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Abstract

Cough is a ubiquitous health indicator whose global physical, psychological, and financial burden is extreme
and underappreciated. As a disruptive, discrete, and information-rich symptom that is associated with a myriad
of diseases, cough is also the ideal clinical endpoint. And yet, even in the age of mobile health, Al, and Big
Data, cough continues to be assessed mainly through subjective surveys and brief acoustic recordings with
bulky and expensive clinical devices. Half the world population now carries smartphones that, when combined
with Al-powered software, can be used as clinical tools for quantifying cough endpoints objectively. Scalable
mobile cough monitoring has the potential to transform clinical trials by increasing their success rate, decimating

Keywords

Ywww.hyfe.ai
*Correspondence: research@hyfe.ai

their costs, accelerating products to market, and improving health equity worldwide.
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Cough: a global burden, a clinical priority

Cough is everywhere. It is part of normal life; a healthy
person coughs an average of once per hour [1, 2]. Cough
is also a chronic symptom of dozens of diseases, from the
common cold, asthma and COPD to lung cancer, tuberculosis
and COVID-19 [3-5]. It is also a disease in itself. 40% of
the population at any one time reports cough [6], and chronic
cough, defined as cough lasting longer than eight weeks, is an
illness that occurs in 10-20% of the world’s population [7-10],
though this is likely an underestimate [7, 10]. Chronic cough
accounts for more than a third of outpatient clinic visits in
the United States [7, 11, 12] and more than 27 million visits
per year globally [10, 13]. Cough is an unusual symptom, in
that it is observed by care providers and also self-reported
by patients. The development of cough is the most common
reason that people seek primary and specialty care [10, 13].
As such, cough is an important service pathway for all clinical
products, even those not focused strictly upon respiratory
health.

Cough is important. It diminishes quality of life, though
the ubiquity and normalcy of cough can make its global bur-
den easily overlooked [7, 10]. The human toll of cough is
both physical and psychological [14, 15]. Physical effects
of chronic cough include incontinence, chest pain, headache,
syncope, vomiting, and sleep disturbance [15]. Sleep de-
privation caused by nighttime cough results in fatigue, poor
concentration and malaise, which hurts patients’ professional
and personal spheres [10]. Psychologically, chronic cough
leads to anxiety and depression, particularly when the under-
lying cause of cough remains unknown [10, 16]. Socially,

coughing bouts lead to embarrassment and social isolation,
which exacerbate psychological effects [10, 15]. For these
reasons, cough is regularly used as both a factor and a metric
for quality of life [10, 17].

Cough is expensive. Its global financial burden is extreme.
An astounding $250 million is spent on cough drops each
year in the United States alone [18]. For COPD —a disease
characterized by chronic cough and shortness of breath [3]
—the global costs of treatment, morbidity and lost earnings
are counted in the tens of billions [19]. Lost productivity
caused by chronic cough and other respiratory diseases cost
nations millions in GDP each year [20]. On the individual
level, the cost of chronic cough can be debilitating. The total
uninsured cost of care for a patient with complex chronic
cough is typically more than $10,000 USD [21]. These costs
disproportionately impact the lives of minorities, women, and
marginalized families, exacerbating cycles of global poverty
[22, 23].

For all these reasons, cough is common in clinical research
and is increasingly used as a primary endpoint in clinical
trials [15]. Cough is studied for various purposes: as a disease
unto itself (e.g., chronic cough [8, 10, 24]), as a biomarker for
other diseases of interest (e.g., tuberculosis [25] and COVID-
19 [5]), or as an indicator of quality of life (e.g., asthma [9]).
All of these studies look for changes in cough either as a
reflection of the course of disease or as an indicator of the
effectiveness of treatment. Cough is an obvious endpoint for
trials of medications developed specifically for cough, e.g.,
antitussive drugs [9, 26, 27] (a $3 billion USD per year market
and growing [28, 29]), and chronic cough remains an active
field of research that requires tools for counting coughs as an



endpoint [24]. But cough is also used as a surrogate endpoint
for the response to therapy for a myriad of other diseases
[9, 15, 26, 30-34].

Cough as an objective endpoint:
missed opportunities

Cough is the perfect clinical endpoint. It is common, eas-
ily detected, information-rich, and widely recognized as an
indicator of illness [7, 11, 15, 34]. In the last century, cough
assessments have emerged as an increasingly important tool
for screening, diagnostics and monitoring [34-39]. Another
advantage of cough is its dimensionality; it can be assessed
from many angles —cough reflex sensitivity, cough severity
or intensity, cough impact on quality of life, and cough fre-
quency [9, 15, 40] —and trends in these metrics over time are
as valuable diagnostically as the metrics themselves [15, 34].

In practice, however, cough remains drastically underuti-
lized. The vast majority of studies assess cough endpoints
by asking patients about coughs —via questionnaires such as
the Leicester Cough Questionnaire, the Visual Analog Scale,
Cough-specific Quality of Life Questionnaire, the Cough
Severity Score, the Cough Severity Diary, the Automated
Device for Asthma Monitoring and Management, and the
Asthma Control Questionnaire [15, 41-46] —instead of just
listening to them. Several of these surveys are well-validated
and of value, particularly in assessing impacts upon quality of
life, but they are limited by their subjectivity and small sample
size [9, 15]. If objective observations could be paired with the
patient’s self-reported experience, such questionairres would
be even more informative and actionable [9, 15].

Far less progress has been seen in objective measures of
cough frequency and severity. There is broad consensus
among cough specialists that precise, objective evaluations
are needed in order to study the impact of cough properly
[9], and that the assessment of cough frequency is the gold-
standard objective tool [15]. Cough counting monitors also
reduce the sample size needed for clinical trials and provide
an objective means of distinguishing between healthy and ill
patients [15, 47, 48]. For these reasons, using acoustic cough
counting as an endpoint is a top-priority recommendation of
the CHEST Expert Cough Panel [9].

The cough counting devices currently available for clin-
ical studies are expensive, obtrusive, time-limited, and
labor-intensive. Though several devices have been devel-
oped over the years [47-53], the only validated cough count-
ing devices in widespread use are the Leicester Cough Moni-
tor and VitaloJAK [1, 15, 37, 48, 54, 55]. These are custom-
built devices that record for a single 24-hour period, and the
acoustic data they collect require between 5 and 90 minutes of
manual verification for each day of recording [1, 15, 54, 56].
These devices are also cumbersome, which reduces patient
retention and could potentially alter their cough behavior, thus
undermining the reasons for their use [34]
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These devices also constrain clinical research. The price,
obtrusive equipment, and analysis burden of these devices
force clinical studies that use them to be either more costly
or smaller in scale, which generates statistical issues when
endpoint variability is high, as is inherent in human cough
[15, 34], and/or when effect sizes of treatments are inherently
small [57]. Also, since these devices are designed to monitor
patients for less than a day, the data collected may not be
representative of general patterns in a patient’s life [9, 48],
nor can the data speak to long-term or emerging trends in
cough behavior, which of themselves could be information-
rich clinical endpoints that remain untapped and unexplored
[34]. Furthermore, these cough counting tools are typically
available only to patients of means with ready access to re-
search clinics, since the devices are expensive when patients
are uninsured and they must be returned after only a day of
use.

But the parallel rise of smartphones and machine learn-
ing has unlocked a new market. Smartphones are in the
pockets and purses of nearly half the world population [58],
and there are now more phones than people in some Western
developed nations [58, 59]. Most importantly, smartphones
have distributed high-quality optical and acoustic sensors to
at-risk populations worldwide. As these devices have prolifer-
ated, new Al technology has enabled the automated analysis
of enormous volumes of data [60, 61]. The joint rise of smart-
phones and Al has the potential to improve healthcare equity
for billions living in remote and low-income settings [62—
66]. Al-enabled mobile-health apps are rapidly gaining use in
clinical care and research [67], and they offer the ideal plat-
form for an unobtrusive tool for monitoring cough objectively
[34]. Once adopted as such and cough data are collected at
an increasing rate, Al algorithms will become increasingly
proficient at (1) distinguishing coughs from other percussive
sounds [34], (2) associating certain cough attributes with par-
ticular diseases (e.g., [68, 69]), and (3) identifying individual-
level characteristics in a patient’s cough [60, 61, 70]. These
tools will enable real-time, long-term, continuous, and person-
alized remote monitoring, with the potential to fundamentally
change our approach to patient care, public health, emergency
response, and clinical trial design [34, 57, 70-74].

Scalable cough counting with Al:
the future of clinical trials

The delays and costs inherent to clinical trials have reached
crisis levels [75]. The development cycle for bringing a new
drug to market takes 10 to 15 years and $1.5 to $2.0 billion
USD [76]. These costs have doubled in the last decade [57].
Clinical trials consume the latter half of this cycle [57], the ma-
jority of which fail [77, 78]. Each failed trial costs investors
$0.8 to $1.4 billion USD [57, 79]. The two most common
causes of trial failure are (1) low participant adherence / re-
tention, and (2) poor infrastructure for monitoring clients and
measuring clinical endpoints [57, 80]. Harrer and colleagues



[57] summarized the crisis as follows: “A fundamental trans-
formation of the underlying business and innovation model of
the entire [clinical trial] industry is needed for a paradigm
shift to a new sustainable trajectory of growth and progress”.

Remotely monitored, AI-powered endpoints for cough can
transform clinical trial design. Al techniques in combina-
tion with mobile device technology have the potential to de-
velop innovative approaches to clinical research [57, 81-83].
Several researchers have highlighted the benefits of using
smartphones and their notification functions for improving
participant retention and adherence to treatment [57, 84, 85],
and Al software could improve these efforts using dynamic
predictions of drop-out risk [57]. Higher retention reduces
the cohort size necessary for a trial, thus saving time and
money [57]. These benefits apply to all clinical trials. But
for those using cough as an endpoint, the most transformative
advantages would come with the use of long-term, continuous,
Al-powered cough counting software from unobtrusive smart-
phones, wearable devices, and Internet-of-Things products.

The key benefits of mobile, AI-powered cough counting
in trials include the following:

1. No technological constraints on sample size or trial
duration, since monitoring software is easily scaled
and devices are already distributed in the population.
The cough data stream can be tracked at nearly no cost
during months of remote trial participant follow-up.

2. Broader and more equitable access to potential partic-
ipants, since participants can be remote and need not
visit or return to a clinic.

3. Access to many endpoints at once, since long-term
cough monitoring can measure the characteristics of in-
dividual coughs, cross-sectional assessments of cough
frequency, as well as continuous longitudinal trends in
those metrics.

4. Exponential increase in sample size, since devices need
not be returned and Al-powered cough detection algo-
rithms can automatically analyze data.

5. Smaller detectable effect size, thanks to the increase in
sample size.

6. Conversely, larger effect sizes can be expected from
the many objective endpoints available, therefore allow-
ing patient cohort size to be smaller for an identically
powered study.

7. Extreme cost savings, higher rates of trial success, and
expedited regulatory approval for new drugs, due to all
of the above.

8. More effective and equitable health solutions for all.
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Mobile, Al-enabled tools for cough counting will fun-
damentally disrupt the status quo for clinical trials in
respiratory medicine. The benefits and cost savings
of this sea-change will reshape systems of care and
improve global health.
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