Digital cough monitoring could be used as a prognosis biomarker to predict unfavorable clinical 
outcomes in COVID-19 disease. With early sampling periods showing good predictive value, this digital 
biomarker could be combined with clinical and paraclinical evaluation and is well adapted for triaging patients 
in overwhelmed or resources-limited health programs.   

1. Introduction 

Background - Cough is a hallmark symptom of COVID-19 and is 
routinely used for symptom-based screening and clinical monitoring of 
symptomatic cases. [1–2] The emerging field of Acoustic Epidemiology 
now enables objective monitoring of cough and development and 
evaluation of cough-based digital biomarkers for diagnostic, prognostic, 
and treatment monitoring of lung disease. [3] Most impactful studies 

published to date leveraged coughs’ acoustic signature for classification 
of sounds associated with specific lung disease aetiology. [4–5] The 
temporal evolution pattern of objective cough recordings has not yet 
been used for clinical decision making. [3]. 

Problem - To date, the absence of reliable data on the natural evo
lution of cough in COVID-19 disease has precluded the development of 
such clinical tools. 

Proposed method - We hypothesized that acoustic prognosis tools 
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could be derived from objectively measured cough time patterns to 
complement clinical assessment of patients at high risk of severe disease 
and poor clinical outcomes after a short clinical observation period. 
Such tools could support clinical decision making when admitting or 
discharging patients or when initiating specific therapies which need to 
be administered within a short therapeutic window to maximize effi
cacy. [6] In a pandemic or endemic setting, this approach could support 
both limited and overwhelmed health systems in low, middle as well as 
high-income countries. We describe the natural evolution of cough 
among hospitalized COVID-19 patients in two independent populations 
of Gainesville, Florida and Montreal, Canada. Using the longitudinal 
cough evolution patterns of participants, we develop a cough-based 
prognosis score allowing the precise identification of patients at 
higher risk of disease progression towards intubation or death. We 
report on the accuracy of the cough detection AI algorithm, the opera
tional aspects of deploying digital cough monitoring technology for 
routine clinical monitoring in hospital settings, the natural history of 
cough and its prognostic value in hospitalized COVID-19 disease. 

2. Materials and methods 

2.1. Study setting and population 

Participants were consecutively recruited in the University of Florida 
Health Shands Hospital (UFHSH) in Gainesville, Florida and the Centre 
Hospitalier de l’Université de Montréal (CHUM) in Montreal, Canada. 
These are tertiary care centers with 1,162 beds and 770 beds, respec
tively. Adults requiring hospitalization for newly diagnosed COVID-19 
infection were included. In both settings, administered therapies for 
COVID-19 included dexamethasone for all patients requiring oxygen 
support and remdesivir or tocilizumab, as appropriate, for severe and 
critical COVID-19. Diagnosis was confirmed by COVID-19 PCR testing 
(Xpert Xpress SARS-CoV-2, Cepheid and BioFire RP 2⋅1, Biomerieux at 
Gainseville and cobas 8800 SARS-CoV-2, Roche at Montreal). This 
strategy purposely included patients presenting with a wide range of 
symptom severity ranging from those not requiring any supplemental 
oxygen who had been admitted for observation to patients requiring 
intensive non-invasive ventilatory support. Patients requiring rapid 
intubation upon admission were not included. Study participation was 
terminated upon hospital discharge, intubation, or death. 

2.2. Digital cough monitoring 

Participants’ coughs were recorded using previously validated Hyfe 
Research (https://www.hyfeapp.com/) smartphone application running 
on Motorola G6 android devices. Hyfe Research runs in smartphone 
background interface, monitoring ambient sound levels, and records 
short snippets of “explosive” sounds (<0.5 s). Those half-seconds con
taining at least one explosive sound are transferred and analyzed on a 
server-based convolutional neural network (CNN) AI model which dis
tinguishes coughs from or non-cough sounds. This CNN model was 
previously shown to have above 96⋅0% analytical sensitivity and spec
ificity and was re-validated using gold-standard human sound labelling 
within this study’s specific setting. [7–9] Phones were positioned at the 
head of hospital beds with microphones oriented towards the patients 
within three feet of the patients’ mouths. Phones were left charging with 
the Hyfe Research application activated until the completion of their 
enrolment period. All participants were hospitalized in single closed 
rooms with airborne precaution. Between patients, phones were handled 
and cleaned following recommended biosafety protocols in collabora
tion with local infection control services (Supp. 1). 

2.3. Designing a cough detection-based COVID-19 prognosis model 

Study population socio-demographic and clinical information were 
collected upon enrollment. Factors which could impact baseline cough 

patterns (e.g. smoking habits, lung comorbidities), and those influencing 
severity and clinical evolution of COVID-19 disease (e.g. age, comor
bidities especially features of metabolic syndrome) were collected. [10] 
Oxygen and respiratory support was continuously monitored 
throughout the enrolment period to classify disease severity according 
to a standard severity scale used in WHO international COVID-19 
studies. [11]. 

To describe the natural history of cough in COVID-19 disease, par
ticipants’ cough per hour rates were aggregated at cohort level and 
tracked in time. Hospital admission date and study enrolment were used 
as the zero mark in separate analyses. Participants were monitored until 
hospital discharge, intubation, or death. 

To develop a sensitive prediction model for unfavorable clinical 
outcomes, a logistic model was fitted on patients’ coughs per hour as the 
explanatory variable. The dependent variable was a dichotomous 
response distinguished between unfavorable outcomes (mechanical 
ventilation or death) and favorable outcomes (absence of mechanical 
ventilation or death). A transitional cough per hour rate value was 
defined as the cough frequency below or above which all unfavorable 
outcomes could be predicted. Comparing cough rates to this transitional 
rate provided a simple predictive model whose performance (sensitivity, 
specificity, positive and negative predictive value) was analyzed. Since 
the clinical value of such a predictive model is greater the earlier it can 
be applied after initial contact with patients, the analysis was replicated 
strictly using the first 6 and 24 h of observation to predict the same 
longer-term outcomes. 

3. Results 

3.1. Study population 

Between December 17, 2020 and June 15, 2021, 98 patients were 
enrolled at UFHSH and 25 patients were enrolled at CHUM. Study 
population characteristics, comorbidities and COVID-19 disease severity 
are presented in Table 1. At UFHSH, 14 patients were transferred to the 
intensive care unit (ICU), nine of whom subsequently died during the 
hospitalization. Three more patients died without ICU transfer after 
pursuing palliative care. At CHUM, two patients were transferred to the 
ICU, one of whom died. 

3.2. Cough monitor validation 

The mean study enrolment period was 3⋅18 days at UFHSH and 6,0 
days at CHUM. Coughs were recorded from patients for an average of 
106⋅91 h per patient (Q1 = 66⋅3 h, median = 96⋅67 h, Q3 = 144⋅17 h) in 
Gainesville and for an average of 121⋅28 h per patient (Q1 = 49⋅8 h, 
median = 72,17 h, Q3 = 180⋅84 h) in Montreal. The cough monitoring 
totaled 549⋅52 days (13,188⋅54 h) of monitoring and captured a total of 
47⋅409 coughs (26⋅847 Florida; 20⋅562 Montreal), for an average of 395 
coughs recorded per patient (282 per Florida patient; 822 per Montreal 
patient). Mean cough rates calculated over the complete enrollment 
period were higher in Montreal cohort than the Gainesville cohort 
(Supp. 3). 291,684 explosive putative cough sounds were recorded. Of 
those, 150,954 were randomly sampled and labelled as cough or non- 
cough sounds by trained human observers. Using this as the gold stan
dard for cough detection, the Hyfe Research CNN model was calculated 
to be 94⋅1% sensitive and 97⋅4% specific (AUC 0⋅986) (Supp. 2). 

3.3. Natural evolution of cough in COVID-19 disease 

In both cohorts, cough was shown to be on a rapid increasing trend 
immediately following hospital admission before regressing with time 
and reaching a plateau (Fig. 1). Circadian cycle cough pattern analysis 
revealed lower cough rates at night than during the day (Supp. 5). 
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3.4. Cough as a prognosis biomarker 

In the Gainesville cohort, the transitional cough rate (maximum 
cough rate per hour among those participants who eventually required 
mechanical ventilation or died from COVID-19) for the total enrollment 
period was 3⋅40 coughs per hour; no patients coughing more than 3⋅40 
times per hour experienced unfavorable outcomes. The transitional 
cough rates for the first 24 h and 6 h of monitoring, respectively, were 
3⋅42 coughs per hour and 9⋅50 coughs per hour (Fig. 2). Although 
thresholds vary, all three-time frame analyses suggest that higher 

coughing rates were associated with fewer unfavorable outcomes. When 
varying transitional cough rates in ROC curve analyses, areas under the 
curve were 0⋅761, 0⋅792 and 0⋅715, respectively for the full, first 24 h 
and first 6 h periods of monitoring suggesting that limited early moni
toring is a comparable predictor of clinical outcomes (Fig. 3). We con
ducted 500 5-fold cross validation runs for each of the binary predictive 
models. As expected, the empirical AUCs agreed with the mean and 
median AUCs obtained from cross validation. We assessed the perfor
mance of cough rate-based models with the above reported transitional 
cough rates as thresholds to predict clinical outcomes. By design, those 
models are 100⋅0% sensitive and have 100⋅0% negative predictive value 
given that all patients experiencing unfavorable outcomes exhibit cough 
rates inferior to the transitional rates. Models specificity and positive 
predictive values respectively ranged from 23⋅3 to 32⋅9 and 27⋅0 to 30⋅0 
(Table 2). Specificity and positive predictive value could be improved at 
the cost of sensitivity and negative predictive value by choosing a 
different transitional cough rate threshold as shown on the ROC curves. 

To assess for potential confounders, we assessed the potential 
contribution of demographic or medical co-variates in both cohorts of 
hospitalized COVID-19 patients and found no relationship between 
biological sex, race, smoking status, diabetes, hypertension, cardiac 
disease, chronic obstructive pulmonary disease or asthma and the dis
crepancies between cough rates among patients with favorable or un
favorable outcomes (Supp. 6). Only older patients were more likely to 
experience unfavorable outcomes (Supp. 7). 

Given the limited number of patients experiencing unfavorable 
outcomes in the Montreal cohort (n = 3), a site-specific prediction model 
could not be built for this cohort. When combining data from both co
horts, we observed the same transitional cough rate on the total 
enrollment period and the ROC curve AUC was found to be 0⋅748 (Supp. 
8). All analyses combining both cohort data reinforced the same bio
logical signal of higher coughing rates being associated with more 
favorable clinical outcomes. 

4. Discussion 

Objective measurement of cough in acute care setting is feasible. In 
our study, more frequent coughing being associated with better out
comes. Although we showed that cough was naturally down trending in 
all hospitalized COVID-19 patients, those presenting with a lower cough 
per hour rate were at a higher risk of evolving towards intubation or 
death. Both site-specific and pooled data from two independent cohorts 
supported this finding. 

One interesting finding of our study is the significant discrepancy in 
cough rates between both cohorts. The recording technology, cough 
detection algorithm and recording protocols were identical in both sites. 
We hypothesize that this difference could be explained by the time 

Table 1 
Study population demographic characteristics.   

Gainesville (n =
98) 

Montreal (n =
25) 

Demographic   
Age - mean (SD) 61 [16] 55 (20) 
Male sex – n (%) 51 (52) 15 (60) 
Race – n (%)   

White 60 (61) 19 (76) 
Black 37 (38) 1 (4) 
Asian 0 (0) 1 (4) 
Native American and other 1 (1) 4 (16) 
Hispanic 4 (4) 2 (8) 

Comorbidities and risk factors - n (%)   
Active smoking 33 (34) 0 (0) 
Immunosuppression 16 (16) 7 (28) 
Diabetes 34 (35) 3 (12) 
Cardiac disease 36 (37) 5 (20) 
Hypertension 73 (75) 8 (32) 
COPD 20 (20) 2 (8) 
Asthma 16 (20) 4 (16) 
Obesity 60 (61) 5 (20) 
Mean BMI (SD) 33⋅8 (9.8) 29⋅7 (7.8) 
Clinical features and outcomes   
Mean hospital stay – days (SD) 8⋅3 (5.8) 9⋅2 (5.3) 
Mean enrollment period – days (SD) 3⋅6 (3.2) 7.3 (5.5) 
Final outcomes   

Discharged – n (%) 81 (81) 22 (88) 
Left against medical advice – n (%) 0 (0) 1 (4) 
Transferred to ICU – n (%) 14 (14) 2 (8) 
Died without ICU transfer (palliative) – 
n (%)  

Mean ICU stay - days 

3 (3)  

13⋅6 

0 (0)  

20⋅0  

Intubation – n (%) 14 (14) 2 (8) 
Mean invasive ventilation days - days 12⋅5 17⋅5 
Death – n (%) 12 (12) 1 (4) 

Gainesville and Montreal demographic characteristics, comorbidities and 
COVID-19 disease clinical severity and outcome. BMI; body mass index, COPD; 
chronic obstructive pulmonary disease, ICU; intensive care unit, SD; standard 
deviation. 

Fig. 1. Natural Evolution of Cough in Hospitalized COVID-19 disease. Natural evolution of cough in hospitalized COVID-19 patients from hospitalization to hospital 
discharge, intubation, or death in Montreal (Panel A - Left), Gainesville (Panel B - Center) and both patient cohorts (Panel C - Right). The evolution of cough in cough 
per participant per hour (up) and the total number of enrolled participants contributing to the data set at any given timepoint (down) is displayed. 
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between hospitalization and study enrollment which was longer in the 
Gainesville cohort. As show on Fig. 1 Panel A (Montreal) and B (Gain
esville) lower graphs, the number of patients monitored peaked earlier 
in Montreal. We may have captured Montreal patients earlier in the 
course of disease leading to higher cough rates given the general 
downward trend of cough following hospitalization. 

Except for age which was correlated with unfavorable outcomes, no 
comorbidities or demographic factors were found to be independent 
predictors of intubation or dead, or potential biases in our analysis. This 
is most likely because enrolled patients were already severely ill and 
requiring hospitalization. Previously described risk factors for severe 
disease such as metabolic syndrome features would likely have emerged 
as significant predictors in an ambulatory population. Our study should 
be validated in independent cohorts given its limited power (n = 123). 
Our conclusions should also be tested in a broader range of COVID-19 
infected patients including outpatients not requiring hospitalisation. A 
digital cough monitoring prognosis model would have high value in this 
population although it is unlikely that the cough observed patterns and 
decision thresholds would be similar to those described here. Anti- 
tussive drugs or airway clearance physiotherapy treatments may 
impact patients’ cough rates. Such medication was not part of COVID-19 
clinical management protocols and physiotherapy was not allowed 
because of infection control measures. 

In a pandemic context, where health resources allocation requires 
prioritization, rapidly triaging patients and protecting hospitalization 

capacity for those at higher risk of complications is critical. Other 
studies, including some using machine learning approaches on large 
cohorts of hospitalized COVID-19 patients, have developed composite 
prognosis scores to predict mechanical ventilation, ICU admission and 
mortality. He et al. reported such composite scores having an AUC of 
0⋅850. [12] With AUCs ranging from 0⋅719 to 0⋅792, cough represents a 
promising independent predictor which could complement previously 
developed scores or be used as a stand-alone, easy to implement strat
egy. In our study, the initial 6 h and 24 h of cough monitoring had 
similar performance for predicting unfavorable outcomes, suggesting 
that cough monitoring over an early observation period could support 
clinical decision making. This finding is also of particular interest for 
low- and middle-income settings with limited hospitalization and pa
tient monitoring capacity. 

To date, the use of digital cough monitoring in COVID-19 has been 
limited to AI cough classification algorithms aimed at screening for, or 
diagnosing, COVID-19. [13–16] Those models were reported to be 
highly sensitive and specific but their validation in external cohorts is 
still needed as their performance is highly contingent on their respective 
training and validation datasets. [17] Conversely, our approach strictly 
relies on human cough detection for which AI algorithms have been 
robustly validated as part of this trial and in independent settings. [7–8] 
In this study, the Hyfe cough detection model was found to be highly 
sensitive (94⋅1%) and specific (97⋅4%) when assessed against human 
observation on a subset of 150,954/291,684 putative explosive cough 
sounds randomly selected from both study sites. Although cough clas
sification and cough detection represent different approaches and 
challenges, they could be combined to increase prediction models per
formance. That is, augmenting our model by taking into account the 
acoustic signature of coughs and recognizing the specific features of 
those coughs associated with unfavorable outcomes could be attempted 
in the future. 

Analyzing longitudinal cough time series represents a challenge 
since clinically significant signals or changes in cough pattern may vary 

Fig. 2. Cough rates and clinical outcome in hospitalized COVID-19 patients. Relationship between cough per hours and clinical outcomes (mechanical ventilation or 
death – 1⋅00, favorable outcome – 0⋅00). Transitional cough rates, or maximum cough rates per hour among those with bad outcomes are 3⋅40 for the total 
enrollment period (Left) 3⋅42 for the first 24 h of monitoring (Middle) and 9⋅50 for the first 6 h of monitoring (Right). 

Fig. 3. Receiver operating characteristic curve of the cough-based clinical prediction models. ROC curve of the cough prediction models describing the trade-off in 
models’ sensitivity when increasing specificity for the total enrollment period (Left), the first 24 h of monitoring (Middle) and the first 6 h of monitoring (Right). 

Table 2 
Baseline cough-based prognosis score performance.   

Total enrollment period First 24 h First 6 h 

Sensitivity (%) 100⋅0 100⋅0 100⋅0 
Specificity (%) 23⋅3 32⋅9 24⋅7 
Positive predictive value (%) 27⋅3 30⋅0 27⋅6 
Negative predictive value (%) 100⋅0 100⋅0 100⋅0  
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between individuals and respiratory diseases. Although our study is the 
first in COVID-19, cough frequency was previously shown to correlate 
with disease-specific prognosis or severity and contagiousness markers 
in other conditions such as tuberculosis. [5,18] Proano et al. previously 
reported on the impact of tuberculosis treatment initiation on cough 
longitudinal patterns. [5] Similarly, to our approach, they assessed 
correlations between median cough per hour rates and clinically 
meaningful outcomes. Turner et al. rather measured the number of 
coughs per 24 h at initiation of TB treatment to predict contagiousness as 
measured by incident latent TB infection among household contacts. 
[18] Our study together with other evidence from those distinct medical 
conditions confirms the potential role of objective cough assessment in 
the clinical management of respiratory diseases. 

We achieved implementation of digital cough monitoring technology 
within routine clinical care in tertiary care hospitals where cough was 
monitored longitudinally as a vital sign. Our study suggests that in 
hospitalized COVID-19 patients, although is not a perfectly accurate 
predictor of unfavorable clinical outcomes, limited coughing is associ
ated with higher risks of intubation or death. If validated in future 
studies, this could support patient care and more strategic resource 
allocation. 
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