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A B S T R A C T

Virtual reality (VR) is predicted to create a paradigm shift in education and training, but there is little empirical
evidence of its educational value. The main objectives of this study were to determine the consequences of
adding immersive VR to virtual learning simulations, and to investigate whether the principles of multimedia
learning generalize to immersive VR. Furthermore, electroencephalogram (EEG) was used to obtain a direct
measure of cognitive processing during learning. A sample of 52 university students participated in a 2×2
experimental cross-panel design wherein students learned from a science simulation via a desktop display (PC)
or a head-mounted display (VR); and the simulations contained on-screen text or on-screen text with narration.
Across both text versions, students reported being more present in the VR condition (d=1.30); but they learned
less (d=0.80), and had significantly higher cognitive load based on the EEG measure (d=0.59). In spite of its
motivating properties (as reflected in presence ratings), learning science in VR may overload and distract the
learner (as reflected in EEG measures of cognitive load), resulting in less opportunity to build learning outcomes
(as reflected in poorer learning outcome test performance).

1. Introduction

1.1. Objective and rationale

Recently, there has been a surge in attention and hype surrounding
immersive Virtual Reality (VR), and how it is predicted to create a
paradigm shift in several fields including entertainment, gaming, and
education (e.g., Belini et al., 2016; Blascovich & Bailenson, 2011;
Greenlight & Roadtovr, 2016). This excitement is partly driven by high-
volume business analyses, popular reports, and heavy investment by
some of the biggest technology companies like Google, Apple, Face-
book, Microsoft, and Samsung. As a consequence, many companies and
educational institutions are investing significant resources in adapting
standard educational tools that have traditionally been used on a
desktop computer to immersive VR involving head-mounted displays,
with the expectation that a higher level of immersion will increase
student motivation and learning (Bodekaer, 2016). With little existing
research evidence available to either support or contradict this as-
sumption, instructional design decisions are often made based on
practical or economic considerations rather than evidence-based argu-
ments because there is limited research available in this rapidly de-
veloping field.

The main objective of this study is to assess the influence of the role
of immersive technologies on learning outcomes (i.e. how media in-
fluences learning). In other words we explore how porting a learning
simulation designed for a low-immersive environment to a highly-im-
mersive environment influences subjective and objective learning out-
comes. A secondary objective is to investigate whether the principles of
multimedia learning (Mayer, 2009) generalize to immersive VR. These
research questions are highly relevant because most large scale VR
learning implementations are currently taking a technology-rather than
a learner-centered approach which has historically lead to limited im-
pact of technology in educational practice (Cuban, 1986). A final ob-
jective is to use cognitive neuroscience methodologies to obtain a direct
measure of cognitive processing during learning. This is in line with a
report by the National Research Council that highlights “the need to
examine the mediating processes within the individual that influence
science learning with simulations and games with the aim to illuminate
what happens within the individual—both emotionally and cognitive-
ly—that leads to learning and what design features appear to activate
these responses” (NRC, 2011 p. 122). Many instructional design studies
investigate posttest results, or indirectly assess the cognitive processing
during learning through self-report measures. In line with recent re-
search that has used cognitive neuroscience to measure overload (e.g.,
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Antonenko, Paas, Grabner, & Van Gog, 2010; Gerjets, Walter,
Rosenstiel, Bogdan, & Zander, 2014; Mills et al., 2017) we investigate
cognitive processing during learning directly with electro-
encephalogram (EEG) to get a better understanding of how immersion
affects the learning process in this study.

A distinction between low immersion (also referred to as desktop
VR) and high immersion VR (generally involving a head-mounted dis-
play) is typically made in the literature (Lee & Wong, 2014; Limniou,
Roberts, & Papadopoulos, 2007). In desktop VR, the virtual reality
environment (VRE) is displayed on a conventional PC monitor with
sound coming through speakers and the interaction is controlled
through a regular computer mouse. This is the type of VR that is gen-
erally referenced in literature reviews on VR, and is regarded as a low-
immersion medium (e.g., Merchant, Goetz, Cifuentes, Kenney-
Kennicutt, & Davis, 2014; Moreno & Mayer, 2002; NRC, 2011). The
second type of VR is often refered to as high-immersion VR, and is
characterised by using a head-mounted-display in which a high gra-
phical fidelity screen is mounted in front of one's eyes with separate
lenses for each eye and with sound delivered through earphones. The
interaction in this type of VR is controlled through head-motion
tracking in conjunction with a computer system, so when users move
their heads to look around they correspondingly move their field of
view inside of the virtual 360-degree environment (Moreno & Mayer,
2002). The present study examines the effects of moving a science si-
mulation from learning in a low-immersion VR (also referred to as PC
condition in this study) environment to a high-immersion VR en-
vironment (also referred to as VR condition in this study).

1.2. Virtual learning simulations

The use of science labs has a long history in science education
dating back decades, so it is reasonable that the advances in computer-
based learning would include the development of computer-based si-
mulations of science labs and learning experiences (Honey & Hilton,
2011; Klopfer, 2008; Slotta & Linn, 2009). Computer-based simulations
for science learning can be used to promote procedural knowledge for
carrying out lab procedures as well as conceptual knowledge for un-
derstanding and explaining the demonstration, but research on the in-
structional effectiveness of simulated science environments is needed
(Honey & Hilton, 2011).

An important issue for the broader field of learning and instruction
concerns whether the motivational benefits of simulated labs can be
enhanced with virtual reality in a way that promotes learning. In par-
ticular, a field where the value of immersive VR may be specifically
relevant is in designing virtual learning simulations. Virtual learning
simulations are designed to replace or amplify real-world learning en-
vironments by allowing users to manipulate objects and parameters in a
virtual environment. This has the advantage of allowing students to
observe otherwise unobservable phenomena, reduce the time demand
of experiments, and provide adaptive guidance in a virtual world that
provides a high sense of physical, environmental, and social presence
(De Jong, Linn, & Zacharia, 2013; De Jong, 2017; Makransky, Lilleholt,
& Aaby, 2017). Some empirical studies and meta-analyses have shown
that low-immersion simulations result in better cognitive outcomes and
attitudes toward learning than more traditional teaching methods (e.g.,
Bayraktar, 2001; Bonde et al., 2014; Clark, Tanner-Smith, &
Killingsworth, 2016; Merchant et al., 2014; Rutten, van Joolingen &
van der Veen, 2012; Sitzmann, 2011; Vogel et al., 2006). There is also
research supporting the motivational value of low-immersion VR si-
mulations (e.g., Makransky, Thisgaard, & Gadegaard, 2016; Makransky,
Bonde, et al., 2016; Thisgaard & Makransky, 2017).

There is less research investigating whether high-immersion VR
technology increases cognitive and motivational outcomes as compared
to low-immersion VR. One study by Moreno and Mayer (2002) in-
vestigated the role of method and media by introducing multimedia
learning material based on different learning principles from the

cognitive theory of multimedia learning (CTML; Mayer, 2014) in
desktop VR, immersive VR while sitting, and immersive VR while
walking. They found a method effect based on the redundancy principle
of multimedia learning (Mayer, 2009), but the media did not affect
performance on measures of retention, transfer, or program ratings.
Similarly, Richards and Taylor (2015) compared the knowledge of
students after a traditional classroom lecture about a biological prin-
ciple known as Marginal Value Theorem with their knowledge after
they were exposed to simulations of two- and three-dimensional
models. They found that the two-dimensional model worked better than
the three-dimensional model, presumably due to additional cognitive
load imposed by the three-dimensional model. In contrast, other studies
have found positive results favoring high-immersion VRE's (e.g.,
Alhalabi, 2016; Passig, Tzuriel, & Eshel-Kedmi, 2016; Webster, 2016).
Therefore, there is limited and inconclusive research investigating
whether the added immersion offered by high-immersion VREs leads to
higher levels of presence, and ultimately better learning and transfer
outcomes; and little is known about how different levels of immersion
affect cognitive load and ultimately learning and transfer outcomes.
This type of research is specifically relevant for highly realistic educa-
tional material such as virtual learning simulations.

1.3. Theoretical background

What is the theoretical basis for predicting that more highly im-
mersive VREs would lead to better or worse learning outcomes? Similar
to cognitive load theory (CLT, Sweller, Ayres, & Kalyuga, 2011), the
CTML (Mayer, 2009) suggests that there are three types of cognitive
processing that can occur during multimedia instruction: extraneous
processing–cognitive processing that does not support the instructional
goal, caused by poor instructional design or distractions during
learning; essential processing–cognitive processing required to mentally
represent the essential material, caused by the complexity of the ma-
terial for the learner; and generative processing–cognitive processing
aimed at making sense of the material, caused by the learner's moti-
vation to exert effort. Given that processing capacity is limited, if a
learner engages is excessive amounts of extraneous processing, there
will not be sufficient capacity available for essential and generative
processing (which cause meaningful learning outcomes). Thus one goal
of instructional design is to reduce extraneous processing, because to
the extent that the perceptual realism of high immersion causes extra-
neous processing, such environments will diminish learning. On the
other hand another goal of instructional design is to foster generative
processing, because to the extent that highly immersive environments
motivate learners to process the material more deeply, they will in-
crease learning.

From one perspective the theories suggest that immersive VREs
could foster generative processing by providing a more realistic ex-
perience which would result in a higher sense of presence (Slater &
Wilbur, 1997). This would cause the learner to put in more effort and to
actively engage in cognitive processing in order to construct a coherent
mental representation of the material and the experience, which would
lead to learning outcomes that are better able to support problem-sol-
ving transfer. This expectation is consistent with interest theories of
learning such as initially offered by Dewey (1913), who believed that
students learn through practical experience in ecological situations and
tasks by actively interacting with the environment. The expectation the
increased immersion can lead to learning may be specifically relevant
for VR because the sense of presence experienced by the user can have a
very powerful emotional impact (Milk, 2015). Models by Salzman,
Dede, Loftin, and Chen (1999) and Lee, Wong, and Fung (2010) also
suggest that immersive environments create a stronger sense of pre-
sence, which leads to higher engagement and motivation and a deeper
cognitive processing of educational material. Therefore, based on these
motivational arguments, it would be expected that immersive VR would
provide a higher level of presence and generative cognitive processing
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which should lead to higher levels of learning and transfer.
An alternative line of reasoning which is also based on the CTML

and CLT suggests that any stimuli not absolutely necessary to under-
standing what needs to be learned is redundant and may decrease
learning. These theories suggest that any material that is not related to
the instructional goal should be eliminated in order to eliminate ex-
traneous processing (Moreno & Mayer, 2002). Therefore, immersive VR
could simply be triggering situational interest through the process of
taking a boring topic and spicing it up in an attempt to make it inter-
esting. This is just the first step in promoting academic achievement,
and by itself may not foster deep learning. Situational interest can but
does not always develop into later phases involving individual interest
development which have been found to promote positive long term
educational outcomes (Renninger & Hidi, 2016). Alternatively, added
immersion could be categorized as a seductive detail (i.e., interesting
but irrelevant material) which could distract students by priming the
wrong schema (e.g., Harp & Mayer, 1997). Immersive environments
that offer a high level of presence can interfere with reflection during
learning (Norman, 1993), because these seductive details create ex-
traneous processing that can distract the learner's process of building a
cause-and-effect schema based on the material.

Van Der Heijden (2004) provides a complementary perspective on
why highly immersive environments might not result in higher learning
and transfer outcomes. This theory proposes that information systems
can be perceived as either hedonic or utilitarian (Van Der Heijden,
2004). While utilitarian systems provide instrumental value (e.g., pro-
ductivity and increased task or learning performance), hedonic systems
provide self-fulfilling value (e.g., fun or pleasurable experiences; Van
Der Heijden, 2004). The distinction between utilitarian and hedonic
systems is not always clear (Van Der Heijden, 2004), which can lead
students who use immersive VREs to treat them as hedonic systems.
This could lead them to disregard the instrumental value and con-
centrate on the entertainment value of the system, resulting in them
focusing their cognitive effort on irelevant material that is not part of
the instructional goal of the lesson. Therefore, these theoretical per-
spectives suggest that the increased immersion in VREs would lead to
higher levels of extaneous cognitive load and lower learning and
transfer. They also suggest that directly and simply porting a simulation
designed for desktop environments to a VRE could in itself either hinder
or facilitate learning.

1.4. Does the level of immersion impact the redundancy principle?

A secondary issue related to the level of immersion in VREs is
whether multimedia design principles apply in low and high immersion
VR environments. That is, does media affect method, or do the learning
principles that were originally developed for less immersive multimedia
environments generalize to highly immerse interactive environments
like VR? Investigating whether media affects method is important be-
cause there is limited research examining learning principles within
simulations and VR, and thus few evidence based guidelines for de-
loping learning content in highly immersive environments. The re-
dundancy principle has previously been investigated in VR contexts
(Moreno & Mayer, 2007). The redundancy principle is that people learn
better from graphics or illustrations and narration than from graphics,
narration, and redundant on-screen text (Mayer, 2009). Adding a re-
dundant form of the verbal material can create extraneous overload,
which has a negative effect on learning. This effect occurs when iden-
tical information is presented to learners in two or more different forms
or media simultaneously; or when redundant material in general is
presented and selected for processing (Kalyuga & Sweller, 2014). For
instance, having identical and concurrent written and spoken text
(through narration) was demonstrated to be redundant, and was shown
to interfere with learning (Kalyuga, Chandler, & Sweller, 1999). Even if
the identical information is presented concurrently across both mod-
alities, it will still cause a redundancy effect because it then requires

unnecessary co-referencing between the two channels; and if it's a
question of identical on-screen text and narrated text, then they are
both processed in the phonological channel even though they are pre-
sented across different sensory modalities.

The redundancy principle is consistent with the interference theory,
which dates back to Dewey's warning (1913) against regarding extra
embellishments that can be added to an otherwise boring lesson to try
to motivate the students as increasing their interest level, since this
extra material will need to be processed, which will in turn interfere
with essential processing. This is in contrast to general arousal theory
which advocates adding entertaining additions to make learning more
interesting and enjoyable, resulting in higher levels of attention (Mayer,
Heiser, & Lonn, 2001; Moreno & Mayer, 2002). Moreno and Mayer
(2000) found that adding extraneous music or sounds to a desktop VR
system hurts students' understanding of a multimedia explanation. They
argue that this shows that adding what they refer to as “bells and
whistles” can hurt the sense-making process in the same way as re-
dundant on-screen text can (Moreno & Mayer, 2000). Based on this, it is
possible that the redundancy principle from the CTML applies differ-
ently across different media, such that the redundancy principle might
apply differently with immersive vs. low-immersive VR.

1.5. Main research questions and predictions

In the current study we investigate two main research questions.
The first investigates whether a higher level of immersion in the VR
learning simulations leads to higher levels of student learning, self-re-
port ratings, and brain-based measures of overload. If increased im-
mersion serves to increase extraneous processing, we predict that it will
lead to less learning as measured by tests of learning outcome and more
overload as measured by EEG. If increased immersion serves to foster
generative processing, we predict that it will lead to more learning as
measured by tests of learning outcome and appropriate levels of brain
activity as measured by EEG.

The second research question is to determine if the redundancy
principle of multimedia learning is present in low and high-immersion
VREs. Here we investigate the consequences of adding narration to a
science lab simulation that presents words as printed text, particularly
on the same outcomes of self-report ratings, student learning, and
brain-based measures of overload. If the redundancy principle applies,
we predict that students will learn better when the simulation includes
text only rather than text and concurrent narration in the PC and VR
conditions.

2. Method

2.1. Participants and design

The participants were 52 (22 males and 30 females) students from a
large European university with ages ranging from 19 to 42 (M=23.8
years, SD = 4.5). The experiment employed a 2 × 2 mixed design, in
which participants learned from two simulation lessons. The first factor
was a between subjects factor, in which 28 participants were randomly
assigned to receive two versions of a simulation lesson that had on-
screen text (T condition); and 24 participants were randomly assigned
to receive two versions of a simulation that had both text and corre-
sponding narration (T + N condition). The second factor was a within
subjects factor wherein the students were administered the head-
mounted display VR version of the simulation (immersive VR condi-
tion) followed by the desktop VR version of the simulation (PC condi-
tion), or vice versa. The order of the two versions of the simulation was
counterbalanced, with half the participants in each group receiving the
immersive VR condition first, and half receiving the PC condition first.
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2.2. Materials

The materials used in the study included four different versions of a
virtual laboratory simulation, participant questionnaire, knowledge
test, transfer test, and self-report survey designed to measure presence,
learning beliefs, and satisfaction. All versions of the simulation were in
English, but the surveys and posttests were in Danish.

2.2.1. Virtual lab simulation
The virtual simulation used in this experiment was on the topic of

mammalian transient protein expression and was developed by the si-
mulation development company, Labster. It was designed to facilitate
learning within the field of biology at a university level by allowing the
user to virtually work through the procedures in a lab by using and
interacting with the relevant lab equipment and by teaching the es-
sential content through an inquiry-based learning approach (Bonde
et al., 2014; Makransky, Bonde et al., 2016). The main learning goal for
the simulation is to develop an understanding of mammalian transient
protein expression. In the simulation the student experiences using
techniques such as cell culturing, cell transfection, and protein ex-
pression.

Labster supplied four versions of this simulation with identical in-
structional design and method for each version: PC with text, PC with
text and narration, immersive VR with text, and immersive VR with text
and narration. The PC versions were displayed on a desktop computer
screen as shown in the top of Fig. 1, whereas the immersive VR versions
were displayed using a head-mounted display that allow the students to

move their heads and see around the virtual laboratory environment as
shown in the bottom of Fig. 1. The text versions presented words as
onscreen printed text, whereas the text and narration versions pre-
sented words as onscreen printed text and simultaneous narration using
a voice to read the text aloud.

In every version of the simulation the virtual lesson starts off with
the learner being presented with a brief introduction to their primary
in-game tool “The lab pad”. The lab pad is a tablet that is used to
provide written information and illustrations and is also the display
medium for the multiple-choice questions that the learner is required to
answer correctly in order to progress (see panels A in Fig. 2). After this
brief tutorial, the learner is introduced to the virtual agent Marie. Marie
serves as an AI instructor, who guides the learner through the essential
material, such as lab procedures and lab equipment. She also functions
as the source of both the verbal narration and the on-screen text, de-
pending on which version of the simulation is being presented (see
panel A in Fig. 3). Generally, the simulation consists of four different
kinds of tasks: (1) receiving information (see panel A in Fig. 3 for an
example), (2) answering multiple-choice questions (see panels A in
Fig. 2 for an example), (3) getting feedback, and (4) doing interactive
lab procedures such as mixing specific compounds with a serological
pipette and discarding the used pipette tip after use (see panels B in
Figs. 2 and 3).

2.2.2. Tests
Two multiple-choice tests were developed for evaluating the parti-

cipants' learning outcomes – a knowledge test and a transfer test. A

Fig. 1. Screenshot of the simulation used in this study: The
top picture is a screenshot from the PC version and the one
below it is a screenshot from the VR, which shows the
stereoscopic display technology used in this version. (For
interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this ar-
ticle.)
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group of subject matter experts, including two scientists who had de-
veloped the virtual simulation from Labster, two psychologists, and a
psychometrician, developed these questions. The knowledge test con-
sisted of 10 multiple-choice questions designed to assess conceptual and
procedural knowledge of essential material presented in the simulation
(e.g., How should you use your OptiPro medium for complex formation,
when both DNA and ExpifacterminCHO reagent is diluted? A) Heated to
room temperature; B) Heated to 56 °C; C) Heated to 37 °C; D) Cold,
taken from storage at 4 °C). The transfer test consisted of 10 multiple-
choice questions designed to assess the participants' ability to apply

what they had learned to new situations (e.g., A delivery company is
delivering frozen cells to you, but you have a meeting with your boss at
the time of delivery. What is your best chance to ensure the cell's sur-
vival? A) Ask your boss to wait 20min. Thaw the cells and put them in
liquid nitrogen; B) Ask the delivery company to leave the cells at room
temperature. This is the best temperature for thawing frozen cells, and
they can be stored later; C) Ask the delivery company to put them in a
water bath at 37 °C that you've prepared. The cells can survive until you
are back; D) Ask the delivery company to put them in a water bath at
56 °C that you've prepared. This is the optimal temperature for thawing

Fig. 2. Screen shots of the VR condition where the iMotions
system simultaneously shows the student working through
the simulation on the top left panel; the stimulus they are
experiencing in the top right panel; and the continuous EEG
workload measure in the bottom panel of each screen shot.
Screen shot A shows a student answering a multiple-choice
question; screen shot B shows a student doing interactive
lab procedures in the VR condition. (For interpretation of
the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. Screen shots of the PC condition where the iMotions
system simultaneously shows the student working through
the simulation on the top left panel; the stimulus they are
experiencing in the top right panel; and the continuous EEG
workload measure in the bottom panel of each screen shot.
Screen shot A shows a student getting information from the
virtual agent Marie; and screen shot B shows a student
doing interactive lab procedures in the PC condition. (For
interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this ar-
ticle.)
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frozen cells). The questions required that students had a deep knowl-
edge of the content and that they could apply that knowledge to a
realistic context. Students received one point for each correct answer
and 0 points for selecting an incorrect answer. The posttests were de-
livered on a computer.

2.2.3. Participant questionnaire
Information on participants’ age, gender, and major were collected

through iMotions software along with the other measures used in the
study (iMotions, 2016).

2.2.4. Survey
The self-report survey asked participants to rate their level of pre-

sence, learning beliefs, and satisfaction. These constructs have pre-
viously been used as dependent variables in VR research (e.g., Moreno
& Mayer, 2007). Presence was measured with 10 items adapted from
Schubert, Friedmann, and Regenbrecht (2001; e.g., “The virtual world
seemed real to me”). Learning beliefs was measured with eight items
adapted from Lee et al. (2010; e.g., “I gained a good understanding of
the basic concepts of the materials”). Satisfaction was measured with
seven items adapted from Lee et al. (2010; e.g., “I was satisfied with this
type of virtual reality/computer-based learning experience”). All of
these used a five-point Likert scale ranging from (1) strongly disagree to
(5) strongly agree.

2.2.5. Apparatus
The PC condition version of the simulation was administered on a

high-end laptop computer and presented to the participants on an ex-
ternal 23-inch computer monitor. A standard wireless mouse was used
by the participants to control input in the PC condition. The partici-
pants used this mouse to both navigate from the different static points
of view and to select answers to multiple-choice questions. In general,
the mouse functioned as a way to select which object the participant
wanted to interact with through cursor movement and left-clicks.

In the immersive VR condition the simulation was administered
using a Samsung Galaxy S6 phone, and stereoscopically displayed
through a Samsung GearVR head-mounted display (HMD). This con-
dition requires the participants to use the touch pad on the right side of
the HMD to emulate the left-click function of a wireless mouse in order
to select which objects to interact with. In this condition, however, head
movement is used to move the participant's field of view and the cen-
tered dot-cursor around the dynamic 360-degree VRE. All versions in-
cluded a visible pedagogical agent, named Marie, who did not speak in
the T version and who narrated the text in the T + N version.

2.2.6. Measurement of cognitive load with EEG
An electroencephalogram (EEG) was chosen to assess students’

workload brain activity while using the different versions of the simu-
lation. There is some evidence from previous studies to suggest that
EEG has potential as a valid and objective measure of mental workload
(e.g., Gerjets et al., 2014; Sterman & Mann, 1995). In the present study,
EEG data was collected using an Advanced Brain Monitoring (ABM) X-
10, wireless 9-channel EEG system running at 256hz. The X-10 records
data in real-time from nine sensors that are positioned in accordance
with the International 10–20 system (as shown in Fig. 4), along with
two reference signal sensors that are attached to the mastoid bone be-
hind each ear (ABM, 2016).

The 256 EEG signals per second were processed and decontami-
nated for excessive muscular activity, fast and slow eye blinks, and
excursions due to movement artifacts by ABM's proprietary software in
order to produce classifications of cognitive load in epochs of one
second (Berka et al., 2004). The workload classifier was developed by
Berka et al. (2007) using a linear DFA with two classes, low and high
mental workload. Absolute and relative power spectra variables were
derived using stepwise regression from channels C3-C4, Cz-PO, F3-Cz,
Fz-C3, and Fz-PO. The workload metric computation is based on 30

distinct variables across all frequency bands within 1–40 Hz (an over-
view of the variables used for the calculation of workload can be found
in Berka et al., 2007, Table 1, p.235). The classifier was evaluated and
trained based on data obtained from testing different combinations of
low and high difficulty levels of mental arithmetic, grid location, trail
making, and digit-span tasks (forward and backwards; Berka et al.,
2007). These tasks are often used in standardized batteries for neu-
ropsychological assessment of working memory (such as the Working
Memory Index portion of WISC-IV, which includes forward and back-
wards digit-span, trail making and mental arithmetic; Colliflower,
2013) and as such, the workload metric is developed specifically to be
sensitive to executive processes involving working memory. As a result,
the metric value increases when working memory load and task de-
mands increases, and decreases when resource demand lessens (Berka
et al., 2004). In other words, the workload metric is a continuous
measure of resource allocation and cognitive activity in response to task
demands.

The workload metric ranges numerically from 0 to 1, with larger
values representing increased workload; and it is divided into three
different range classifications: boredom (up to 0.4), optimal workload
(0.4–0.7) and stress and information overload (above 0.7; iMotions,
2016). This metric and the methods behind it have been validated by
several empirical studies across various fields (military, industrial and
educational research; Stevens et al., 2011). It has been shown to sig-
nificantly correlate with both subjective self-reports of cognitive load
and objective performance on tasks with varying levels of difficulty and
cognitive demand such as the ones mentioned above (Berka et al., 2007;
Galán & Beal, 2012; Sciarini, Grubb, & Fatolitis, 2014). The definition
of ABM's workload metric is consistent with how cognitive load is de-
scribed in the cognitive theory of multimedia learning (Mayer, 2009)
and cognitive load theory (Sweller et al., 2011). By having identical
learning material (i.e., identical demands for essential processing) in
both versions of the simulation, the cognitive load metric is intended to
examine the difference in extraneous and generative cognitive proces-
sing during learning between the two platforms.

A requirement for this mental state metric to be valid and accurate
across different participants is to run an impedance test to ensure that
the recordings are within the recommended impedance tolerances, and
to provide a 9-min individualized baseline benchmark profile for each
participant based on three distinct cognitive assessment tasks: (1) 3-
choice Vigilance Task, (2) Visual Psychomotor Vigilance Task, and (3)
Auditory Psychomotor Vigilance Task (for further documentation see
BIOPAC, 2016). For the EEG measures, average workload was calcu-
lated for each respondent within each media condition by taking the

Fig. 4. EEG sensor locations (ABM, 2016). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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average level of workload while using the simulation, and overload was
the percentage of time the respondent was over the threshold value of
0.7 on the workload measure.

Data from the surveys and the EEG data were collected using the
iMotions research software platform, which permits synchronization of
the brain-based EEG measures and allows for accessible data analysis of
these measures (see iMotions.com for further information regarding the
platform). The data was exported to IBM SPSS version 23.0 for statis-
tical analyses.

2.3. Procedure

Participants were tested individually in a VR learning lab at a
European university. The lab is sound-proofed and the lighting is stable
and controlled since there are no windows. The participants were
randomly assigned to either the T or the T + N simulation condition.
Additionally, participants were randomly assigned to receive the VR
version first followed by the PC version or vice versa. The first step in
the study design was preparation, which is shown in Fig. 5. Participants
were fitted with the EEG sensors and subsequently data quality tests
were run, such as the EEG impedance test, to ensure that the equipment
was functioning properly. Then the experimenter gave oral instructions
on how to complete the following EEG benchmark. The experimenter
left the room each time after instructions were provided, so the parti-
cipant was alone in the room when the experimental tasks were per-
formed. The next step was to complete the participant questionnaire
which included the knowledge and transfer tests. These served as
pretests to determine whether participants knew any of the answers
before being exposed to the simulations. This information was subse-
quently used as a covariate in the analyses. Next, the participant re-
ceived the first simulation (based on the randomly assigned condition)
for 15min, and then retook the knowledge and transfer tests, and
completed the self-report survey. Next, the participant received the
second simulation (based on the randomly assigned condition) for
15min, and then retook the knowledge test, transfer tests, and self-
report survey. Instructions for each component of the experiment were
given when relevant in order not to overload the participant with ex-
traneous information. In order to ensure equal time on task, partici-
pants had 15min with each of the two versions of the virtual lab

simulation, and they dynamically interacted with the simulations at
their own pace. There was no time limit for the pre- and post-ques-
tionnaires and learning outcome tests. The average run time for each
participant was about an hour and a half. Each participant was com-
pensated for their time with a gift card valued at 100 Danish crowns
(about 13 Euros) upon completion. We followed standards for ethical
treatment of human subjects and obtained IRB approval for the study.

A cross-panel study design was selected because a preliminary pilot
study showed that students were very enthusiastic about the use of all
versions of the virtual lab simulation, and that it was not until the
students had used both versions (PC and VR) that they could accurately
compare their experiences. The cross-panel design provided a true ex-
periment after the first intervention, but extra information about the
comparison across media after using both the PC and VR version of the
experiment.

3. Results

3.1. Are the instruments valid and reliable?

The first analyses evaluated the validity of the outcome variables
used in the study by testing the fit of the data to the Rasch model
(Rasch, 1960). Results indicated that two items in the knowledge test,
one item in the transfer test, and three items in the presence scale had
positive fit residuals above the critical value of± 2.5 which is an in-
dication that the items do not measure the intended construct appro-
priately (Pallant & Tennant, 2007; Makransky et al., 2017). Therefore,
these items were eliminated from the total and gain scores reported and
analyzed in this paper. The chi-squared fit statistics reported in Table 1
indicate that the remaining scales fit the Rasch model (values over 0.05
indicate acceptable fit; Pallant & Tennant, 2007). Table 1 also reports
the reliability of the scales used in the study based on Cronbach's alpha.
The reliability coefficients for the self-report scales were acceptable
with values of 0.72 and 0.85 for presence; 0.84 and 0.87 for learning
beliefs; 0.77 and 0.91 for satisfaction (see top of Table 1). The reliability
coefficients were 0.68 and 0.68 for the knowledge test; and 0.32 and
0.55 for the transfer test following the first and second interventions
respectively (see bottom of Table 1). Although the transfer test had low
internal consistency reliability, this could be expected because the

Table 1
Chi-squared fit statistics to the Rasch model and Cronbach's Alpha Reliability Coefficients for the Scales in the Study.

Scale Number of items Rasch chi-squared fit statistic Cronbach's alpha

After 1st intervention After 2nd intervention After 1st intervention After 2nd intervention

Learning beliefs 8 .81 .85 .84 .87
Satisfaction 7 .07 .39 .77 .91
Presence 10 .27 .34 .72 .85
Knowledge 8 .28 .13 .68 .68
Transfer 9 .52 .35 .36 .55

Fig. 5. An overview of the overall counterbalanced design. Half of the participants used the simulation with text and narration (redundancy condition), and the other half used the
simulation with screen text alone. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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items were designed to measure a very broad domain with different
content, namely assessing whether students were able to apply their
knowledge to novel and different problems. The average score on the
knowledge pre-test was 2.15 out of 8 (SD=1.35), and the transfer test
was 3.88 out of 9 (SD=1.64) across the groups, indicating that the
students did not have a high level of prior-knowledge of the material
before using the simulations.

3.2. Media effects

The main objective of this study is to determine the consequences of
adding immersive virtual reality to a science lab simulation, particu-
larly on student learning, self-report ratings, and brain-based measures
of overload.

3.2.1. Do students learn better with immersive VR or conventional media?
The primary issue addressed in this paper concerns whether stu-

dents learn better with immersive VR (VR group) or with conventional
media (PC group). The top two lines of Table 2 show the mean gain
score (and standard deviation) on the knowledge test and transfer test
for the VR group and the PC group. ANCOVAs were conducted with the
pre-test score as a covariate, media (VR vs. PC) and method (text versus
text + narration) as independent variables, and gain scores on
knowledge and transfer (i.e., difference between pre-test score and
post-test) as the dependent variables for the first and second interven-
tion, respectively. The PC group gained significantly more knowledge
than the VR group, both for the first intervention, F(1, 47)= 4.45,
p= .040, d=0.48, and the second intervention, F(1, 47)= 8.45,
p= .006, d=0.80. The advantage of the PC group over the VR group
on the transfer test gain did not reach statistical significance for the first
intervention, F(1, 47)= 0.89, p= .350, or the second intervention, F(1,
47)= 0.43, p= .513. There were no significant interactions with
method for any of the ANCOVAs. We conclude that students learned
more when the material was presented via a PC than via immersive VR.
This is a major empirical contribution of this study.

3.2.2. Do students give more positive self-report ratings to immersive VR or
conventional media?

Another important issue addressed in this study concerns whether
students produce more positive self-report ratings when they learn with
immersive VR (VR group) or with conventional media (PC group). The
next four lines of Table 2 show the mean and standard deviation on the
ratings of presence, learning beliefs, and satisfaction for the VR group
and the PC group. ANOVAs were conducted with media (VR vs. PC) and
method (text vs. text + narration) as independent variables, and each
of the three rating scales as the dependent variables for the first and
second intervention, respectively. The VR group produced significantly
higher ratings of presence than the PC group, both for the first

intervention, F(1, 48)= 28.67, p < .001, d=1.30, and the second
intervention, F(1, 48)= 59.37, p < .001, d=2.20, indicating that the
immersive VR medium was highly successful in creating a sense of
presence for learners. The advantage of the VR group over the PC group
failed to reach statistical significance on the rating of learning beliefs
for the first intervention, F(1, 48)= 0.24, p= .618, and the second
intervention, F(1, 48)= 0.54, p= .467; or on the rating of satisfaction
for the first intervention, F(1, 48)= 1.94, p= .170, and the second
intervention, F(1, 48)= 0.60, p= .443. There were no significant in-
teractions with method for any of the ANOVAs. We conclude that stu-
dents reported greater sense of presence when the material was pre-
sented via immersive VR than via a desktop computer, thus validating
the power of immersive VR to create a sense of presence in learners.
This is another major empirical contribution of this study.

3.2.3. Do students show greater workload brain activity with immersive VR
or conventional media?

In addition to behavioral measures of learning outcome and self-
ratings, we included an EEG-based measure of workload in order to
determine whether the VR environment created greater workload than
the PC environment. The second-to-last line of Table 2 shows the mean
workload score and standard deviation (with higher scores showing
higher workload) for the VR and PC groups based on EEG data recorded
during learning. ANOVAs were conducted with media (VR vs. PC) and
method (text vs. text + narration) as independent variables, and mean
workload as the dependent variable, for the first and second interven-
tion, respectively. There was no significant difference between the
groups on the first intervention, F(1, 48)= 0.001, p= .978, but the VR
group scored higher on average workload than the PC group on the
second intervention, F(1, 48)= 5.0, p= .030, d=0.59.

The final line of Table 2 shows the average proportion of time the
participants in each group scored above the overload level of 0.7
(which indicates cognitive overload) for the first and second interven-
tions, respectively. Students were overloaded an average of 48.78% of
the time, indicating that the science lab simulation was a difficult
learning task for most students. There was no significant difference
between the groups on the first intervention, F(1, 48)= 0.007,
p= .933, but the VR group was overloaded significantly more than the
PC group on the second intervention, F(1, 48)= 5.51, p= .028,
d=0.62. There were no significant interactions with method for any of
the ANOVAs. We conclude that students were more overloaded during
learning later in the session when they were learning in immersive VR
than when they were learning with a desktop computer. This is a pre-
liminary piece of brain-based evidence suggesting that VR environ-
ments may be overstimulating.

3.3. Method effects

A secondary objective of this study is to determine the consequences
of adding narration to both media versions of the science lab simulation
that presents words as printed text, particularly on student learning,
self-report ratings, and brain-based measures of cognitive overload.

3.3.1. Do students learn better when words are presented as text and
narration or as text alone?

The top two lines of Table 3 show the mean gain scores (and stan-
dard deviations) on the knowledge test and transfer test for the T and
the T + N groups. ANCOVAs were conducted with the pre-test score as
a covariate, media (VR vs. PC) and method (text vs. text + narration) as
independent variables, and gains on knowledge and gains on transfer
(difference between pretest score and posttest score) as the dependent
variables for the first and second interventions, respectively. There was
no significant difference between the text and the text + narration
groups on the amount of knowledge gained (as measured by the
knowledge test) for the first intervention, F(1, 47)= 0.14, p= .706,
and the second intervention, F(1, 47)= 3.70, p= .060, d= 0.51. There

Table 2
Means and standard deviations for the VR and PC conditions on eight measures.

Outcome 1st intervention 2nd intervention

VR
M (SD)

PC
M (SD)

VR
M (SD)

PC
M (SD)

Test Knowledge gain 1.81
(2.12)

2.92
(2.53)

1.54 (1.39) 2.69 (1.49)

Transfer gain 0.96 (1.18) 1.46 (1.70) 0.38 (1.17) 0.58 (1.06)
Survey Presence 3.50

(0.46)
2.77 (0.50 3.72 (0.49) 2.52 (0.61)

Learning beliefs 3.68 (0.66) 3.59 (0.70) 3.96 (0.70) 3.82 (0.64)
Satisfaction 3.96 (0.44) 3.74 (0.63) 3.95 (0.75) 4.11 (0.61)

EEG Work load 0.63 (0.12) 0.63 (0.11) 0.67 (0.10) 0.60 (0.13)
Overload time 48.75

(21.36)
48.80
(19.81)

55.21
(20.53)

41.44
(24.13)

Note. Bold font indicates significant differences at p < .05.
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was also no significant difference between the text and text + narration
groups for the gain on the transfer test for the first intervention, F(1,
47)= 0.00, p=1.00, or the second intervention, F(1, 47)= 0.34,
p= .562. There was no significant interaction with media for any of the
ANCOVAs. We conclude that there was no redundancy effect and that
students learned equally well when the material was presented with
text as when it was presented with text and concurrent narration.

3.3.2. Do students give more positive self-report ratings when words are
presented as text and narration or as text alone?

Another important issue addressed in this study concerns whether
students produce more positive self-report ratings when the material is
presented as text and narration or as text alone. The next four lines of
Table 3 show the mean and standard deviation on the ratings of pre-
sence, learning beliefs, and satisfaction for the text and the text + nar-
ration groups. ANOVAs were conducted with media (VR vs. PC) and
method (text vs. text + narration) as independent variables, and each
of the three rating scales as the dependent variables for the first and
second interventions, respectively. There were no significant differ-
ences between the two groups for any of the self-report measures used
in the study. That is, the two groups did not differ significantly on their
ratings of presence for the first intervention, F(1, 48)= 0.09, p= .772,
or the second intervention, F(1, 48)= 0.41, p= .524; on the ratings of
learning beliefs for the first intervention, F(1, 48)= 0.17, p= .678, and
the second intervention, F(1, 48)= 0.001, p= .972; or on the rating of
satisfaction for the first intervention, F(1, 48)= 0.18, p= .671, and the
second intervention, F(1, 48)= 0.00, p= .982. There was no sig-
nificant interaction with media for any of the ANOVAs. We conclude
that there is no evidence of a redundancy effect involving students’ self-
report ratings on any of the scales in the study.

3.3.3. Do students show greater workload brain activity when words are
presented as text and narration or as text alone?

The second to last line of Table 3 shows the mean and the standard
deviation of the EEG-based measure of workload (with higher scores
showing higher workload) for the T and T + N groups. ANOVAs were
conducted with media (VR vs. PC) and method (text only vs.
text + narration) as independent variables, and average workload as
the dependent variable for the first and second intervention, respec-
tively. The T group scored significantly higher than the T + N group on
the first intervention, F(1, 48)= 4.99, p= .030, d=0.61, but the dif-
ference did not reach statistical significance on the second intervention,
F(1, 48)= 3.27, p= .077. The final line shows the average proportion
of time the participants in each group scored above the overload level
of 0.7 for the first and second interventions, respectively. There was no
significant difference between the groups on the first intervention, F(1,
48)= 3.03, p= .088, or the second intervention, F(1, 48)= 3.63,
p= .063. There was no significant interaction with media for any of the

ANOVAs. We conclude that students were more overloaded during
learning in the first intervention when they were in the text condition
compared to the text and narration condition, and the difference was
not significant in the second intervention.

Overall, across all the dependent measures there is not strong and
consistent evidence that the T and T + N groups differed.

4. Discussion

4.1. Empirical contributions

Many companies and public institutions are deciding to adapt
educational and training material to immersive VR even though there is
a lack of theoretical or scientific evidence to guide this decision and
adaption. The major empirical contribution of this study is the finding
that students felt a greater sense of presence when they used the high-
immersion VR science lab simulation involving a head-mounted dis-
play, but they actually learned less as compared to the low-immersion
version of the simulation on a desktop computer. This finding is con-
sistent with previous studies by Moreno and Mayer (2002) and Richards
and Taylor (2015) who also found lower levels of learning with more
immersive technology. However, the results differ from newer research
that has found that high-immersion VRE's lead to more learning (e.g.,
Alhalabi, 2016; Passig et al., 2016; Webster, 2016).

A second empirical finding in this paper was that the addition of
narration to the simulation that presents words as printed text did not
significantly affect student learning or self-report ratings. There was a
significant difference in cognitive load after the first intervention which
showed that the text-only group was more overloaded than the group
that had text and narration. This result is contradictory to the re-
dundancy principle which states that people learn more deeply from
graphics and narration than from graphics, narration, and on-screen
text (Mayer, 2009). The explanation for the redundancy principle is
that the added text competes for visual processing capacity with the
graphics and the learner wastes precious processing capacity trying to
reconcile the two verbal streams of information. It should be noted that
the comparison between text versus text and narration used in this
study is not the way that the redundancy effect has been tested in most
previous research, which used a comparison between narration versus
narration and text (Mayer & Fiorella, 2014).

Observations of the students in this study showed that rather than
reading and listening to the same text, some students (specifically in the
immersive-VR condition) simply listened to the narration without
reading the text, while others did both. Listening to text rather than
reading it is classified as the modality principle, which has been found
to increase learning and transfer by decreasing cognitive load (Moreno
& Mayer, 1999). Therefore, the lack of significant results related to the
method effect of the redundancy principle, and the unexpected result
related to cognitive load in this study, could be the consequence of a
combination of the redundancy principle and modality principle which
concurrently occurred based on the student's specific behavior.

4.2. Theoretical implications

Our predictions based on CLT and CTML were that a more im-
mersive VR environment could increase learning by increasing gen-
erative processing because students are more present in this environ-
ment; but that it could also limit learning due to added extraneous load
to the extent that added perceptual realism is distracting and not re-
levant to the instructional objective. The results of the study could be an
indication that the effect of added immersion in the VRE was stronger
in terms of increasing extraneous load, and that the added immersion
acted as a kind of seductive detail, or what is referred to as “bells and
whistles” by Moreno and Mayer (2002). This finding supports previous
research and theory which proposes that added immersion can interfere
with reflection as the entertainment value of the environment does not

Table 3
Means and standard deviations for text and Text + Narration conditions on eight mea-
sures.

Source
Outcome 1st intervention 2nd intervention

T
M (SD)

T + N
M (SD)

T
M (SD)

T + N
M (SD)

Test Knowledge gain 2.29 (2.79) 2.46 (1.84) 2.46 (1.71) 1.71 (1.23)
Transfer gain 1.25 (1.51) 1.17 (1.46) 0.57 (1.26) 0.38 (0.92)

Survey Presence 3.15 (0.70) 3.11 (0.52) 3.08 (0.79) 3.18 (0.86)
Learning beliefs 3.67 (0.64) 3.59 (0.72) 3.88 (0.67) 3.89 (0.67)
Satisfaction 3.82 (0.60) 3.88 (0.49) 4.02 (0.85) 4.03 (0.44)

EEG Work load 0.66
(0.10)

0.59 (0.13) 0.66 (0.10) 0.60 (0.13)

Overload time 53.29
(20.0)

43.51
(20.0)

53.71
(22.6)

42.04
(22.8)

Note. Bold font indicates significant differences at p < .05.
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give the learner ample time to cognitively assimilate new information
to existing schemas.

Similarly, from Van der Heijden's (2004) perspective the results
could suggest that students viewed the high-immersion VR simulation
as hedonic, which could cause them to focus on enjoying the environ-
ment rather than focusing on learning the material. It is possible that
some students were overwhelmed by the excitement and fun of being in
immersive VR for the very first time, as the technology used in the study
is very new. The novelty of the VR technology and its control scheme
and interface could have impeded the participants' learning processes
through an overall increase in extraneous workload as they would lack
the familiarity and the automaticity that comes with practice and ex-
perience in comparison to the more commonly used desktop environ-
ment.

An overarching perspective that combines both the affective and
cognitive aspects of multimedia learning is needed in order to obtain a
better understanding of how to build instructional matarial for im-
mersive VR, which uses a seeks to use a high level of presence to in-
crease learning. Consistent with advances in motivational theory
(Renninger & Hidi, 2016; Wentzel & Miele, 2016) the present study
examines the role of affect in science learning by building on the cog-
nitive affective model of learning with media (Moreno & Mayer, 2007)
and the model of emotional design in game-like environments (Plass &
Kaplan, 2015). Understanding how to harness the affective appeal of
virtual environments is a fundamental issue for learning and instruction
because research shows that initial situational interest can be a first step
in promoting learning (Renninger & Hidi, 2016) and the learner's
emotional reaction to instruction can have a substantial impact on
academic achievement (Pekrun, 2016).

When asked about her experience after the experiment one student
said: “The first simulation on the computer was boring, but then when I
was in the lab it was fun.” The reaction is an example of how realistic
immersive VR can feel, inasmuch as she had experienced the immersive
VRE as real in comparison with the PC version. The sense of presence
that immersive VR provides can be powerful if the physical and psy-
chological fidelity of the experience can be channeled into proper
cognitive processing to promote learning. In short, current cognitive
theories of learning need to be expanded to include the role of affective
and motivational factors, including a better understanding of the link
between affective factors (include a feeling of presence) and appro-
priate cognitive processing during learning. This work has implications
for the broad field of learning and instruction because it helps expand
cognitive theories of learning and instruction to make them more ap-
plicable to highly immersive environments.

4.3. Practical implications

The results of this study and others in this developing field suggest
that it is not appropriate to take a technology-centered approach and
expect that the adaptation of learning material to immersive VR will
automatically lead to better learning outcomes. If the goal is to promote
learning (rather than simply to promote a sense of presence), it appears
that science lab simulations need not be converted from a desktop-
computer medium to an immersive VR medium. Just because an ex-
citing, cutting-edge technology is available does not necessarily mean it
should be used in all education and training situations without taking
into consideration and utilizing the unique affordances that comes with
this new technology. Conversely, it is too early to write off immersive
VR as it still has the potential to be a viable educational platform if
instructional designers take a learner-centered approach which focuses
on how the technology fosters knowledge acquisition (Mayer, 2009;
Moreno & Mayer, 2002) in an attempt to find the boundary conditions
under which added presence is imperative to learning and transfer.

4.4. Methodological implications

A methodological contribution of this paper was the use of EEG to
obtain a direct measure of cognitive processing during learning, and
thus extend the domain of the emerging field of educational neu-
roscience (Mayer, 2017). The brain-based measure of workload showed
that students were more overloaded during learning later in the session
when using the immersive VR simulation as compared to the PC version
of the simulation. This is preliminary brain-based evidence suggesting
that the reason for a lower level of learning with immersive VR is that
these environments may be overstimulating. The use of EEG to measure
cognitive load is promising because it could provide learning scientists
with the potential of examining the mediating processes within the
individual that influence science learning. The EEG results also showed
that students were overloaded an average of 48.78% of the time during
learning which suggests that all versions of the science lab simulation
were too challenging for the sample in the study. This is a good example
of the value of objective cognitive measures because they can give in-
formation about the process by which learning takes place, and can
provide specific data about the particular points within a multimedia
lesson that are overloading students (see Figs. 2 and 3). This work
encourages the idea that brain-based measures can ultimately be used
to help design multimedia educational materials optimally.

4.5. Limitations and future directions

One of the research questions in this study was to investigate if the
CTML also applied to immersive VR. The findings did not suggest that
there were any differences between the low- and high-immersion VREs
regarding the redundancy principle. However, more research is needed
which compares a narration only condition to a condition with text and
narration. Future research should also investigate if other principles
from CLT and CTML generalize to immersive VR environments. In
particular, it would be interesting to investigate the consequences of the
modality principle because reading text can be more cognitively de-
manding in immersive VR, whereas spoken words might not cause extra
cognitive load.

In this study we used an experimental design to investigate the
differences between the low- and high-immersion VR simulations.
However, this controlled environment might not be the best way to
assess the potential value and impact of immersive VR for education
and training. If immersive VR can engage students more deeply in the
content of a science lab, it is possible that students would use this
technology more and thus learn more. The ultimate idea of using im-
mersive VR simulations in education could be giving the students a
head-mounted display at the beginning of a term which they can use at
home at their discretion with their smartphones. Therefore, given that
enough high quality educational material is available, a fairer way to
assess the value of immersive VR could be to have a longitudinal study
which follows students across a longer period of time. Future research
should investigate whether students in real educational environments
would use immersive VR technology more and if this added use leads to
more learning. More field research is also needed to understand how
immersive VR might actually be implemented in different educational
settings. In addition, in future work, instead of measuring engagement
by self-report, it would be useful to use online behavioral measures such
as number of mouse clicks.

One limitation of this study was that the technology used was the
Samsung Gear VR, which required the participants to use a touch pad
on the right side of the HMD to emulate the left-click function of a
wireless mouse in order to select which objects to interact with in the
lab. On the other hand, the control panel in the PC version was a mouse
(with which the students already had a lot of experience), so the control
panel in the immersive VR condition was new and not very intuitive.
The simulation in this study was designed to create a setting wherein
students could perform an experiment where they had to manipulate
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different items in a lab using two hands which are guided by the touch
pad. Therefore, they were given a situation in which they were sup-
posed to be active; but they were not given the tools to do so (rather
than being able to manipulate the environment with their hands it was
necessary to use a control panel that was not very intuitive). Therefore,
future research should investigate the value of immersive VR with more
advanced technology that affords a more natural control system. The
sample size was also relatively small in this study because it is so time
consuming to conduct this type of research. Future studies should use
larger and different samples and different VR content to investigate the
generalizability of the results.

The use of EEG to measure cognitive load is quite novel in educa-
tional settings. A simple EEG set-up was used in this study as this type of
measure could easily be used by instructional designers who do not
have expertise in cognitive neuroscience to measure cognitive load
continuously and use this information to design learning material op-
timally. Furthermore, an ultimate instructional goal would be a mo-
ment-to-moment assessment of cognitive load leading to an immediate
online adaptation of instructional material when learners are over-
whelmed by the difficulty; or bored because the material is too easy
compared to their working memory capacity (Gerjets et al., 2014).
However, more research is needed that investigates different combi-
nations of raw EEG data. Specifically, studies have shown that a drop in
alpha and increased theta waves is associated with cognitive load
(Gevins et al., 1998; Sauseng et al., 2005; Antonenko et al., 2010), but
more research is needed to identify optimal combinations in order to
provide a robust measure of cognitive load that is valid across learning
settings. More research is also needed that combines EEG with other
process measures in real time, such as eye tracking and pupil dilation in
order to assess the validity of EEG measures of cognitive load (Mills
et al., 2017).

There are several elements within this simulation that could po-
tentially be improved in an attempt to make the immersive VR platform
more successful. One is that the content in the simulation was difficult
(as shown by the previously mentioned overload average) and might
have imposed a heavy intrinsic load on the participants as the sample in
this study was made up of novices. Finally, the immersive VR simula-
tion was adapted from the PC version, so the specific advantages of
immersive VR were not optimized. There are likely settings where the
added presence that VR affords increases learning and transfer. The
National Research Council report (2011) suggests that more evidence is
needed about the value of simulations for developing science process
skills, understanding of the nature of science, scientific discourse and
argumentation, and identification with science and science learning.
Immersive VR might be more suited for these advanced science learning
goals, particularly when realistic visualizations of scientific material are
important for gaining a deeper understanding of the subject matter.
Higher immersion is also likely to make a difference in settings where
the learning goal is to teach specific performance skills in realistic
settings to an experienced group of students or practitioners.
Furthermore, it seems essential that the design of VR educational con-
tent be developed from the start with the understanding of how this
platform can support the given learning objectives. Therefore, the re-
sults in this study suggest that rather than porting educational content
to VR, it is necessary to develop content specifically for VR, with an
understanding of the unique advantages of the technology and how it
will impact the learner.

5. Conclusion

Overall, the present study offers a step in assessing the educational
value of low-cost immersive VR for improving student learning. In line
with calls for rigorous experiments on learning with science simulations
(NRC, 2011), the present study provides evidence for the idea that
“liking is not learning"–that is, instructional media that increase the fun
of a simulation–such as the sense of presence–do not necessarily

increase student learning. To the contrary, cutting-edge high-immersion
VR can create an increase in processing demands on working memory
and a decrease in knowledge acquisition, as compared to conventional
media. Therefore, considerations of the specific affordance of im-
mersive VR for learning should be considered in designing learning
content for this media.
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