ASI, Springville, UT 84663 Page 1 of 8 | Subject/Title: ASI ME | Doc#: 850096AG | | |--------------------------|----------------------------------------|------------------------| | Effective Date: 10/26/17 | Supersedes Revision/Date: 02/18/16 (1) | Revision: 10/26/17 (2) | | Prepared by: ASI | QA Approval by: | Copy/Dept.: | ## FOR IN VITRO DIAGNOSTIC USE 1.0 INTENDED USE: For the qualitative and semiquantitative detection of human IgG antibodies to measles virus in human serum by enzyme immunoassay. Individual serum specimens may be used for the determination of immune status. Paired (acute / convalescent) sera, may be used to demonstrate seroconversion or significant rises in antibody level, as an aid in the diagnosis of primary infection. This assay has not been cleared / approved by the FDA for blood / plasma donor screening. ## 2.0 SUMMARY AND EXPLANATION: Measles is a highly contagious, acute, exanthematous disease. It is generally self-limiting and without serious consequences, although complications such as bronchopneumonia and otitis media do occur. The most serious consequence, encephalomyelitis, is fortunately rare (about 1 in 10,000 cases). Natural infection with measles virus confers permanent immunity. Prior to the advent of vaccines, measles was an almost universally acquired disease of childhood. With the widespread introduction of vaccines however, the incidence of measles has been dramatically reduced¹, and physicians have become increasingly less familiar with this disease. Populations vaccinated in childhood with attenuated measles vaccines have presented atypical forms of measles²; and children vaccinated before 15 months of age may be susceptible to measles infection despite being vaccinated³. Finally, measles infection poses a serious threat to immunosuppressed, or immunocompromised patients⁴. For these reasons, the laboratory diagnosis of measles has become increasingly important, notwithstanding the reduction in the incidence due to the introduction of vaccines. The usual means of laboratory diagnosis of acute measles is serologic, either by the demonstration of a four-fold or greater rise in virus-specific IgG antibody in acute / convalescent serum pairs, or by the detection of virus-specific IgM antibody in a single, early, serum specimen. The traditional serologic test, hemagglutination-inhibition, has been replaced by enzyme-linked immunosorbent assays (ELISA), for practical reasons⁵. The Measles IgG EIA test is an ELISA test which utilizes a microwell format. Test results are obtained after one and one-half hours incubation time. They are objective and normalized as Index values, permitting uniformity of reporting ### 3.0 PRINCIPLE OF THE PROCEDURE: Diluted samples are incubated in antigen-coated wells. Measles antibodies (if present) are immobilized in the wells. Residual sample is eliminated by washing and draining, and conjugate (enzyme-labeled antibodies to human IgG) is added and incubated. If IgG antibodies to Measles are present, the conjugate will be immobilized in the wells. Residual conjugate is eliminated by washing and draining, and the substrate is added and incubated. In the presence of the enzyme, the substrate is converted to a yellow end product which is read photometrically. ## 4.0 REAGENTS Coated Wells Coated with Measles antigen (Edmonston strain). 12 eight-well strips. Well Support One. Diluent* 25 ml (pink color). Phosphate-buffered saline with a protein stabilizer. Calibrator 1* Calibrator 2* O.3 ml. Human serum. Strongly reactive for Measles IgG antibodies. Index value shown on vial label. Positive Control* O.3 ml. Human serum. Moderately reactive for Measles antibodies. Index value shown on vial label. O.3 ml. Human serum. Reactive for Measles antibodies. Index value range shown on vial label. Negative Control* 0.3 ml. Human serum. Nonreactive for Measles antibodies. Conjugate 12 ml (green color). Goat anti-human IgG labeled with alkaline phosphatase (calf). Substrate 12 ml. p-nitrophenyl phosphate. Note: The substrate may develop a slight yellow color during storage. One hundred microliters of substrate should yield an absorbance value less than 0.35, when read in a microwell against air or water. Wash Concentrate* 30 ml. Tris-buffered saline with Tween 20, pH 8.0. Prepare Wash Solution by adding the contents of the Wash Concentrate bottle to 1 liter of distilled or deionized water. Stop Reagent 12 ml. Trisodium Phosphate 0.5 M. * Contains 0.1% sodium azide. Store these reagents according to the instructions on the bottle labels. Do not allow them to contact the skin or eyes. If contact occurs, wash with copious amounts of water. # 5.0 WARNINGS AND PRECAUTIONS - 5.1 For in vitro diagnostic use. - Test samples, Calibrator(s), Controls and the materials that contact them, should be handled as potential biohazards. The calibrators and controls have been found to be negative for HIV, hepatitis B surface antigen and HCV antibodies by licensed tests. However, because no method can offer complete assurance that HIV, hepatitis B virus, HCV or other infectious agents are absent, these materials should be handled at the Biosafety Level 2 as recommended for any potentially infectious serum or blood specimen in the Centers for Disease Control/National Institutes of Health Manual "Biosafety in Microbiological and Biomedical Laboratories", 1993, or latest edition. - 5.3 The concentrations of anti-Measles IgG in a given specimen determined with assays from different manufacturers can vary due to differences in assay methods and reagent specificity. - 5.4 Avoid contact with open skin. ASI, Springville, UT 84663 Page 2 of 8 | Subject/Title: | | Doc#: | |--------------------------|----------------------------------------|------------------------| | ASI M | EASLES IgG EIA TEST | 850096AG | | Effective Date: 10/26/17 | Supersedes Revision/Date: 02/18/16 (1) | Revision: 10/26/17 (2) | - 5.5 Never pipet by mouth. - 5.6 Certain of the test reagents contain sodium azide. Azides are reported to react with lead and copper in plumbing to form compounds that may detonate on percussion. When disposing of solutions containing sodium azide, flush drains with large volumes of water to minimize the build-up of metal-azide compounds. - 5.7 R 21/22: Harmful in contact with skin and if swallowed. - 5.8 S24/25 36/37/39: Avoid contact with skin and eyes. Wear suitable protective clothing, gloves and eye/face protection. For further information, refer to product SDS. - 5.9 Do not interchange reagents from different reagent lots, except for Wash Concentrate, Diluent, Substrate and Stop Reagent. - 5.10 Do not use reagents beyond their stated expiration date. - 5.11 Incubation times recommended in the Test Procedure section should be adhered to. - 5.12 Unused Coated Wells should be kept in their resealable bag with dessicant, and stored in the refrigerator. - 5.13 Do not smoke, eat, drink, or apply cosmetics in areas where plasma/serum samples are handled. ## 6.0 HANDLING AND PROCEDURAL NOTES - 6.1 In order to obtain reliable and consistent results, the instructions in the package insert must be strictly followed. Do not modify the handling and storage conditions for reagents or samples. - 6.2 Do not use past the expiration date indicated on the kit. ## 7.0 STORAGE INSTRUCTIONS Store all reagents at 2 to 8° C in an upright position when not in use. Do not freeze reagents. #### 8.0 INDICATIONS OF DETERIORATION - 8.1 Turbidity or precipitation in controls is indicative of deterioration and the component should not be used. - 8.2 Bacterial contamination of reagents or specimens may cause false positive results. #### 9.0 SPECIMEN COLLECTION AND STORAGE - 9.1 Sera should be separated from clotted blood. - 9.2 If specimens are not tested within 8 hours, they should be stored at 2 to 8° C for up to 48 hours. Beyond 48 hours specimens should be stored at -20° C or below. - 9.3 Multiple freeze-thaw cycles should be avoided. - 9.4 Samples containing visible particulate matter should be clarified by centrifugation; hemolyzed, icteric, or grossly contaminated samples should not be used. - 9.5 Samples should not be heat-inactivated before testing. ### 10.0 PERFORMANCE OF TEST #### **Materials Provided:** | 96 Tests | | | | | | |------------------|----------------------|------------------|--------|--|--| | Coated Wells | 12 eight well strips | Negative Control | 0.3 ml | | | | Well Support | 1 | Conjugate | 12 ml | | | | Diluent | 25 ml | Substrate | 12 ml | | | | Calibrator 1 | 0.3 ml | Wash Concentrate | 30 ml | | | | Calibrator 2 | 0.3 ml | Stop Reagent | 12 ml | | | | Positive Control | 0.3 ml | | | | | #### **Additional Materials Required** - 1. Microplate washer - Pipettors for dispensing 4, 100 and 200 μl - Timer - 4. 1 or 2 liter container for Wash Solution - 5. Distilled or deionized water - 6. Dilution tubes or microwells - Microwell reader capable of reading absorbance at 405 nm. Dual wavelength readers are recommended. Dual or single wavelength readers may be used. Data on file. #### 11.0 TEST PROCEDURE ## Preparation for the Assay - Allow all reagents and patient samples to reach room temperature before use. Return them promptly to refrigerator after use. The test procedure follows: - 11.2 Prepare 1:51 dilutions of test samples, Calibrator(s), Positive and Negative Controls, in the test set Diluent. For example: add 4 µl of sample to 200 µl of Diluent in a dilution well or tube, and mix well. ASI, Springville, UT 84663 Page 3 of 8 | Subject/Title: | | Doc#: | |--------------------------|----------------------------------------|------------------------| | ASI ME | 850096AG | | | Effective Date: 10/26/17 | Supersedes Revision/Date: 02/18/16 (1) | Revision: 10/26/17 (2) | **Note**: For qualitative assays, a single Calibrator (Calibrator 2) may be used; for semiquantitative assays, use Calibrator 1 and Calibrator 2. # 12.0 ASSAY PROTOCOL 12.1 Place an appropriate number of Coated Wells in the Well Support. **Note**: For combination testing (multiple assays per plate), the strips should be assembled on a white background with good lighting. Be sure to note the placement of each strip. 12.2 Transfer 100 µl of each diluted Calibrator, Control and patient sample to the wells. **Note**: Include one well which contains 100 µl of Diluent only. This will serve as the reagent blank and will ultimately be used to zero the photometer before reading the test results. - 12.3 Incubate the wells at room temperature (20 to 25° C.) for 30 ± 5 minutes. - 12.4 Wash wells four times with at least 250 μL/well/wash. Do not allow the wells to soak between washes. Drain thoroughly after the last wash. - 12.5 Place 2 drops (or 100 μl) of Conjugate into each well. - 12.6 Incubate the wells at room temperature for 30 ± 5 minutes. - 12.7 Wash wells four times with at least 250 μL/well/wash. Do not allow the wells to soak between washes. Drain thoroughly after the last wash. - 12.8 Place 2 drops (or 100 µl) of Substrate into each well. - 12.9 Incubate at room temperature for 30 ± 5 minutes. - 12.10 Place 2 drops (or 100 µl) of Stop Reagent into each well. - 12.11 Read and record the absorbance of the contents of each well at 405 nm against the reagent blank. **Note**: Adjust the photometer to zero absorbance at 405 nm against the reagent blank. Readings should be made within 2 hours after the reactions have been stopped. #### 13.0 QUALITY CONTROL Quality control requirements must be performed in accordance with applicable local, state, and/or federal regulations or accreditation requirements and your laboratory's standard Quality Control Procedures. Controls and calibrator(s) with graded reactivity must be included. If they do not yield the expected response, the assay should be considered invalid and the assay repeated. If the repeat assay does not elicit the expected results for the controls and calibrator(s), discontinue use of the kit and contact ASI Technical Support at 800-654-0146. # 14.0 INTERPRETATION OF RESULTS - ### Calculation of Results Qualitative results may be calculated using a single calibrator. For semiquantitative and quantitative results, use a calibration curve consisting of two or more calibrators. # Single Calibrator (Calibrator 2) Determine the Index value for each test sample (or Control) using the following formula: | Calibrator 2 Index | V | Toot Comple Absorbance | | Toot Comple Index | |-------------------------|---|------------------------|---|-------------------| | Calibrator 2 Absorbance | | Test Sample Absorbance | = | Test Sample Index | If the Calibrator is run in duplicate, use the average absorbance value to calculate results. # Calibration Curve Alternatively, test results may be calculated from a three-point curve comprised of: Calibrator 1 (high-point), Calibrator 2 (mid-point) and the reagent blank (zero / origin), using a point-to-point curve fit. The upper range of the curve may be expanded by adding additional points. For example: the concentration of Calibrator 1 may be increased 1.5-fold, and 2-fold, by adding 6 μ l and 8 μ l of Calibrator 1 to 200 μ l of the test set Diluent, and transferring 100 μ l of each dilution to coated wells. The Index values, assigned to these points, should be 1.5 and 2 times respectively, the value shown on the Calibrator 1 label. The extent to which the upper range of the standard curve may be expanded, will be limited by the Calibrator being used. #### Test Validation Criteria - 1. The Calibrator(s), Positive and Negative Controls must be included in each test run. - 2. The absorbance value of Calibrator 1 must be at least 0.4, when read against the reagent blank. - 3. The absorbance value of the reagent blank should be less than 0.35. - The Negative Control must have an Index value less than 0.9. This control is used to validate the assay below the cutoff of the assay. - The Positive Control must have an Index value within the range printed on the labels. When performing qualitative tests, users may supply alternative positive controls if they wish. - 6. To validate the upper range of the assay when performing the semiquantitative procedures, the Positive Control may be run at higher concentrations. For example, the Positive Control may be assayed at 1.5-fold and 2-fold concentrations by adding 6 μl and 8 μl of the Positive Control, to 200 μl aliquots of the test set Diluent, and transferring 100 μl of each of these dilutions to the coated wells. The expected value ranges for these concentrated controls would be 1.5 times and 2 times respectively, the expected value range printed on the Positive Control label. The assay results for these controls must fall within the corrected ranges. Optionally, users may supply alternative positive controls if they wish. If any of these criteria are not met, the test is invalid and should be repeated. ASI, Springville, UT 84663 Page 4 of 8 | Subject/Title: | | Doc#: | |--------------------------|----------------------------------------|------------------------| | | ASI MEASLES IgG EIA TEST | 850096AG | | Effective Date: 10/26/17 | Supersedes Revision/Date: 02/18/16 (1) | Revision: 10/26/17 (2) | 7. The Negative and Positive Controls are intended to monitor for substantial reagent failure. The Positive Control will not ensure precision at the assay cutoff. Users may wish to establish an in-house control, having a quantitative value determined by replicate testing, at or near the cutoff of the assay, to monitor the precision of the assay cutoff. Additional controls may be tested according to guidelines or requirements of local, state and/or federal regulations or accrediting organizations. For guidance on appropriate quality control practices, please refer to NCCLS document C24-A, *Internal Quality Control Testing: Principles and Definitions*. # Interpretation of Results | Index Value | Interpretation | |----------------|--------------------------------------------------------------------| | < 0.9 | Negative for Measles IgG, presumed non-immune to measles infection | | ≥ 0.9 to < 1.1 | Equivocal | | ≥ 1.1 | Positive for Measles IaG, presumed immune to measles infection. | When equivocal results are obtained, another specimen should be obtained ten to fourteen days later, and tested in parallel with the initial specimen. If the second specimen is also equivocal, the patient is negative for primary or recent infection, and equivocal for antibody status. If the second sample is positive, the patient can be considered to have a primary infection. The conversion of an individual patient's serum from negative to positive for antibodies to the infectious agent in question, is defined as seroconversion, and indicates active or recent infection. Differences in the antibody levels observed in acute/convalescent serum pairs which are greater than the imprecision of the assay, i.e. > 20% (Mean intra-assay CV + 3 SD, see tables 5, 6 and 7), are considered significant. To determine a significant difference between acute/convalescent serum pairs, both specimens should be assayed concurrently. Dose response experiments performed at Laboratory C (Miami, FL), have shown that a 63 to 87 percent increase in the Measles IgG EIA Index value, corresponds to a two-fold increase in the Measles IgG antibody level; and a 126 to 174 percent increase in Measles IgG EIA Index value, corresponds to a four-fold increase in the Measles IgG antibody level. Use the following formula to calculate the percentage difference between acute/convalescent specimens: To interpret the differences observed between acute/convalescent paired sera, use the table below: Interpretation of Differences for Acute / Convalescent Serum Pairs | Percent Difference | Equivalent Difference | |--------------------|-----------------------| | (Index Value) | (Antibody Level) | | <63 | < 2 - fold | | ≥ 63 ≥ 87 | 2 - fold | | >87 < 126 | 2 - fold | | ≥126 ≤174 | >2 – fold < 4 - fold | | >174 | > 4 - fold | Specimens which yield absorbance values above the range of the test set calibrator(s), may be reported as greater than the Index value of the uppermost point of the calibration curve. Alternatively, such specimens may be pre-diluted in the test set Diluent and reassayed. The resulting Index value must be multiplied by the dilution factor for reporting. Example: If the specimen has been pre-diluted 1:5 before testing, the resulting Index value should be multiplied by 5. Values obtained with different manufacturer's assay methods may not be used interchangeably. The magnitude of the reported IgG level cannot be correlated to an endpoint titer. When the assay is used qualitatively, the magnitude of results above the cut-off is not an indicator of total antibody present. # 15.0 LIMITATIONS OF THE PROCEDURE The results obtained with the Measles IgG EIA test serve only as an aid to diagnosis and should not be interpreted as diagnostic in themselves. A single positive result only indicates previous immunologic exposure; the level of antibody response or class of antibody response may not be used to determine active infection or disease stage. Paired specimens should be collected during the acute and convalescent stages of infection, and tested concurrently to detect significant antibody increases. The acute phase sample should be collected early in the infection, preferably within 7 days of the onset of symptoms, and the convalescent phase sample one to two weeks after the first sample, but not earlier than 10 days after the onset of symptoms. The semiquantitative procedure should be used when testing paired sera. Serum specimens obtained during the acute phase of infection may be negative by serological tests. Timing of specimen collection for paired sera may be critical. In some patients, antibody titers may rise to significant levels and fall to lower or undetectable levels within a month. Other patients may not develop significant antibody levels. Culture results, serology and antigen detection methods should all be appropriately used along with clinical findings for diagnosis. ASI, Springville, UT 84663 Page 5 of 8 | Subject/Title: | | Doc#: | |--------------------------|----------------------------------------|------------------------| | ASI ME | 850096AG | | | Effective Date: 10/26/17 | Supersedes Revision/Date: 02/18/16 (1) | Revision: 10/26/17 (2) | The assay performance characteristics have not been established for matrices other than serum. The assay performance characteristics of vaccinees have not been established. If the assay is used with cord blood as the specimen source, positive results should be interpreted with caution. The presence of IgG antibodies to Measles in cord blood may be the result of passive transfer of maternal antibody to the fetus. A negative result however, may be helpful in ruling out infection. Performance characteristics have not been determined with neonatal or cord blood. The performance characteristics of the Measles IgG EIA test with specimens obtained from immunosuppressed individuals, have not been established. Titration experiments (please see Figure 2) have shown that the upper limit of linearity for Measles IgG EIA Index values is approximately 3. #### 16.0 EXPECTED VALUES The incidence of antibodies to measles virus may vary according to patient age and geographical location. Measles is predominantly a disease of childhood which occurs in epidemics during the winter and spring, in rural areas, and is more or less endemic in urban areas. Epidemics occur in 2 to 3 year cycles in more highly developed countries, as sufficient numbers of non-immune children arise in the population. In the United States the highest incidence of measles infection is in children 5 to 7 years of age. Circulating antibodies are detected 10 to 14 days post infection, i.e. after the appearance of the rash, and they persist for life. Serum samples obtained randomly from 73 normal adult South Florida blood donors (59 % male and 41% female) were assayed at Laboratory C (Miami, FL) using the Measles IgG EIA test. Sixty-eight samples (93.2 %) were positive for IgG antibodies to Measles, two (2.7 %) were equivocal, and three (4.1%) were negative. The positive samples yielded Index values between 1.1 and 3.8. The mean Index value was 2.3. The incidence of these values is shown in table 1. Table 1. Results of tests of 73 Random Specimens (100% frozen), from Normal Adult South Florida Donors, Performed at Laboratory C (Miami, FL), Using the Measles IgG EIATest. | Index Value Ranges | | Specimens | |--------------------|----|-----------| | < 1.1 | 5 | 6.8% | | ≥1.1 to < 2 | 13 | 17.8% | | ≥2 to < 3 | 15 | 20.5% | | ≥3 to ≥ 3.5 | 13 | 17.8% | | >3.5 | 27 | 37.1% | #### 17.0 PERFORMANCE CHARACTERISTICS ### **Comparative Testing** Measles IgG EIA test results correlate well with results of other serological tests. Sera from normal blood donors were assayed for the presence of Measles IgG antibodies, using the Measles IgG EIA test and two other commercial EIA tests, at two independent laboratories (Lab A, Miami, FL, and Lab B, W. Columbia, SC), and at Laboratory C (Miami, FL). These results are shown below in Tables 2, 3 and 4, respectively. Table 2. Results of Tests of 150 Specimens (79.4% frozen and 20.6% fresh), from South Florida, Performed at Laboratory A (Miami, FL), Using the Measles IgG EIA Test and Another Commercial EIA Test. | Comparative | M | easles IgG El | Α | | | |-------------|---------------|---------------|----------|-----------------------|---------------| | Test #1 | Positive | Equivocal | Negative | 95%CI | | | Positive | 130 | 5 | 1 | Relative sensitivity* | 95.8 to 100** | | Equivocal | 1 | 0 | 4 | | | | Negative | 0 | 0 | 9 | Relative specificity | 66.4 to 100** | | * E> | cluding equi | vocal results | | Overall Agreement* | 96.1 to 100** | | ** Calc | ulated by the | Exact Metho | d. | | | Table 3. Results of tests of 160 Specimens (5.6% frozen and 94.4% fresh), Performed at Laboratory B (W. Columbia, SC), Using the Measles IgG EIA Test and Another Commercial EIA Test. | Comparative | | Measles Ig | G EIA | | | |-------------|-------------------------------------|---------------|-------|-----------------------|-----------------| | Test #2 | Test #2 Positive Equivocal Negative | | | 95% C | CI | | Positive | 117 | 2 | 0 | Relative sensitivity* | 96.9 to 100** | | Equivocal | 4 | 0 | 2 | | | | Negative | 11 | 4 | 11 | Relative specificity* | 29.1 to 70.9*** | | * | Excluding 6 | equivocal res | ults | Overall Agreement* | 87.6 to 96.6*** | ^{**} Calculated by the Exact Method. ^{***} Calculated by the Normal Method. ASI, Springville, UT 84663 Page 6 of 8 | Subject/Title: | | Doc#: | |--------------------------|----------------------------------------|------------------------| | ASI ME | 850096AG | | | Effective Date: 10/26/17 | Supersedes Revision/Date: 02/18/16 (1) | Revision: 10/26/17 (2) | Table 4. Results of tests of 89 Specimens (100% frozen), from South Florida, Performed at Laboratory C (Miami, FL), Using the Measles IgG EIA Test and Another Commercial EIATest. | Comparative | Measles | IgG EIA | | | | |------------------------------------|-------------|-----------|----------|-----------------------|---------------| | Test #1 | Positive | Equivocal | Negative | | 95%CI | | Positive | 67 | 0 | 0 | Relative sensitivity | 94.6 to 100** | | Equivocal | 1 | 1 | 0 | | | | Negative | 0 | 1 | 19 | Relative specificity* | 82.4 to 100** | | * Excluding ed | quivocal re | sults | | Overall Agreement* | 95.8 to 100** | | ** Calculated by the Exact Method. | | | | | | Figure 1. Results of Tests of 89 Serum Specimens Performed at Laboratory C, Miami, FL, Using the Measles IgG EIA Test and Another Commercial EIA Test. ## Titration curve Several strongly positive serum specimens were serially diluted (two-fold) in triplicate, and assayed by the Measles IgG EIA test. Typical results are shown in Figure 2. Figure 2. Titration Curve for a Strongly Positive Specimen. The triplicate data for each dilution are shown as points, the 95 % confidence limits for each set of triplicate data are indicated by (x's), and the 95 % confidence limits for the slopes and y-intercepts are represented by straight lines. The formula for the linear regression for the triplicate data is shown in Figure 2. ## Specificity The Measles IgG EIA test is specific for IgG antibodies directed against measles virus, and does not cross-react with the herpes viruses. Of five specimens which were unreactive in the Measles IgG EIA test, 5 were shown to contain moderate to high levels of IgG antibody directed against cytomegalovirus, 2 against herpes simplex virus, and 5 against Epstein-Barr virus. The IgG antibodies directed against cytomegalovirus, herpes simplex virus, and Epstein-Barr virus were detected using commercially available enzyme immunoassays. #### <u>Precision</u> Eight serum specimens (2 negative and 6 positive) and the Measles IgG EIA Positive and Negative Controls, were assayed in triplicate, on three separate occasions. The precision experiments were performed manually at two independent laboratories (Lab A and Lab B), and at Laboratory C. These results are shown below in tables 5 through 8, respectively. ASI, Springville, UT 84663 Page 7 of 8 | Subject/Title: | | Doc#: | |-----------------------------------------------------------------|----------|------------------------| | ASI N | 850096AG | | | Effective Date: 10/26/17 Supersedes Revision/Date: 02/18/16 (1) | | Revision: 10/26/17 (2) | Table 5. Results of Intra-assay and Interassay Precision Tests Performed at Lab A. Values were calculated from the Measles IgG EIA Index values. | | INTRA-ASSAY | | | INTERASSAY | | | |--------------|-------------|-------|--------|------------|-------|-------| | SAMPLE | MEAN | S.D. | C.V. % | MEAN | S.D. | C.V.% | | | INDEX | | | INDEX | | | | Pos. Control | 1.6 | 0.153 | 9.4 | 1.7 | 0.122 | 7.3 | | Neg. Control | 0.3 | 0.058 | NA | 0.3 | 0.000 | NA | | 1 | 0.1 | 0.000 | NA | 0.1 | 0.044 | NA | | 2 | 0.1 | 0.000 | NA | 0.1 | 0.053 | NA | | 3 | 3.9 | 0.173 | 4.4 | 3.8 | 0.173 | 4.5 | | 4 | 1.1 | 0.058 | 5.4 | 1.1 | 0.083 | 7.7 | | 5 | 1.0 | 0.058 | 5.6 | 1.1 | 0.088 | 8.4 | | 6 | 1.5 | 0.058 | 3.8 | 1.5 | 0.257 | 17.3 | | 7 | 2.3 | 0.170 | 7.5 | 2.3 | 0.240 | 10.6 | | 8 | 3.4 | 0.150 | 4.5 | 3.2 | 0.170 | 5.1 | Table 6. Results of Intra-assay and Interassay Precision Tests Performed at Lab B. Values were calculated from the Measles IgG EIA Index values. | | | INTRA-ASSA | λY | I | NTERASSAY | | |--------------|-------|------------|--------|-------|-----------|-------| | SAMPLE | MEAN | S.D. | C.V. % | MEAN | S.D. | C.V.% | | | INDEX | | | INDEX | | | | Pos. Control | 1.7 | 0.056 | 3.2 | 1.6 | 0.091 | 5.5 | | Neg. Control | 0.2 | 0.034 | NA | 0.2 | 0.000 | NA | | 1 | 0.1 | 0.016 | NA | 0.1 | 0.024 | NA | | 2 | 0.1 | 0.000 | NA | 0.1 | 0.026 | NA | | 3 | 3.0 | 0.058 | 1.9 | 3.1 | 0.132 | 4.3 | | 4 | 1.2 | 0.058 | 4.9 | 1.0 | 0.115 | 11.2 | | 5 | 1.7 | 0.000 | 0.0 | 1.6 | 0.163 | 10.5 | | 6 | 2.0 | 0.085 | 4.2 | 1.7 | 0.310 | 17.7 | | 7 | 1.9 | 0.050 | 2.6 | 1.6 | 0.190 | 11.5 | | 8 | 2.7 | 0.120 | 4.3 | 2.5 | 0.190 | 7.7 | Table 7. Results of Intra-assay and Interassay Precision Tests Performed at Lab C. Values were calculated from the Measles IgG EIA Index values. | | | INTRA-ASSA | ΑY | ı | NTERASSAY | | |--------------|-------|------------|--------|-------|-----------|-------| | SAMPLE | MEAN | S.D. | C.V. % | MEAN | S.D. | C.V.% | | | INDEX | | | INDEX | | | | Pos. Control | 1.8 | 0.115 | 6.5 | 1.6 | 0.142 | 8.7 | | Neg. Control | 0.2 | 0.000 | NA | 0.2 | 0.000 | NA | | 1 | 0.0 | 0.000 | NA | 0.0 | 0.000 | NA | | 2 | 0.0 | 0.000 | NA | 0.0 | 0.000 | NA | | 3 | 3.6 | 0.100 | 2.8 | 3.2 | 0.359 | 11.2 | | 4 | 1.2 | 0.058 | 4.9 | 1.1 | 0.105 | 9.5 | | 5 | 1.9 | 0.058 | 3.0 | 1.8 | 0.179 | 10.1 | | 6 | 2.2 | 0.058 | 2.6 | 2.1 | 0.188 | 9.1 | | 7 | 2.3 | 0.060 | 2.5 | 2.2 | 0.210 | 9.6 | | 8 | 3.4 | 0.150 | 4.5 | 3.0 | 0.330 | 11.0 | ASI, Springville, UT 84663 Page 8 of 8 | Subject/Title: | | Doc#: | |--------------------------|----------------------------------------|------------------------| | ASI ME | 850096AG | | | Effective Date: 10/26/17 | Supersedes Revision/Date: 02/18/16 (1) | Revision: 10/26/17 (2) | Table 8. Interlaboratory Precision. Tests Were Performed at Lab A, Lab B and Lab C. Values were calculated from the Measles IgG EIA Index values. | | INDEXES | | | |------------------|---------|-------|--------| | SAMPLE | MEAN | S.D | C.V. % | | Low Pos. Control | 1.6 | 0.142 | 8.7 | | Neg. Control | 0.2 | 0.000 | NA | | 1 | 0.1 | 0.000 | NA | | 2 | 0.1 | 0.000 | NA | | 3 | 3.4 | 0.359 | 11.2 | | 4 | 1.1 | 0.101 | 9.5 | | 5 | 1.5 | 0.143 | 9.6 | | 6 | 1.8 | 0.252 | 14.2 | | 7 | 2.0 | 0.213 | 10.5 | | 8 | 2.9 | 0.230 | 7.9 | # 18.0 REFERENCES - 1. Schuurs, R.C. Van Weeman, B.K., Enzyme-Immunoassay, Clin. Chem. Acta, 81: 1-40,1977. - Carter, M.J. and Meulen, V., Measles, in Principles and Practice of Clinical Virology, Zuckerman, A.J., Banatvala, J.E. and Pattison, J.R., eds., John Wiley and Sons, Ltd., 1987. - 3. Hutchins, S.S., Unpublished paper presented at the American Public Health Association, 1988. - 4. Snyder, R.C., Gaskins, S.E., and Pieroni, R.E., Amer. Fam. Phys., 137: 175-178, 1988. - 5. Neuman, P.W., et al, Comparison of Measles Anti-hemolysin Test, Enzyme-linked Immunosorbent Assay, and Hemagglutination- inhibition Test with Neutralization Test, for Determination of Immune Status. J. Clin. Micro., 22: 296-298, # **19.0 TECHNICAL INFORMATION**: (801) 489-8911 or (800) 654-0146 | | Manufactured for:
Arlington Scientific, Inc. 1840
N Technology Drive,
Springville, UT 84663 (USA) | EC REP | JB Morphet Ltd.
34 Ashdale
Road Kesgrave
Suffolk IP5 2PA
United
Kingdom | |------|--|-------------|--| | LOT | LotNo. | \boxtimes | Expiration Date | | Σ 96 | 96 Tests | REF | Catalog No. | | IVD | <i>In vitro</i> diagnostic use only | | Temperature Limitations |