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A B S T R A C T

The main objective of this study was to investigate the potential of combining subjective and objective measures
of learning process to uncover the mechanisms underlying the spatial contiguity effect in multimedia learning.
The subjective measures of learning process were self-reported cognitive load ratings and the objective measures
were eye-tracking and EEG measures. Learning outcome was measured by scores on retention and transfer
posttests. A sample of 78 university students participated in a between-subjects design in which a multimedia
slideshow lesson on how lightning storms develop was presented either with printed text as a caption at the
bottom of each illustration (separated presentation) or with printed text placed next to the corresponding part of
each illustration (integrated presentation). Regarding spatial contiguity, the integrated group spent significantly
more time looking at the text (d=0.64), but significantly less time looking at irrelevant illustrations (d=1.10),
and reported a significantly lower level of extraneous load (d=0.57), compared to the separated group. As
expected, they also scored significantly higher on the transfer test (d=0.49). Students who performed best on
posttests reported a lower level of extraneous load (d=0.56). Furthermore, EEG based alpha band activity was
predictive of intrinsic cognitive load but not predictive of extraneous cognitive load, and EEG based theta ac-
tivity was not predictive of intrinsic or extraneous load. The results suggest that subjective and objective
measures of cognitive load can provide different information to test the theoretical mechanisms involved in
multimedia learning.

1. Introduction

1.1. Objective and rationale

According to cognitive theories of learning such as Cognitive Load
Theory (CLT; Sweller, Ayres, & Kalyuga, 2011) and the Cognitive
Theory of Multimedia Learning (CTML; Mayer, 2014), effective in-
structional methods prime appropriate cognitive processing during
learning which leads to superior learning outcomes. As an example of
appropriate cognitive processing, intrinsic cognitive load (or essential
processing) is cognitive processing during learning needed to represent
the material and is a result of the complexity of the material for the
learner. In contrast, ineffective methods of instruction prime in-
appropriate cognitive processing during learning, which leads to in-
ferior learning outcomes. As an example of inappropriate cognitive
processing, extraneous cognitive load (or extraneous processing) is
cognitive processing during learning that does not serve the instruc-
tional goal and is caused by the way the material is presented.

Advances have been made in describing effective instructional
methods (such as placing printed words next to the corresponding part
of the graphic rather than as a caption) and in creating transfer posttests
to measure learning outcomes (such as using open-ended questions that
ask the learner to use the material in a new situation). In contrast,
advances in cognitive theories of learning have been challenged by the
need for useful measures of cognitive processing during learning.
Scholars note the need for useful measures of cognitive processing
during learning for further development of cognitive load theory and its
applications (Paas, 1992; Plass, Moreno, & Brünken, 2010; Sweller,
1988; Sweller et al., 2011). This challenge has resulted in calls for in-
vestigation of potential objective measures including brain-activity
measures, such as electroencephalography (EEG), and eye-tracking
(e.g., deJong, 2010; Gerjets, Walter, Rosenstiel, Bogdan, & Zander,
2014; National Research Council, 2011).

In the present study, we attempt to heed this call by examining how
a well-known instructional design method influences subjective and
objective measures of cognitive processing during learning from a
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multimedia lesson. The instructional method is the spatial contiguity
principle, in which we compare integrated presentation of words and
graphics (i.e., printed words are placed next to the corresponding part
of the graphic) and separated presentation of words and graphics (i.e.,
printed words are placed at the bottom of the screen as a caption far
from the graphic). Separated presentation is expected to create more
extraneous cognitive load (or extraneous processing) during learning
than integrated presentation, that is cognitive processing that does not
serve the instructional goal caused by poorly designed presentation of
the material (Mayer & Fiorella, 2014; Sweller et al., 2011a). Intrinsic
cognitive load depends on the number of elements that must be pro-
cessed simultaneously in working memory and the expertise of the
learner (van Merrienboer & Sweller, 2005). Therefore, we manipulate
intrinsic cognitive load by dividing our sample into high- and low-
performing learners and investigate which cognitive process measures
are diagnostic of successful learning. The learning outcome is measured
by an open-ended retention posttest and an open-ended transfer test.
The retention test is designed to measure how much students re-
member, and the transfer test is designed to measure a student's un-
derstanding of the presented material (Mayer, 2014). The main new
element in this study is to include a collection of learning process
measures. These include both subjective measures–self-report ratings of
cognitive processing during learning on a nine-point scale for three
items–and objective measures–EEG measures of alpha and theta band
power and eye-tracking measures of dwell times on various areas of the
screen.

1.2. Measuring cognitive load in learning

Cognitive load refers to the load imposed on working memory by
the cognitive processes that learning materials evoke (Sweller et al.,
2011). Although different indirect measures of cognitive load were
originally used to provide evidence for CLT including error rates (e.g.,
Ayres & Sweller, 1990) and learning times (e.g., Chandler & Sweller,
1991 or 1992), subjective measures based on rating scales became and
remain the most common method for measuring cognitive load in
education (Sweller et al., 2011). Other measures of cognitive load in-
clude efficiency measures (e.g., Paas & van Merriënboer, 1993), sec-
ondary tasks based on dual-task methodology (e.g., Brünken,
Steinbacher, Plass, & Leutner, 2002), and physiological measures (e.g.,
Antonenko, Paas, Grabner, & Van Gog, 2010). In this paper we focus on
subjective measures due to their long-standing influence in learning
science and on objective measures as they represent a promising new
direction in the continuous measurement of cognitive load (Sweller
et al., 2011). Concerning objective measures, we employ EEG measures
and eye-tracking measures to determine whether they add value to our
understanding of multimedia learning processes.

Subjective Measures of Cognitive Load. A commonly used sub-
jective measure of cognitive load in educational science is a one item
measure developed by Paas (1992). The item is on a 9-point Likert scale
ranging from very, very low mental effort (1) to very, very high mental
effort (9) where learners have to rate their mental effort while learning.
Paas, Tuovienen, Tabbers, and van Gerven (2003) have defined mental
effort as “the aspect of cognitive load that refers to the cognitive ca-
pacity that is actually allocated to accommodate the demands imposed
by the task: thus, it can be considered to reflect the actual cognitive
load” (p. 64). Although this scale is widely used, it is limited because it
only provides an overall concept of cognitive load that does not reflect
its multidimensional character (Ayres, 2006). Based on the assumption
that intrinsic and extraneous cognitive load add to total cognitive load,
researchers have argued that it is possible to assess intrinsic cognitive
load by keeping extraneous cognitive load constant (e.g., Ayres, 2006),
or to assess extraneous cognitive load by using different instructional
methods to teach the same material (e.g., DeLeeuw & Mayer, 2008). In
an attempt to measure these different types of cognitive load directly,
there has been a common tendency to align the wording of the

subjective items to assess different types of load (Sweller et al., 2011).
For example, Cierniak, Scheiter, and Gerjets (2009, p. 318) use word-
ings such as, “How difficult was the learning content for you?” to assess
intrinsic cognitive load, and, “How difficult was it for you to learn with
the material?” to assess extraneous cognitive load. Although these types
of measures are commonly used (e.g., Corbalan, Kester, & van
Merriënboer, 2008; Gerjets et al., 2006, 2009), they have also been
criticized on the grounds that learners may be incapable of making the
required distinctions. For example, students may not be able to distin-
guish between whether they are experiencing difficulty due to the
complexity of the material or inadequate instructional design (e.g.,
Kirschner, Ayres, & Chandler, 2011).

Using EEG to Measure of Cognitive Load.
Electroencephalography (EEG) is a common neuroimaging technique
that measures the gross electrical activity of the brain generated by
millions of neurons firing at the same time, which produces a large
enough electrical potential that it is measurable along the scalp
(Breedlove & Watson, 2013; Pinel, 2011). EEG may have potential
value for measuring cognitive load during learning due to having sev-
eral potential advantages over subjective measures (Antonenko & Keil,
2017). These advantages include the potential to obtain objective
measures of cognitive load, rather than relying on learners’ subjective
ratings. Furthermore, physiological measures are sensitive to variations
over time and can be collected while learning is taking place, rather
than relying on measuring cognitive load after the learning is complete
(Van Gog, Rikers, & Ayres, 2008). EEG has a high temporal resolution
enabling it to measure changes in cognitive load on the millisecond
scale (Antonenko et al., 2010). Another advantage is that the method
makes it possible to reflect various temporal types of load, such as in-
stantaneous, peak, average, accumulated, as well as overall load
(Antonenko & Niederhauser, 2010; Xie & Salvendy, 2000). In spite of
these advantages, there are still many open questions and issues re-
garding the use of EEG for cognitive load measurement.

Preliminary studies have shown that oscillatory brain activity, as
measured with EEG, vary predictably in response to changing levels of
cognitive stimuli (Anderson & Bratman, 2008; Klimesch, 1999). A
correlation between working memory load and power in distinct EEG
spectral frequency bands has been observed across numerous empirical
studies (Brouwer et al., 2012). Several studies have pointed to alpha
(8–12 hz) and theta (4–8hz) bands in particular as being significant
indicators of working-memory workload (Antonenko & Keil, 2017;
Berka et al., 2007). Alpha is generally associated with attentional
processes (Frey, Mühl, Lotte, & Hachet, 2014). There is widespread
consensus among scholars that when demands of attentional processing
increase, alpha spectral power is expected to decrease, particularly in
parietal and occipital electrode sites (Klimesch, 1999; Mühl, Heylen, &
Nijholt, 2015; Puma, Matton, Paubel, Raufaste, & El-Yagoubi, 2018).
Alpha band power has been empirically demonstrated to decrease with
increased task difficulty and increased memory load (Fairclough &
Venables, 2006; Puma et al., 2018). A decrease of alpha power has also
been linked to increase in cognitive arousal, resource allocation, and
workload (Brouwer et al., 2012). Studies also have shown that sup-
pression of alpha oscillations is strongly associated with semantic
memory processing in particular, such as searching, accessing, and re-
trieval of information from long-term memory (Klimesch, 1996;
Klimesch, 1999).

Theta frequency especially in frontal areas has been linked to
working memory capacity across several studies (Puma et al., 2018). In
these studies, increasing levels of spectral power in the theta band was
proposed to reflect increasing memory load (Mühl et al., 2015). The
positive relation between theta and mental effort has also been ex-
plicated in reviews by Klimesch (1996, 1997, 1999).

The combination of desynchronization of alpha and synchronization
of theta has frequently been used as an index of cognitive workload
(Berka et al., 2007; Matthews, Reinerman-Jones, Barber, & Abich,
2014; Rabbi, Zony, Leon, & Fazel-Rezai, 2012; Puma, 2018:; Gerjets
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et al., 2014; Antonenko et al., 2010; Givens et al., 1988; Sauseng et al.,
2005). For instance, Gevins and Smith (2003) showed that theta and
alpha frequency band effects correlated with task difficulty levels in
simulated flight tasks and n-back tests. Mobile EEG methodologies seem
particularly promising for learning science, because they offer a non-
invasive and relatively unobtrusive means of measuring cognitive load
with a high level of ecological validity (Gerjets et al., 2014).

There are several research examples of how EEG can be used to
provide valuable information about the learning process within multi-
media research. Antonenko and Niederhauser (2010) used subjective
and EEG measures to investigate learning with hypertexts. They con-
cluded that alpha, beta, and theta measures from EEG were significantly
lower when hypertext was used. By using an EEG measure that was
sensitive to instantaneous cognitive load, they were able to conclude
that hypertext lead to lower cognitive load. In another study,
Makransky, Terkildsen, and Mayer (2017) used EEG to measure cog-
nitive load in learning with an immersive vs. a desktop version of a
virtual reality (VR) simulation. They found that although the immersive
VR version of the simulation lead to higher self-reported presence, it
also led to lower learning outcomes. Based on the EEG measure of
cognitive load they concluded that the immersive VR version created
cognitive overload in students late in the learning process. These

studies are examples of how the temporal resolution of EEG can provide
important information about the learning process.

Although there seems to be potential for using EEG as a measure of
cognitive processing during learning, more focused research evidence is
needed. Several researchers have recommended combining EEG mea-
sures of cognitive load with outcome measures such as tests of retention
and transfer and self-reported cognitive load (e.g Antonenko &
Niederhauser, 2010; Lee, 2014), as well as the need to combine EEG
process measures with other process measures such as eye tracking
(Mills et al., 2017). This is the approach used in this study.

Using Eye Tracking to Gain a Better Understanding of Cognitive
Processing During Learning. Eye tracking data within multimedia
learning has been used to investigate how different design interventions
such as spoken vs. written text and developing expertise affect pro-
cessing of multimedia material. Eye-tracking can provide a process
measure of cognitive load by calculating the amount of time spent
gazing at a specific point in a multimedia lesson (Sweller et al., 2011;
van Gog & Scheiter, 2010). Since there is quite a lot of emerging re-
search on the use of eye tracking in multimedia learning (Holmqvist
et al., 2011), we focus specifically on the research related to the use of
eye tracking as a means of understanding the underlying mechanisms of
the spatial contiguity principle, which is relevant for the present study.

Fig. 1. Screenshots of the multimedia lightning lesson with the non-spatial contiguity (NSC) lesson on the left and the spatial contiguity lesson (SC) on the right.
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Schmidt-Weigand, Kohnert, and Glowalla (2010) used an animation
on lightning formation in two experiments to uncover how learners
split their visual attention between the animation and the printed
words. Their conclusion was that learners’ viewing behavior is largely
guided by the text. Johnson and Mayer (2012) used eye tracking in
three experiments and found that the integrated groups made sig-
nificantly more eye-movements from the text to the corresponding part
of the diagram than the separated groups. They were able to conclude
that spatial contiguity encourages more attempts to integrate words and
pictures and enables more successful integration of words and pictures
during learning based on the eye-tracking data. Similarly, Bauhoff,
Huff, and Schwan (2012) used eye tracking to investigate the spatial
contiguity principle and found that gaze shifts decreased, and dwell
times increased as the distance between two sources of information
increased. The authors contended that as gaze shifts decreased, de-
mands on working memory increased, because larger chunks of in-
formation had to be held in working memory between gazes. Dwell
times are defined as the amount of time a student fixates or gazes within
or outside defined AOIs (Holmqvist et al., 2011). In usability research,
the average dwell time for a certain AOI is proposed to indicate the
amount of cognitive and visual processing allocated to elements in this
area (Poole & Ball, 2006; iMotions, 2018; Goldberg, Stimson,
Lewenstein, Scott, & Wichansky, 2002).

1.3. Spatial contiguity principle in multimedia learning

Consider a situation in which a learner views a multimedia lesson
on how lightning storms develop consisting of a series of slides with
captions at the bottom of each slide, as shown in left side of Fig. 1. In
terms of cognitive processing during learning, this situation can place a
heavy cognitive load on working memory, because learners have to
split their attention between and mentally integrate the illustrations on
the top of the screen and the corresponding text at the bottom of the
screen. One attempt to alleviate this split attention situation is to move
the text next to part of the illustration that it refers to, as shown in the
right side of Fig. 1. This approach to spatially integrating words and
illustrations is intended to reduce cognitive load by signaling to lear-
ners how to connect words with corresponding parts of the illustration.
The right side of Fig. 1 reflects an implementation of the spatial con-
tiguity principle based on the cognitive theory of multimedia learning
(CTML; Mayer, 2009), which states that people learn better from mul-
timedia lessons when printed words are placed next to the corre-
sponding part of the illustration. The rationale behind the principle is

that extraneous cognitive load is increased by the need to mentally
integrate the multiple sources of information that are not in spatial
congruence, and that too much extraneous cognitive load can overload
the cognitive system, which detracts from learning the presented ma-
terial.

Why does spatial contiguity aid learning? The theoretical me-
chanism underlying the spatial contiguity principle is that extraneous
cognitive load is higher for separated presentations such as shown on
the left side of Fig. 1 than for integrated presentations as shown on the
right side of Fig. 1. The spatial contiguity principle is one of the most
researched multimedia principles (Mayer & Fiorella, 2014). A meta-
analysis of the spatial contiguity principle identified 37 studies and
found a mean effect size of d=0.72 favouring the integrated group
over the separated group on measures of learning outcome (Ginns,
2006). More recently, a meta-analysis by Mayer and Fiorella (2014)
found that students performed better on transfer posttests with in-
tegrated presentations rather than separated presentations in 22 out of
22 experiments, yielding a median effect size of d=1.10.

Although a lot is known about the spatial contiguity principle, most
previous studies have investigated the principle in experiments using
learning outcome posttests and/or self-report measures of cognitive
load administered after the lesson. Although these measures provide
useful information, in the present study we wish to add objective pro-
cess measures recorded during learning in order to provide a more di-
rect test of the theoretical mechanism assumed to be involved in the
spatial contiguity principle. In particular, we explore whether the
proposed objective measures are sensitive to the expected changes in
extraneous cognitive load caused by the instructional method manip-
ulation.

1.4. Theoretical background and predictions

Which Learning Outcome Measures Are Sensitive to Extraneous
Cognitive Load? According to the spatial contiguity principle, students
learn better from multimedia lessons in which printed words are placed
near to rather than far from corresponding graphic elements on the
screen (Mayer & Fiorella, 2014). To test the principle, we compare the
learning outcome posttest performance (particularly on a transfer
posttest) of students who learned with an integrated versus separated
version of the lesson containing the same words and graphics. As shown
in Table 1, we expect the integrated group to perform better than the
separated group on a transfer test which assesses the quality of the
acquired schemas during the learning phase, but not necessarily on a

Table 1
Which Measures of Learning Process are predicted to be Sensitive to Extraneous Cognitive Load and Diagnostic of Successful Learning Outcomes?.

Measure Target cognitive processes during learning Sensitive to extraneous load Diagnostic of successful learning outcome

Self-report (rating)

Mental effort Experienced effort NO YES
Experienced difficulty Experienced difficulty of learning YES YES

Eye-tracking (dwell times)

Relevant illustrations Manifested ease of learning (Essential and germane processing) YES YES
Irrelevant illustrations Manifested ease of learning (Extraneous processing) YES YES
Text Manifested ease of learning (Essential and germane processing) YES YES
Outside AOI Manifested ease of learning (Extraneous processing) YES YES

EEG

Alpha band activity Attentional processing, semantic load, task difficulty YES YES
Theta band activity Mental effort NO YES

Learning outcome

Transfer test Selecting, organizing, integrating YES na
Retention test Selecting NO na
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retention test. This is an indirect way to assess cognitive processing
during learning. Specifically, we posit that the integrated group can
more efficiently use its limited processing capacity for selecting, orga-
nizing, and integrating, which leads to better transfer test performance.
In contrast, the separated group uses more of its limited processing
capacity for extraneous processing (i.e., inefficiently) leaving some re-
maining capacity for the cognitive process of selecting, but not for the
additional deeper processing of organizing and integrating. According
to this analysis, the transfer test is intended to be a gauge of extraneous
processing, because increased extraneous processing saps processing
capacity that cannot be used for essential processing needed to support
transfer. Consistent with previous research, hypothesis one is that the
integrated group will perform better on a transfer test than the sepa-
rated group but not necessarily on a retention test.

Which Learning Process Measures Are Sensitive to Extraneous
Load? The major new contribution in this study concerns the addition
of direct measures of cognitive processing during learning. The un-
derlying learning mechanism consists of appropriate cognitive proces-
sing during; learning, including attending to relevant rather than irre-
levant material in the lesson, organising the relevant material into a
coherent structure, and integrating corresponding verbal and pictorial
information with each other and with relevant prior knowledge acti-
vated from long-term memory. In the present study, we expect the se-
parated presentation method to cause more extraneous processing, such
as scanning the screen for how to connect printed words with corre-
sponding parts of the graphics (Mayer, 2009; Mayer & Fiorella, 2014).

As summarized in Table 1, this allows us to administer a collection
of subjective and objective measures to determine their sensitivity to
extraneous cognitive processing, that is, their ability to distinguish
between the integrated and separated groups. Some measures are in-
tended to gauge extraneous processing and some gauge overall cogni-
tive effort. As can be seen in the second column of Table 1, eye-tracking
measures of dwell times are intended to provide an objective indication
of whether cognitive resources are being spent on processing relevant
material or whether resources are being used unnecessarily to process
extraneous material. Based on this, we argue that dwell times within
and outside of defined areas of interest can provide insight into the
students’ learning process and be considered as an operationalised in-
dicator of extraneous processing. In particular, dwell times on irrele-
vant illustrations and on outside areas indicate inefficient visual scan-
ning (high extraneous processing) whereas dwell times on text and
relevant illustrations indicate efficient scanning (low extraneous pro-
cessing). Hypothesis 2 is that the integrated group will spend less dwell
time on irrelevant material and spend more time on processing relevant
material than the separated group.

As also can be seen in Table 1, a self-report item about the ease or
difficulty of learning experienced by the learner can be seen as a sub-
jective measure of extraneous processing. Hypothesis 3 is that the in-
tegrated group will produce a lower mean rating of how much difficulty
they experienced than the separated group.

In contrast, the self-report measure of mental effort and the EEG
measure of theta band activity is intended to provide an indication of
the overall level of cognitive effort. We expect students in both groups
to use their available cognitive capacity, with those in the integrated
group to mainly engage in appropriate cognitive processing (i.e., se-
lecting, organizing, and integrating) and those in the separated group to
divert some of the processing to extraneous processing (and away from
organizing and integrating). Thus, the groups could engage in equiva-
lent levels of cognitive effort, as would be indicated by no difference on
the self-report item that focuses on mental effort (hypothesis 4) and by
no significant difference in theta band power (hypothesis 5). In line
with hypothesis 3, it is expected that mean spectral power in the alpha
band frequency will be lower in the separated condition, because the
added extraneous processing will lead to higher levels of task difficulty,
which desynchronization of alpha activity has been shown to reflect
(hypothesis 6).

Which Learning Process Measures Are Diagnostic of Successful
Learning? Another way to validate learning process measures is to
compare subjective and objective measures for students who score high
versus low on learning outcome score after viewing a multimedia
lesson. In short, we wish to know which learning process scores are
diagnostic of learning outcome scores. This can be seen as a manip-
ulation of intrinsic cognitive load because it depends on the number of
elements that must be processed simultaneously in working memory
and the expertise of the learner (van Merrienboer & Sweller, 2005).
Therefore, a large number of interacting elements for one person might
be a single element for another more experienced person who has a
schema that incorporates the elements.

As mentioned, an increase in theta band power has been associated
with increased mental effort and increased working memory capacity.
Thus, it is expected that a significant increase in theta will be observed
for the high-performing students as we expect them to have invested
more mental effort and therefore managed to process more information
in working memory overall (hypothesis 7). Alpha band power is also
expected to be diagnostic of successful learning as alpha band power
has been empirically demonstrated to decrease with increased task
difficulty and increased semantic memory load (Fairclough & Venables,
2006; Puma et al., 2018). Alpha should be lower for low-performing
students, who are expected to have found the material more difficult
than high-performing students. Therefore, hypothesis 8 is that alpha
band power will be lower in the low-performing group than the high-
performing group.

Similarly, measures of ease of learning process such as indicated by
eye dwell times on relevant rather than irrelevant areas could be di-
agnostic because high-performing students have better executive con-
trol of their learning process (direction of attention etc.). Thus, high-
performing students should exhibit higher percentages of time spent
dwelling on relevant material than low-performing students (hypoth-
esis 9).

We expect subjective ratings of mental effort and experienced dif-
ficulty of learning to be diagnostic, with the high-performing group
reporting more mental effort (hypothesis 10) and experiencing lower
levels of perceived task difficulty than the low-performing group (hy-
pothesis 11).

2. Method

2.1. Participants and design

The sample consisted of 78 college students recruited from a
European university. The mean age was 23.59 years (SD=3.46) with a
range from 19 to 45. There were 47 women and 31 men. The mean
score on a prior knowledge survey was 3.35 (SD=2.40) out of 11
which indicates low prior knowledge. In a between-subjects design, 41
students served in the spatial contiguity (SC) group, which received an
integrated presentation, and 37 served in the no spatial contiguity
(NSC) group, which received a separated presentation. All participants
were required to be fluent in Danish and have normal vision without
the use of eyeglasses to avoid potential problems with the eye tracking
measures. The study protocol received IRB approval and was conducted
according to the Helsinki Declaration in which every participant re-
ceived both oral and written information about the study. The partici-
pants all gave written informed consent.

2.2. Procedure

Participants were randomly assigned to the SC or NSC group prior to
arriving at the experimental location. Students were tested individually
in a sound-proof learning lab at a European university. After giving the
participant initial information and the informed consent form the ex-
perimenter fitted the participant with the ABM EEG system, and gave
oral instructions on how to complete the following EEG benchmark.
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The experimenter left the room each time after instructions were pro-
vided, so the participant was alone in the room when the experimental
tasks were performed. The participant first completed the participant
questionnaire. Then, the participant was presented with the multimedia
lightning lesson corresponding to their assigned treatment group (SC or
NSC). Immediately after the lesson, the participant was administered
the retention test with a 4-min time limit and transfer test with 2min
allowed for each item. Finally, the participant completed the self-report
survey. The average run time for each participant was about 45min.
Each participant was compensated for their time with a gift card valued
at 100 Danish crowns (about 15 Euros) upon completion. The differ-
ence in sample sizes between the SC (n= 41) and NSC (n=37) con-
ditions occurred because approximately 11% of the respondents who
were scheduled did not show up to the experiment.

2.3. Materials and apparatus

The materials used in the study included a spatial contiguity version
of a multimedia lightning lesson (i.e., integrated presentation), no
spatial contiguity version of a multimedia lighting lesson (i.e., sepa-
rated presentation), participant questionnaire, retention test, transfer
test, and self-report survey designed to measure different forms of
cognitive load. All of the information was presented in Danish.
Furthermore, all of the materials were administered on a high-end
desktop computer and presented to the participants on an external 24-
inch computer monitor (HP EliteDisplay E232) with a resolution of
1920×1080 and a screen luminance of 250 lumen. Screen and am-
bient luminance in the lab was kept stable for all participants across
conditions. Students' eye movements were tracked by a Tobii eye-
tracking system (Tobii X2-30) and students’ brain activity was mon-
itored using a 9-channel AMB EEG headset system (B-Alert X10).

Multimedia lightning lessons. The two multimedia lessons con-
sisted of 16 PowerPoint slides describing how a lightning storm de-
velops based on materials used by Mayer and Moreno (1998). Each
slide contained an illustration and printed text. As shown in Fig. 1, for
the NSC lesson, the words were presented as a caption at the bottom of
the slide; whereas for the SC lesson, the words were presented next to
the corresponding part of the illustration. The length of time that a slide
was presented was determined based on previous literature that has
used this lesson and a pilot test where learners were presented with
each slide, and the time required to sufficiently process the information
was recorded. For each lesson, the total presentation was two and a half
minutes.

Participant questionnaire. The participant questionnaire solicited
demographic information including age and gender and asked about
prior knowledge of lightning. A prior knowledge rating was used in-
stead of a pretest to avoid signaling important content before beginning
the lesson (Mayer, 2014). The prior knowledge rating consisted of eight
items where the first one asked participants to rate their knowledge of
how lightning works with the categories: very high, somewhat high,
medium, somewhat low, very low. The other seven items asked students
to place a checkmark next to the things that they had done and included
items such as: “I know what AC and DC is” and “I know what this
symbol means” (followed by a symbol for cold front or warm front). The
Cronbach's alpha reliability of the prior knowledge measure was 0.77.

Retention and transfer test. The retention and transfer tests were
identical to the ones used in the original experiment by Mayer and
Moreno (1998). The retention test contained the following instructions
at the top of a blank Microsoft word sheet: “Please write down an ex-
planation of how lightning works.” This was followed by the instruc-
tions at the bottom of the sheet: “Please keep working until you are told
to stop.” Students were given 4min to work on this part of the test. The
transfer test consisted of the following four questions, each presented
on a separate sheet: “What could you do to decrease the intensity of
lightning?” “Suppose you see clouds in the sky, but no lightning. Why
not?” “What does air temperature have to do with lightning?” and

“What causes lightning?” Each of these questions was followed by the
text: “Please keep working until you are told to stop.” Participants were
given 2min to work on each transfer question. The Cronbach's alpha
reliability of the knowledge test was 0.73, and was calculated by
counting the number of major idea units in each of the 16 slides. The
inter-rater reliability of the retention and transfer tests was assessed by
comparing the scores from the two independent raters. An acceptable
correlation was obtained between the two ratings for the retention test
(r=0.818), and the transfer test (r=0.808). Therefore, the average of
the scores from the two raters is used in the subsequent analyses.

Self-report survey. The self-report survey consisted of rating items
intended to measure general cognitive load, and extraneous cognitive
load. The item for general cognitive load asked students to rate their
‘‘perceived amount of mental effort’’ in the lesson they just finished on a
9-point rating scale consisting of “I invested: 1. very, very low mental
effort/2. very low mental effort/3. low mental effort/4. rather low
mental effort/5. neither low nor high mental effort/6. rather high
mental effort/7. high mental effort/8. very high mental effort/9. very,
very high mental effort” and was based on Paas (1992). Reported effort
is seen as an index of general cognitive load (see Paas, Van
Merrienboer, & Adam, 1994, p. 420) and this item is commonly used in
the literature. One item was used with the intention of measuring ex-
traneous load (from Cierniak et al., 2009). The item asked participants
to: “Please choose the category (1, 2, 3, 4, 5, 6, 7, 8 or 9) that applies to
you: To learn from the lesson was 1. very, very easy/2. very easy/3.
easy/4. rather easy/5. neither easy nor difficult/6. rather difficult/7.
difficult/8. very difficult/9. very, very difficult”.

Measurements with EEG. The EEG data was collected using an
Advanced Brain Monitoring (ABM) X-10, wireless 9-channel EEG
system digitalized at 256 Hz. The X-10 records data in real-time from
nine Ag/AgCl electrodes spread across the scalp in accordance with the
International 10–20 electrode placement system (F3, Fz, F4, C3, Cz, C4,
P3, POz, P4), along with a linked mastoid reference. Impedances levels
were measured for all electrodes and were kept below ABM's re-
commendations of a 40 kOhm threshold (ABM, 2018).

In order to prepare the EEG signals for power spectral analysis, the
signals were first bandpass filtered between 0.5 Hz and 100 Hz and then
re-referenced to an average reference. A notch filter was then applied at
50 Hz to reduce the line noise that was visible in the spectra plot. After
initial filtering, the time-series domain of the signals were plotted and
visually inspected for excessive noise artifacts, which were then re-
jected. Following the manual visual artifact rejection, ICA was per-
formed specifically to remove components containing eye blinks and
horizontal eye movement artifacts. These processing steps were per-
formed using the open-source EEGLAB toolbox (Delorme & Makeig,
2004).

The Neurospec toolbox (Neurospec 2.0, Neurospec.org) was em-
ployed to extract the frequency-domain estimates of the signal from the
nine electrodes through a Discrete Fourier Transform (DFT) with a
Hanning window length of 2000ms specified as a segment length of 2ˆ9
and sample rate of 256. This defines a spacing of the Fourier fre-
quencies returned as 0.5 Hz (Bloomfield, 2000; Halliday et al., 1995;
Nielsen, Conway, Halliday, Perreault, & Hultborn, 2005). The signals
were normalized and log-transformed to reduce the potential unit
variance and distribution skew and to compute the log spectral density
estimates. Mean estimates for the alpha and theta bands were then
computed (decibel power/hz).

Measurements with Eye tracking. Binocular eye tracking data was
collected using a Tobii X2-30 recorded on the iMotions research soft-
ware platform. The Tobii X2-30 is a screen-based (also called remote or
desktop) eye tracker with a sampling frequency of 30 Hz and an oper-
ating distance between 40 and 90 cm. The continuously measured dis-
tance between the participants and the screen during the lesson was on
average 57.93 cm with a standard deviation of 3.41. Before the study
lesson started, each participant performed a nine-point gaze calibration
designed by Tobii, where they had to follow a white dot with their gaze
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around the screen. Students continued to the lesson when Tobii's cali-
bration validation stated that a good or excellent calibration had been
achieved based on their accuracy and precision thresholds. The
threshold for classifying a good calibration requires a mean distance of
measured gaze data from the target calibration point being μ(x,y)≤ 40
pixels, whereas an excellent-calibration necessitates a mean distance of
μ(x,y)≤ 20 pixels. Fig. 2 shows an example of the four areas of interests
(AOIs) that were defined and identified on each slide for both lessons:
(1) text, (2) cloud and warm/cold front illustration, (3) thermometer
illustration and (4) ground illustration. The three illustration AOIs were
further divided into two categories, relevant (2 and 3) and non-relevant
illustrations (4). The text used on the slides were written in Times New
Roman with a font size of 26.

The key measures were: percentage of time spent on text; percen-
tage of time-spent on relevant illustrations; percentage of time-spent on
non-relevant illustrations and percentage of time spent outside of AOIs.
The percentage of time spent measures were based on calculations of
how long a participant's gaze and fixations were recorded inside of the
AOIs compared to the total duration of the slides. Measures based on
gaze-location and fixations were calculated using a duration dispersion-
based algorithm, that continuously searches for gaze point inputs that
fall within 1-degree radius of each other for a minimum duration of
100ms. The fixation-centroid (x, y coordinates) is also recalculated
continuously as more gaze points are added to the fixation. The gaze
data and fixations were then compared to the location of the AOIs to
produce the fixation- and gaze-based measures mentioned above. The
percentage time spent measures are advocated to indicate the re-
spective dwell time within or outside the defined AOIs. Fixation counts
were not included as they are reflected in the dwell time-measures and
preliminary analysis revealed that these measures resulted in equiva-
lent conclusions. Eye tracking data quality, i.e. the amount of valid gaze
data that was recorded for all slides across both condition averaged
95.44% of the maximum amount of possible gaze data (30 inputs a
second). The gaze samples recorded that were deemed invalid are either
not within the valid coordinates on the screen, result of blinking or
participants looking away, or the participants temporarily moved out-
side of the operating viewing distance.

Data from the surveys, tests, the EEG, and the eye tacking data were
collected using the iMotions research software platform, which permits

synchronization of all of these measures and allows for accessible data
analysis of these measures (see iMotions.com for further information
regarding the platform). The data was exported to IBM SPSS version
23.0 for statistical analyses.

3. Results

3.1. Scoring

The ABM EEG did not work for three of the participants in the study
due to various technical issues; so, EEG measures of cognitive load were
only obtained for 75 participants. Data was available for all participants
for the other variables in the study. Two raters who were blind to the
treatment group of the participants independently scored the retention
and transfer tests. A retention score was computed for each participant
by counting the number of major idea units (out of 16 possible) that the
participant produced on the retention test. Each of the idea units was
linked to the main idea of one of the 16 slides in the multimedia lesson.
The list of acceptable answers was based on the original article by
Mayer and Moreno (1998). Answers on the transfer test were coded for
correct answers, based on an acceptable list of answers generated by
Mayer and Moreno (1998). The sample was divided at the median into
high and low performers by combining the transfer and retention tests.
The tests were combined by transforming the scores on each test to a z-
score and summing them together.

3.2. Did the groups differ on basic characteristics?

A preliminary step is to determine whether the SC and NSC groups
were equivalent on basic characteristics. Based on t-tests, the groups did
not differ significantly on mean age, t (76)= 0.599, p= .551, or mean
prior knowledge score, t (76)= 0.867, p= .389, and based on a chi-
square test, X2 (2, N= 78)=0.744, p= .819, the groups did not differ
significantly in the proportion of men and women. We conclude that the
groups did not differ on basic characteristics that existed before the
start of the experiment.

Fig. 2. An illustration of the four AOIs from slide 4 in the SC-condition.
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3.3. Which Learning Outcome Measures Are Sensitive to extraneous
cognitive load?

Hypothesis 1 is that the SC group would perform better on the
transfer test than the NSC group but not necessarily on the retention
test. The top line of Table 2 shows the mean (and SD) for each group on
the transfer test. Consistent with predictions, the SC group (M=5.17,
SD=3.32) scored significantly higher than the NSC group (M=3.62,
SD=3.05) on the transfer test, t (76)= 2.14, p= .036, d=0.49. Line
two in Table 2 shows that the superiority of the SC group (M=13.07,
SD=5.97) over the NSC group (M=12.14, SD=6.07) did not reach
statistical significance on the retention test, t (76)= 0.687, p= .494,
d=0.15. These results replicate previous findings supporting the spa-
tial contiguity effect and are consistent with the idea that placing words
next to corresponding parts of the illustration helps promote deeper
learning of the material. We conclude that hypothesis 1 was supported.

Hypothesis 2 is that the integrated group would spend less time on
irrelevant parts of the lesson but spend more time on the relevant parts
of the lesson compared to the separated group. A one-way multivariate
analysis of variance (MANOVA) was conducted to test the hypothesis
that there would be one or more mean differences between the SC and
NSC students on the four eye tracking variables. A statistically sig-
nificant MANOVA effect was obtained, Pillais' Trace=0.282, F(3,
74) = 9.687, p < .001. The multivariate effect size was 0.282, which
implies that 28.2% of the variance in the canonically derived dependent
variables was accounted for. A series of one-way ANOVA's on each of
the four dependent variables was conducted as follow-up tests to the
MANOVA. Significant one-way ANOVA's were obtained for time spent
on text F(1, 76)= 7.930, p= .006, time spent on irrelevant illustrations
F(1, 76) = 23.279, p < .001, and time spent outside AOIs F(1,
76) = 5.524, p= .021, but the difference was not significant on time
spent on relevant illustrations F(1, 76)= 0.025, p= .875. The next four
lines in Table 2 show that the SC group (M=72.60%, SD=8.65) spent
a significantly higher percentage of time looking at the text than the
NSC group (M=65.71%, SD=12.76); the NSC group (M=5.42%,
SD=2.29) spent a significantly higher percentage of time looking at
the non-relevant parts of the illustration than the SC group (M=3.18,
SD=1.78); the NSC group (M=19.02, SD=11.52) spent significantly
more time looking outside of the AOIs compared to the SC group
(M=14.20, SD=6.03), but the superiority of the SC group
(M=10.01%, SD=4.19) compared to the NSC group (M=9.85%,
SD=5.01) in percentage of time spent looking at the relevant parts of
the illustration did not reach statistical significance. We conclude that

hypothesis 2 concerning the use of eye tracking as an objective measure
of understanding the differences between SC and NSC groups was
partially supported.

Hypothesis 3 is that the integrated group would produce a lower
mean rating of how much difficulty they experienced compared to the
separated group. The next line in Table 2 shows the mean self-rating
(and SD) on the subjective experienced difficulty (extraneous load)
item. As predicted, the t-test indicated that the NSC group (M=5.89,
SD=1.81) reported that they experienced significantly greater diffi-
culty than the SC group (M=4.88, SD=1.73), t (76)= 2.527,
p= .014, d=0.57. We conclude that hypothesis 3 concerning a sub-
jective measure of extraneous load was supported.

Hypothesis 4 is that the groups were not expected to differ on the
self-report item that focuses on effort. The final line in Table 2 shows
that the groups did not differ significantly on mental effort, t
(76)= 0.248, p= .805, d=0.06. We conclude that hypothesis 4 con-
cerning self-reported mental effort was supported.

Hypothesis 5 is that there would not be significant differences in
theta band activity between the SC and NSC groups. A one-way mul-
tivariate analysis of variance (MANOVA) was conducted to test the
hypothesis that there would be one or more mean differences between
the SC and NSC group on the 9 electrodes for the mean theta waves. The
MANOVA was not significant, Pillais’ Trace=0.112, F(9, 75)= 0.911,
p= .521. Table 3 reports the mean (and SD) theta and alpha values for
each group. We conclude that hypothesis 5 that there would be no
difference on theta band activity between the groups was supported.

Hypothesis 6 is that there would be significant differences in alpha
band activity between the SC and NSC groups. A one-way multivariate
analysis of variance (MANOVA) was conducted to test this hypothesis.
The MANOVA for alpha waves was not significant, Pillais’
Trace=0.134, F(9, 75) = 1.119, p= .363. We conclude that hypothesis
5 concerning the use of alpha band activity as an objective measure of
extraneous processing was not supported.

3.4. Which Learning Process Measures Are Diagnostic of Successful
Learning?

Hypothesis 7 is that there would be significant differences in theta
band activity between high and low performing students. A one-way

Table 2
Means, SD, P-values, and effect sizes for the tests, eye tracking data, and cog-
nitive load measures by learning condition.

Variables SC (n= 41) NSC (n= 37) p-value d

Tests Mean SD Mean SD

Transfer 5.17 3.32 3.62 3.05 .036 .49
Retention 13.07 5.97 12.14 6.07 .494 .15

Eye tracking

% time text 72.60% 8.65 65.71% 12.76 .006 .64
% time relevant illustrations 10.01% 4.19 9.85% 5.01 .875 .03
% time non-relevant

illustration
3.18% 1.78 5.42% 2.29 .000 1.10

% time outside AOIs 14.20% 6.03 19.02% 11.52 .021 .55

Self-report

Experienced difficulty 4.88 1.73 5.89 1.81 .014 .57
Mental effort 5.32 1.65 5.41 1.48 .805 .06

Note. SC= spatial contiguity group; NSC=non-spatial contiguity group;
AOI= area of interest; Bold font indicates significant effect at p < .05.

Table 3
Mean theta and alpha band values by learning condition.

Variables SC (n= 40) NSC (n= 35) p-value d

Theta Mean SD Mean SD

POZ −0.12 0.12 −0.10 0.11 0.358 0.012
FZ −0.09 0.14 −0.12 0.12 0.348 0.012
CZ −0.04 0.11 −0.05 0.09 0.449 0.008
C3 −0.26 0.11 −0.24 0.12 0.426 0.009
C4 −0.28 0.12 −0.26 0.11 0.485 0.007
F3 −0.31 0.13 −0.29 0.13 0.445 0.008
F4 −0.35 0.16 −0.33 0.16 0.505 0.006
P3 −0.13 0.09 −0.13 0.10 0.771 0.001
P4 −0.11 0.12 −0.10 0.11 0.682 0.002

Alpha

POZ −0.27 0.18 −0.28 0.14 0.826 0.001
FZ −0.37 0.15 −0.43 0.14 0.069 0.045
CZ −0.32 0.14 −0.36 0.13 0.210 0.021
C3 −0.42 0.19 −0.45 0.17 0.470 0.007
C4 −0.44 0.19 −0.44 0.18 0.884 0.000
F3 −0.55 0.21 −0.58 0.20 0.532 0.005
F4 −0.61 0.24 −0.62 0.23 0.835 0.001
P3 −0.26 0.14 −0.30 0.13 0.216 0.021
P4 −0.23 0.16 −0.27 0.15 0.306 0.014

Note. SC= spatial contiguity group; NSC=non-spatial contiguity group; Alpha
(8–12 hz); Theta (4–8hz).
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multivariate analysis of variance (MANOVA) was conducted to test this
hypothesis. The MANOVA was not significant, Pillais’ Trace= 0.150,
F(9, 75)= 1.271, p= .270. We conclude that hypothesis 7 concerning
the use theta band activity as an objective measure of intrinsic cognitive
load was not supported.

Hypothesis 8 is that there would be significant differences in alpha
band activity between high and low performing students. A one-way
multivariate analysis of variance (MANOVA) was conducted to test this
hypothesis. A statistically significant MANOVA effect was obtained for
alpha band activity, Pillais' Trace= 0.241, F(9, 75)= 2.294, p= .026.
The multivariate effect size was 0.241, which implies that 24.1% of the
variance in the canonically derived dependent variables was accounted
for. As expected, the alpha power band activity was higher for the high
performing students compared to the low performing students in-
dicating higher intrinsic cognitive load (see Table 4). A series of one-
way ANOVA's on each of the nine dependent variables was conducted
as follow-up tests to the MANOVA. Significant differences were ob-
tained for six electrodes including POZ F(1, 73)= 4.842, p= .031; FZ
F(1, 73)= 4.203, p= .044; CZ F(1, 73)= 7.452; p= .008; F3 F(1,
73) = 4.265, p= .042; F4 F(1, 73)= 7.347, p= .008; P4 F(1, 73)= 5.835,
p= .018. We conclude that the hypothesis 8 concerning the use of
alpha band activity as an objective measure of intrinsic cognitive load
was partially supported.

Hypothesis 9 is that high performing students would spend less time
on irrelevant parts of the lesson but spend more time on the relevant
parts of the lesson compared to the separated group. The means and
standard deviations for the different groups are presented in Table 5. A
one-way multivariate analysis of variance (MANOVA) was conducted to
test the hypothesis that there would be one or more mean differences
between the SC and NSC students on the four eye tracking variables.
The MANOVA was not significant, Pillais’ Trace=0.077, F(3,
74) = 2.070, p= .111. We conclude that the hypothesis 9 concerning
the use of eye tracking as a process measure to understand the differ-
ences between high and low-performing students was not supported.

Hypotheses 10 and 11 are that the higher-performing group would
produce lower ratings of experienced difficulty and mental effort than
the lower-performing group. The two bottom lines of Table 5 indicate
that the higher performing group (M=4.91, SD=1.84) reported sig-
nificantly lower experienced difficulty (extraneous load) compared to

the lower-performing group (M=5.91, SD=1.69), t (76)= 2.498,
p= .015, d=0.56. This finding supports hypothesis 10 indicating that
experienced difficulty is sensitive to intrinsic cognitive load. However,
the difference between the two groups on mental effort was not sig-
nificant t (76)= 0.248, p= .805, d=0.06. We conclude that hypoth-
esis 11 was not supported.

4. Discussion

This study is the first to our knowledge to jointly use EEG, eye
tracking, and self-report measures of learning process to investigate the
mechanisms underlying the spatial contiguity effect. In particular, this
is the first study to investigate the degree to which each of these sub-
jective and objective measures would be sensitive to this cognitive load
manipulations across groups. The results of the study suggest that the
use of different process measures can provide a better understanding of
the fundamental mechanisms underlying multimedia learning by illu-
minating different aspects of cognitive processing during learning.
More specifically, we found that self-report as well as eye-tracking
measures were diagnostic of extraneous cognitive load imposed on the
lesson based on the special contiguity effect. Alternatively, self-report
ratings as well as EEG alpha band activity were diagnostic of intrinsic
cognitive load which was manipulated based on differences between
high- and low-performance learners.

While many of the findings in this study were consistent with pre-
vious research, there were also several important discrepancies. The
finding that the SC group scored significantly higher than the NSC
group on transfer tests, but not on retention tests is consistent with
previous research such as Johnson and Mayer (2012). This reaffirms
that transfer tests can provide an indirect measure of extraneous pro-
cessing during learning. The higher transfer score is assumed to be
caused by differences in extraneous processing between the SC and NSC
groups, in which learners in the SC group could use their limited ca-
pacity for making sense of the material rather than spending resources
on extraneous processing.

While the use of spectral power in alpha and theta frequencies
ranges is well-substantiated as an index of cognitive load in general,
this study found that significant changes in alpha band power was only
induced when intrinsic processing load was manipulated and not when
extraneous processing load was manipulated. This could indicate that
alpha is not necessarily associated with all types of task difficulty as
significant differences in perceived task difficulty was reported for both
the manipulations (NSC-SC condition and the high-low-learner group),

Table 4
Mean theta and alpha band values for the high- and low-performing students.

Variables High (n= 37) Low (n= 38) p-value d

Theta Mean SD Mean SD

POZ −0.10 0.09 −0.12 0.14 0.669 0.003
FZ −0.10 0.11 −0.11 0.15 0.929 0.000
CZ −0.04 0.10 −0.04 0.11 0.972 0.000
C3 −0.27 0.09 −0.24 0.13 0.310 0.014
C4 −0.29 0.10 −0.25 0.13 0.172 0.025
F3 −0.29 0.12 −0.30 0.15 0.698 0.002
F4 −0.32 0.14 −0.35 0.17 0.399 0.010
P3 −0.13 0.10 −0.13 0.10 0.772 0.001
P4 −0.11 0.11 −0.11 0.12 0.975 0.000

Alpha

POZ −0.24 0.13 −0.32 0.18 0.031 0.062
FZ −0.36 0.14 −0.43 0.15 0.044 0.054
CZ −0.30 0.15 −0.38 0.11 0.008 0.093
C3 −0.40 0.18 −0.47 0.17 0.100 0.037
C4 −0.40 0.17 −0.48 0.20 0.051 0.051
F3 −0.51 0.19 −0.61 0.21 0.042 0.055
F4 −0.54 0.22 −0.68 0.24 0.008 0.091
P3 −0.26 0.15 −0.29 0.12 0.271 0.017
P4 −0.21 0.15 −0.29 0.15 0.018 0.074

Note. Alpha (8–12 hz); Theta (4–8hz); Bold font indicates significant effect at
p < .05.

Table 5
Means. SD. P-values. And effect sizes for the cognitive load measures for the
high- and low-performing students.

Variables Learning score

High (n= 39) Low (n=39) p d

Tests Mean SD Mean SD

Eye tracking

% time text 69.33 11.26 68.94 12.96 .763 .03
% time relevant illustrations 10.75 4.57 9.12 4.48 .114 .36
% time non-relevant

illustration
3.88 1.88 4.60 2.67 .172 .32

% time outside AOIs 15.64 7.99 17.33 10.52 .425 .18

Self-report

Experienced difficulty 4.91 1.84 5.91 1.69 .015 .56
Mental effort 5.40 1.47 5.31 1.69 .821 .06

Note. AOI= area of interest; Low= students who performed below the median
on posttests; high= students who performed above the median on posttests.
Bold font indicates significant effect at p < .05.
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but alpha power was specifically related to changes in difficulty with
intrinsic semantic processing tasks (high-low learner group).

Increases in theta band activity have been established to reflect
mental effort across several studies (Klimesch, 1996; Klimesch, 1997;
Klimesch, 1999). It was therefore hypothesized that no differences
would be observed in theta band activity between NSC and SC as the
students were expected to invest equal amounts of mental efforts in the
task. This hypothesis was supported. The self-reported ratings for
mental effort supported the underlying rational for this hypothesis by
demonstrating that there were no differences in perceived mental effort
invested across these conditions. When comparing the high and low
learning groups, it was hypothesised that a significant increase in theta
activity in the high-performance group would be observed. This is be-
cause we expected that their higher learning outcomes could be at-
tributed to the investment of more mental effort. However, this hy-
pothesis was not supported. A possible explanation for this finding
could be that the self-report ratings of perceived mental effort between
high and low learners did not differ as we had expected and as such if
theta is a measure of mental effort then no differences should be ex-
pected.

Eye-tracking technology allows for objective measures and visuali-
zation of cognitive processing during learning. In accordance with both
Johnson and Mayer (2012) and Schmidt-Weigand et al. (2010),
learning was largely text-directed in that much more time was directed
at the text compared to the illustrations for both groups. However,
unlike these two studies the SC group in this study spent significantly
more time on the text compared to the NSC group, yet there was no
difference in proportion of time spent looking at the relevant part of the
illustration. Conversely, the NSC group spent significantly more time on
non-relevant parts of the illustration and they spent significantly more
time outside of the AOIs compared to the SC group. Therefore, eye
tracking data provides a clear picture that the spatial contiguity prin-
ciple causes students to spend more time looking at the relevant parts of
a multimedia lesson while the lack of spatial contiguity results in stu-
dents spending time and effort focusing on irrelevant information. This
pattern eye-tracking data is consistent with the idea that NSC group
engaged in more extraneous processing that the SC group. The eye
tracking measures were surprisingly not related to differences between
high- and low-performance students. This indicates that the differences
between the groups did not come from different viewing patterns but
rather from different cognitive processes. Those processes have pre-
viously been linked to the observed changes in alpha activity like at-
tention allocation, task difficulty and semantic memory load (searching,
accessing and retrieval of useful information from long-term memory).

The only significant difference between the two groups on the
subjective cognitive load measures was on the self-reported extraneous
cognitive load (experienced difficulty). This is consistent with the idea
that a reduction in extraneous cognitive load might be the primary
marker of the effectiveness of spatial contiguity. The group of students
who learned most also report that it was easier to learn from the lesson,
however there were no differences on the self-report measure of mental
effort indicating that students in both groups put in equal effort in the
lesson.

4.1. Theoretical implications

The findings in the study demonstrate that objective measures of
cognitive processing during learning have something useful to con-
tribute to understanding the mechanisms underlying instructional fea-
tures supposed to affect extraneous cognitive load and intrinsic cogni-
tive load. This is consistent with the notion that cognitive load is a
multifaceted construct as proposed by Sweller et al. (2011) and Mayer
(2009), rather than a unidimensional construct, reflecting an overall
amount of cognitive resources allocated to a task. There are various
debates about this conceptualization of cognitive load and questions
regarding whether the different types of cognitive load can be

distinguished and measured (De Jong, 2010). From a theoretical per-
spective the use of process measures such as eye tracking and EEG
provide a framework to investigate the process by which intrinsic and
extraneous cognitive load impact demands on working memory. The
results in this study suggest that the working memory demand that is
induced from the difficulty of the material (intrinsic cognitive load)
may be different from that induced from poor instructional design
(extraneous cognitive load).

4.2. Practical implications

Being able to measure cognitive load continuously would provide
instructional designers with valuable information that could allow them
to design learning material optimally for an individual or a group of
students. An ultimate instructional goal would be an instantaneous
assessment of cognitive load leading to an immediate online adaptation
of instructional material in cases where learners are getting over-
whelmed by the difficulty; or bored because the material is too easy
compared to their current working memory capacity (Gerjets et al.,
2014). This would allow all students to work at their zone of proximal
development (Csikszentmihalyi, 1990). Valid measurement techniques
that continuously, unobtrusively, and accurately assess cognitive load
are necessary for reaching this goal. However, the results in this study
provide initial evidence that EEG and eye tracking have potential to
obtain this goal. More specifically, this study provides tentative prac-
tical insights that EEG and eye tracking measures of learning processes
might be sensitive to different types of cognitive load. Specifically,
alpha band activity demonstrated sensitivity towards intrinsic load and
eye tracking measures of AOI dwell times showed differences when
extraneous processing was manipulated.

4.3. Limitations and future directions

There are several important limitations and future directions that
need to be considered given that the use of process measures such as
EEG and eye tracking in multimedia research is relatively novel. A
challenge to this field of study is that cognitive load is hypothesised to
be a multifaceted construct including intrinsic and extraneous load
(Sweller et al., 2011). Different forms of cognitive load contribute dif-
ferently to learning and are, therefore, highly relevant to distinguish
(De Jong, 2010). At this stage, most of the research in this field has
focused on the feasibility of measuring cognitive load with EEG and not
to distinguish between intrinsic and extraneous load which is necessary
to have a real impact on the science of learning. The research that has
identified alpha and theta band activity as potential measure of cog-
nitive load has varied in terms of the interpretations related to the
specific cognitive processes that these frequency bands are sensitive to.
Therefore, more research using experiments that isolate different forms
of cognitive load and investigate whether process measures are sensi-
tive to them is needed.

A limitation to using realistic learning tasks such as the ones used in
this study is that they may introduce potential confounds such as dif-
ferent perceptual or motor requirements which can impact the metrics
from EEG. Consequently, future research should combine experiments
from realistic learning tasks with tasks from working memory research
to obtain more comprehensive evaluations of the validity of the process
measures that are used. Furthermore, this study and previous research
suggests that eye tracking and EEG might be valuable tools for assessing
students’ cognitive processing during learning. However, more research
is needed that investigates the generalisability across multiple learning
interactions such as reading, lectures, or using a virtual learning si-
mulation in a domain-independent fashion.

In this study we used eye tracking as a process measure of learning,
and a limitation in this study was the use of a fairly slow eye tracker
(30 Hz). Future research should investigate the use of other metrics that
have been related to cognitive load including saccadic distance (e.g.,
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Inamdar & Pomplun, 2003; Kane, Bleckley, Conway, & Engle, 2001;
Litchfield & Ball, 2011; Phillips & Edelman, 2008; Theeuwes,
Belopolsky, & Olivers, 2009; Godijn & Theeuwes, 2011) as this was not
pursued in this study due to reliability concerns regarding saccade ex-
traction given the low sampling rate of our eye tracker and the low
duration and high velocity of saccades.

A future potential limitation in this study was the use of single item
self-report measures. These were used because they are the most com-
monly used measures of cognitive load in multimedia learning. Future
research should investigate if the results from this study generalize
when psychometrically validated scales (e.g., Leppink, Paas, Van der
Vleuten, Van Gog, & Van Merriënboer, 2013) are used to measure dif-
ferent types of cognitive load. In general, future research should use
subjective and objective process measures of cognitive processing while
learning to investigate the mechanisms underlying other instructional
design principles.
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