

ENGINEERING

Te Herenga Mātai Pūkaha

Near real-time building impact tool

Amin Ghasemi, PhD candidate Max T. Stephens, Lecturer

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa

Earthquake Losses

Te Herenga Mātai Pūkaha

Recent events have resulted in large economic losses and disruption

rter

Kaikōura Earthquake - M7.8 > 200km from Wellington, New Zealand

10% of commercial space in CBD was closed, 20 demolitions

NEW ZEALAND (/NEWS/NATIONAL) / KAIKŌURA EARTHQUAKE (/NEWS/KAIKOURA-EARTHQUAKE)

New round of earthquake checks ordered for 80 Wellington buildings

8:10 am on 20 December 2016

Anne Gibson

Property editor of the NZ Herald

Revealed: 16 Wellington blocks shut by quake

Wednesday, 07 December 2016

The Dew Zealand Herald

Wellington Reading Cinemas carpark building 'likely to collapse' in large aftershock

By Susan Strongman in Wellington, NZME

Cordons

Indicator building concept

Te Herenga Mātai Pūkaha

Typologically representative buildings that can be used to evaluate the response at a community scale

Workflow

ENGINEERING

Te Herenga Mātai Pūkaha

Building database

Wellington Building Inventory

- ~800 five+ storey buildings in CBD
- Building information:
 - Structural parameters
 - Site characteristics (soil type, strong motion station)
 - Code of seismic design

Categorical Data

ENGINEERING

- Importance level (IL)
- Strong motion station (SMS)
- Soil type (ST)
- Lateral system (LS)
- Floor system (FS)
- Note: low proportion for some variables

Numerical Data

ENGINEERING

Te Herenga Mātai Pūkaha

- Year
- Height
- Period (code based)

Notes:

- Linear correlation between height and period
- No tall buildings before 1950

Te Herenga Mātai Pūkaha

Clustering and indicator building selection

Autoencoder Neural Network

Te Herenga Mātai Pūkaha

Extracts 2D numerical subspace from original database

 Preserves information in compressed numerical form in latent space

Clustering Results

ENGINEERING

Clustering Results

Te Herenga Mātai Pūkaha

Looking at the clustering results from an 'engineering' perspective

Clustering Results

Te Herenga Mātai Pūkaha

K-means on latent space most effective for both numerical and categorical data

Indicator Buildings

ENGINEERING

Dominant range and values					Representative buildings				C5 vulnerability	
Cluster	Year	Height (m)	LS	FS	Year	Height (m)	LS	FS	category	
1	[1962-1965]	[25-30]	CW (61%)	S&B (70%)	1963	32	CW&CMF	S&B	Prior to 1970s	
	[1926-1930]	[19-24] [29-34]	CW (44%) CMF (30%)	- S&B (65%)	1926	23	CW	S&B	Prior to 1970s	
2					1927	28	CMF	S&B	Prior to 1970s	
	[1985-1988]	[28-34]	CW (50%) CMF (39%)	PH (40%)	1986	34	CMF	PH	Precast floors after 1980	
3					1986	32	CW	РН	Precast floors after 1980 Non-ductile columns 1982-85	
4	[1982-1987]	[76-86]	CW (34%) CMF (30%) CoW (25%)	S&B (52%) PH (30%)	1972	88	CoW	PH	Precast floors after 1980	
					1984	92	CMF	S&B	Non-ductile columns 1982-85	
5	[1981-1987]	[59-65]	CW (53%) CMF (30%)	PH (36%) S&B (34%)	1981	56	CW	S&B	Shear walls in 1970s and 80s	
					1985	64	CMF	PH	Precast floors after 1980	

Te Herenga Mātai Pūkaha

Model development

Nonlinear models

UNIVERSITY OF AUCKLAND
Waipapa Taumata Rau
NEW ZEALAND
ENGINEERING

Te Herenga Mātai Pūkaha

Indicator buildings modelled using macro approach

Supplementary models

Te Herenga Mātai Pūkaha

Four elastic models developed for each cluster

ENGINEERING

Te Herenga Mātai Pūkaha

Spectral shape correction

Spectral shape correction

ENGINEERING

Te Herenga Mātai Pūkaha

- Seismic demand varies based on period
- Variation is a function of building period
- Regression models investigated to generate correction

...this is a work in progress

ENGINEERING

Te Herenga Mātai Pūkaha

Regional response estimation

Drift estimation – shake city

Te Herenga Mātai Pūkaha

- Building level 'shake maps' can be developed
- Can be used for scenario planning or NRIT following event
- Note: Shake city is Wellington buildings assigned to footprints in fictional city

Kaikōura EQ

Kobe EQ

Te Herenga Mātai Pūkaha

Drift estimates compared to damaged observed following Kaikoura

Building Information				Damage Observa	ation	Response and Damage Estimation			
Number	Stories	Year	Cluster	Observations	Damage cat.	Drift est., %	Damage State	Acceptable	
I	12	1969	8	Closed for assessment	Local	1.33	Slight	Yes	
II	10	1985	4	Undisclosed structural damage	Significantly	2.68	Moderate	Yes	
III	17	2006	7	Cracking in stairwells	Local	1.62	None	Yes	
IV	6	2007	4	Minor structural - extreme non-structural damage.	Significantly	1.54	Slight	No^1	
V	6	1989	4	No structural damage	Local	2.7	Moderate	No	
VI	8	1979	7	Minor structural damage	Local	1.38	None	Yes	
VII	8	2004	5	No structural damage	No identified	0.55	None	Yes	
VIII	23	1987	6	Possible structural /Non- structural damage	Distributed	1.28	Moderate	Yes	
IX	8	1954	1	Non-structural damage	No identified	0.55	None	Yes	
X	11	1985	7	Cordon	No identified	0.62	None	Yes	
XI	8	1986	5	Cordon	No identified	1.24	None	Yes	
XII	15	1986	7	Cordon	No identified	1.54	None	Yes	
XIII	7	1986	5	Possible structural /Non- structural damage	Local	1.84	Moderate	Yes	
XIV	8	1986	5	Severe structural damage	Significantly	2.58	Moderate	Yes	
xv	10	1987	4	Possible structural /Non- structural damage	Distributed	1.12	Slight	Yes	
XVI	5	2004	4	Structural damage	Significantly	2.48	Moderate	Yes	
XVII	3	1993	5	Cracking in stairwells	No identified	1.19	Slight	Yes	

Ongoing work / research needs

ENGINEERING

Te Herenga Mātai Pūkaha

- Adding data to Wellington building database
- Spectral shape correction techniques
- Extending models to include SSI

• We need to instrument more buildings!!!

ENGINEERING

Te Herenga Mātai Pūkaha

Thank you

max.stephens@auckland.ac.nz

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa

