
1Applied Intuition — Building Safe Autonomous Systems |

1 ST E D I T I ON • J U LY 2022

Building Safe
Autonomous
Systems
Handbook for the verification and validation
(V&V) of autonomous systems

https://www.appliedintuition.com/

2Applied Intuition — Building Safe Autonomous Systems | Table of Contents

Contents
Executive Summary ... 3

Introduction ... 5
A. The challenge of autonomous system validation 5

B. Regulatory landscape 5

I. Safety Framework Best Practices ... 7
A. Safety-oriented design 8

B. Functional safety (ISO 26262) 8

C. Safety of the intended functionality (ISO 21448) 9

D. Evidence-based safety 9

E. Safety governance and culture 10

F. Safe operations 11

II. V&V Best Practices ... 12
A. V&V lifecycle 12

B. Stages of V&V 13

C. Processes and people 15
Managing product development processes 15
Productionizing a release validation process 17
Establishing a safety governance board 18

D. Requirements management and traceability 18
Defining requirements and the ODD 18
Managing requirements 19
Setting up requirements traceability 20

E. Scenario creation 20
Crafting a comprehensive scenario library 20
Defining evaluation criteria and metrics 22
Maintaining scenario health over time 22

F. Test execution 23
Using each test environment effectively 23
Combating combinatorial explosion in scenario-based testing 26

G. Analytics and reporting 28
Defining and measuring coverage 28
Analyzing performance 31

Conclusion .. 33

Glossary ... 34

3Applied Intuition — Building Safe Autonomous Systems | Executive Summary

Executive Summary
A. Challenge
Safely developing and deploying autonomous systems is a
challenging task. Autonomy programs need to define and
follow a rigorous verification & validation (V&V) process
to ensure the safety of the systems they develop. The
V&V process helps teams test their autonomous systems
against design requirements in different environments,
including real-world testing, test track testing, simulation,
and more. Unfortunately, autonomous systems are
especially complex due to the unbounded conditions they
need to handle safely in their operational space. On top
of that, there is limited regulatory guidance surrounding
autonomous system safety and how programs can work
towards safe commercial deployment. As a result of these
challenges, some autonomy programs are hesitant to
invest in V&V early on in their development, hoping that
it will get easier to establish V&V processes once their
system is developed further. However, those programs
might overlook that foundational development and testing
practices are best established jointly. By setting up the right
foundations early and maturing V&V processes over time,
teams can develop autonomous systems more efficiently
against clearly defined goals, avoid delays, and achieve a
safer, more performant end product.

B. Goals
Robust V&V as critical as functionality development itself.
When defining a development and validation strategy,
autonomy programs should strive towards two goals:
I. Establish a safety framework: Outline which safety

principles to follow. A safety framework can later
help an autonomy program build its safety case (i.e.,
a structured argument that justifies the safety of the
autonomous system) to build trust among regulators
and the general public that the performance of the
autonomous system is validated and minimizes harm
to an acceptable level.

II. Implement comprehensive V&V processes: Set up a
robust set of processes to validate a safe product in a
reasonable time span.

This handbook aims to provide autonomy programs with
principles to consider for their safety framework (I. Safety
Framework Best Practices) and best practices for setting
up their V&V processes (II. V&V Best Practices).

The first part of this handbook (I. Safety Framework Best
Practices) defines six core principles, which we propose
autonomy programs adopt as the foundation of their safety
frameworks. These principles prescribe that the product
is safely designed, is functionally safe, accounts for the
safety of the intended function, demonstrates evidence-
based safety, is produced by a program with a strong
safety governance structure and culture, and is safely
operated. By following this framework, programs will have
rigorous data, traceability, and documentation to convince
themselves, regulators, and the general public that their
autonomous system is safe enough to be deployed
commercially.

The second part of this handbook (II. V&V Best Practices)
provides a practical guide for implementation that autonomy
programs can refer back to throughout development
and validation. This part aims to be an active reference
whenever programs need advice on core topics, including
how to:
I. Set up a hybrid between the V-model and the agile

product development processes.
II. Set up a formal release validation process and safety

governance board.
III. Build a comprehensive simulation scenario library.
IV. Use simulation, track, and real-world test environments;

perform scenario-based testing economically and
effectively.

V. Determine whether the system is safe enough to be
deployed without comprehensively testing every
possible aspect of the operational design domain
(ODD).

Applied Intuition has leveraged its unique position in

4Applied Intuition — Building Safe Autonomous Systems | Executive Summary

the autonomy industry to create this handbook. Over
the years, our team has acquired extensive industry
experience, worked with customers to help them progress
towards their validation and safety goals, tracked the latest
research, collaborated with regulators and standardization
committees, and developed new tools and processes to
support our customers.

This handbook serves as an evolving resource for
autonomy programs to define their safety framework and
then implement V&V best practices to safely develop, test,
and deploy autonomous systems for commercialization. It
also aims to spark conversations with stakeholders across
the industry. We look forward to these conversations and
welcome feedback for future iterations of this handbook.

C. Preview
Below are only a few examples of the topics that readers
can learn about in this handbook.

Stages of V&V
Autonomy programs can be in different stages of their
development and validation efforts. The Stages of V&V
section of this handbook lays out what early-, mid-, and
late-stage autonomy programs might look like across
various V&V dimensions such as safety governance
structure, safety case, release validation process,
requirements management, test methods, coverage
analysis, and performance analysis.

After Stages of V&V, subsequent sections of this handbook
lay out best practices for early-, mid-, and late-stage
autonomy programs separately.

Coverage
The Defining and measuring coverage section of this
handbook covers how to qualitatively and quantitatively
determine if autonomy programs have tested their systems
enough. The section defines coverage as the ratio between
what is known and tested on the one hand, and the total
space of possible situations that the system may find itself
in on the other.

While it is useful to measure coverage according to the
number of tests of each capability, scenario category, and
requirement, this section discusses an approach based on
the ODD definition. Using an ODD taxonomy, where the
ODD is defined using a set of attributes and parameters,
programs can assess coverage at the ODD level, allowing
for a semantic understanding of what types of scenarios
need additional coverage. The section concludes with
a discussion of statistical coverage metrics that assess
coverage more rigorously from an information theory
perspective as well as the key benefits of measuring and
assessing coverage at the program level.

Scenario creation
The Scenario creation section of this handbook shows
how autonomy programs typically approach scenario
creation depending on their development stage. Early-
stage autonomy programs usually focus on building broad
coverage across requirements and scenario categories.
Once they have built broad coverage, later-stage teams
focus on collecting and generating edge case scenarios
and expanding into new domains.

Taking procedural aspects of the test case aside, what
changes a scenario into a test case is the specification
of evaluation criteria that test the system’s performance.
Autonomy programs should track a measurable, overall
pass/fail outcome for each test case. This outcome is a
composite of key competency, safety, and comfort factors,
where all non-optional evaluation rules must pass, with the
ability to dig into each of them and their underlying metrics.
The Defining evaluation criteria and metrics subsection
lists out metrics and evaluation criteria that teams should
assess for their test cases.

5Applied Intuition — Building Safe Autonomous Systems | Executive Summary

Introduction
A. The challenge of autonomous
system validation
Autonomy programs need to demonstrate to themselves,
to regulatory agencies, and to the general public that their
autonomous systems are trustworthy and safe to use.
Robust and comprehensive V&V processes that fulfill these
regulatory guidelines are thus critical for the successful
development and commercialization of autonomous
systems. However, unlike established fields such as the
traditional automotive, aviation, and aerospace industries,
autonomous system V&V is an emerging field that
faces more complex challenges. New advanced driver-
assistance systems (ADAS) (i.e., SAE Level 1-2 systems)
and automated driving systems (ADS) (i.e., SAE Level
3-5 systems) target complex ODDs and are expected to
handle more scenarios than can be verified with a finite set
of tests. As a result, there will always exist the possibility
of unknown hazards that might not be captured in an
autonomous system’s preliminary design and that have not
been tested for. Although ADAS and ADS have extensive
hardware components, software V&V thus poses new
problems due to the complex and much larger operational
space.

B. Regulatory landscape
At the time of writing, there are relatively lightweight
but evolving frameworks for the regulation of ADAS and
ADS. The following overview describes the autonomy
regulatory landscape at a high level. The descriptions
of various frameworks below summarize the current
state of regulatory programs, but they are by no means
comprehensive.

U.S. regulatory landscape:
Automated driving systems (ADS)
It is the responsibility of each autonomy program to
validate its ADS properly. Current regulatory guidance
hints at adopting V&V methodologies during the production
and post-production phases of ADS development. While
federal regulatory guidance exists to a certain degree, it

is often unclear which specific methodologies autonomy
programs should adhere to when validating their ADS.

For example, in the aviation industry, the U.S. Federal
Aviation Administration (FAA) prescribes specific industry
standards and requires aircraft manufacturers to obtain
certifications according to those standards. In comparison,
the U.S. National Highway Traffic Safety Administration
(NHTSA) does not currently require autonomy programs to
comply with any functional or system safety regulations for
ADS. Instead, NHTSA allows the “self-certification” of ADS
through voluntary safety self-assessments (VSSAs) that
are made available to the public by ADS developers and
manufacturers themselves or through the NHTSA website.
NHTSA’s VSSA template suggests—but does not require—
information that autonomy programs can use to summarize
their approach to addressing safety. NHTSA does retain
the authority to enforce against any motor vehicle or
motor vehicle equipment that poses an “unreasonable risk
to safety” through the traditional safety recall process,
and has done so on one occasion with respect to an ADS
developer.

While the federal government regulates the design,
construction, and performance of motor vehicles, state
governments have specific authority to regulate the
operation of motor vehicles, which includes issues such
as licensing drivers, traffic enforcement, insurance,
and registering vehicles. In the absence of federal
regulations governing autonomous vehicle safety, many
state governments have begun regulating the operation
of ADS on their own roadways through guidelines, state
laws, and executive orders. The National Conference of
State Legislatures maintains a database of enacted state
legislation and executive actions.

U.S. regulatory landscape: Advanced driver-
assistance systems (ADAS)

https://www.sae.org/blog/sae-j3016-update
https://www.sae.org/blog/sae-j3016-update
https://www.sae.org/blog/sae-j3016-update
https://www.nhtsa.gov/automated-driving-systems/voluntary-safety-self-assessment
https://www.ncsl.org/research/transportation/autonomous-vehicles-legislative-database.aspx

6Applied Intuition — Building Safe Autonomous Systems | Executive Summary

In comparison to ADS, NHTSA has defined more specific
guidelines for ADAS functions such as automatic
emergency braking (AEB), traffic jam assist, and blind-
spot intervention, and the agency continues to advance
rulemakings to regulate crash avoidance technologies (e.g.,
AEB for heavy-duty vehicles). NHTSA provides prescriptive
test protocols for these ADAS functions in the form of
specific initial and ending test conditions and descriptions
of scenarios and evaluation criteria that autonomy
programs should use. Unfortunately, these test protocols
are only incomplete lists of possible functional tests. They
do not cover all possible situations an ADAS function might
encounter in an ODD. Hence, autonomy programs can only
use these test protocols to measure whether their ADAS
system can functionally meet a federally recommended
baseline level of performance.

Autonomy programs cannot utilize NHTSA’s test protocols
to comprehensively ensure an ADAS’ safety for all possible
conditions during its operation. Similarly, the New Car
Assessment Program (NCAP) also provides test protocols
for ADAS functions such as AEB, and it is still evolving. For
example, in March 2022, NHTSA released a request for
comments regarding the evaluation of new ADAS functions.
However, these test protocols also only provide examples
of functional tests instead of listing all possible scenarios
that an ADAS function could encounter in an ODD.

Global guidance
Most global regulations on autonomous systems concern
ADAS, but some include ADS as well. In the summer of
2021, Germany passed a law on Level 4 (L4) autonomous
systems. This law is an amendment to the “Road Traffic
Act and Compulsory Insurance Act - Act on Autonomous
Driving” that allows the usage of ADS in approved, defined
operating areas. China, Japan, and Europe have similar
regulations and standards surrounding the testing of
ADS—even some that touch on the testing of artificial
intelligence systems.

United Nations (UN) regulation No. 157 on automated
lane-keeping systems (ALKS) is the most notable one. This
regulation, which is approved by 42 countries, specifies

some of the requirements and testing methods for Level
3 (L3) ALKS system compliance. In May 2022, Mercedes-
Benz was the first automotive company to receive approval
from the German government to let consumers operate
L3 systems on public roads. In April 2022, the European
Union (EU) released draft ADS legislation, which proposes
uniform procedures and technical specifications for the
type approval of “fully automated vehicles.” As part of
the type approval application, ADS manufacturers would
be required to provide documentation to type approval
authorities of its “safety concept” demonstrating the
safety of the ADS. However, these requirements are not
yet in force.

The concern with existing global regulations is the same
as for U.S. regulations: While they define high-level
requirements, intended operating conditions, and test
scenarios, they do not provide a comprehensive set of test
cases, evaluation criteria, and validation methodologies
necessary to ensure the safety of an autonomous system.
Autonomy programs still need to rigorously construct an
argument for why their system is safe and complies with
each pertinent regulation, especially since it is impossible
for any regulatory body to enumerate every possible
scenario an autonomous vehicle could encounter and thus
should handle safely. Hence, autonomy programs often
find additional value in analyzing and referencing standards
such as Underwriters Laboratories (UL) 4600, the various
best practice documents by the Automated Vehicle Safety
Consortium (AVSC), the Society of Automotive Engineers
(SAE) J3018, and the various International Organization
for Standardization (ISO) standards (e.g., ISO 21448, ISO
26262) in building out a formal argument for safety.

https://www.govinfo.gov/content/pkg/FR-2022-03-09/pdf/2022-04894.pdf
https://www.govinfo.gov/content/pkg/FR-2022-03-09/pdf/2022-04894.pdf
https://insideevs.com/news/584686/mercedes-level-3-autonomous-tech-launch-germany/

7Applied Intuition — Building Safe Autonomous Systems | Safety Framework Best Practices

I. Safety Framework
Best Practices

Figure 1: Core principles that every autonomy program should adopt as part of its safety framework

The lack of clear regulatory guidance leaves autonomy
programs in a challenging position. Programs need
to develop autonomous systems quickly to remain
competitive and meet growing consumer demands, while
simultaneously establishing a framework for ensuring the
safety of the systems they develop. A key component of
every autonomy program’s validation efforts is a safety
case—an evidence-backed, structured argument used to
justify that the autonomous system in question is safe.

Safety frameworks define the core principles around how
an autonomy program creates a safety case and justifies
safety. They apply to all developers of autonomous
systems and all the various levels of autonomy. A rigorous
safety case helps programs convince regulators that their
autonomous system is safe to deploy commercially. It also
provides points of reference that the autonomy program
can leverage throughout development to ensure that
safety is always top-of-mind.

Good safety frameworks leverage a foundation of several
references, including academic research, industry
standards and best practices, and government regulations
and guidance. Additionally, safety frameworks should
evolve as more information about the system and other
industry standards and best practices emerge.

Based on a review of the top autonomy programs’ VSSAs,
academic research, standards, regulations, and industry
best practices, this part of the handbook covers six core
principles that every autonomy program should adopt as
part of its safety framework (Figure 1). These core principles
are important for every autonomy program to include,
but depending on the program, additional principles
might be required. For example, autonomy programs can
complement these core principles with standards such as
UL 4600, which covers similar topics and provides a high-
level checklist for what should be included in a safety case.

8Applied Intuition — Building Safe Autonomous Systems | I. Safety Framework Best Practices

A. Safety-oriented design
The following section focuses on the two most important
aspects of safety-oriented design for autonomy V&V:
Requirements-driven design, fallback, and cybersecurity.
Other aspects, such as mechanical engineering reliability,
are not the focus of this handbook but should also
be considered as part of overall autonomous system
development.

Requirements-driven design
Requirements-driven design is the process of designing
and developing a system (i.e., the various software and
hardware components) according to specific requirements.
The requirements for autonomous system design need
to cover everything from functional to safety to legal
needs (e.g., accounting for pertinent federal, state, and
local laws). Requirements-driven design allows teams
to focus their efforts and reduce the risk of errors in the
final product. Successful autonomy programs define an
initial version of requirements along with the autonomous
system’s ODD as early as possible. They then refine those
requirements iteratively throughout development and
testing. These definitions—especially the set of system
requirements—might evolve as the autonomous system or
the scope of its ODD expands. However, the more rigorous
these definitions are early on in the system’s design and
development, the better. Clear requirements and ODD
definitions help programs set a clear scope, align teams
internally, and ensure that the developers build to the
correct specifications. This practice helps avoid wasted
engineering efforts due to internal misalignment and
prevents significant project delays.

Fallback
While focusing on ensuring the system can operate safely
under normal conditions, it is also important to consider
circumstances under which the system is not able to
operate safely. For ADAS systems, these could be cases in
which the system detects an unsafe condition or a scenario
that is not within its capabilities or ODD. In this case, the
system should notify the driver to take back control safely.
For ADS systems, there might be no human driver in the
loop, in which case the system must be able to transition—

or “fall back”—into a minimal risk condition.

Autonomy programs need to document their fallback
strategy during operation (i.e., the system’s process for
transitioning to a minimal risk condition when there is an
issue or situation the system cannot handle safely).

Cybersecurity
Cybersecurity is a large contributing factor to an
autonomous system’s safety, as cyberattacks pose a
significant threat during vehicle operation and testing.
Regardless of the intended level of autonomy (e.g., L2
or L4), programs should consider the following design
choices:
I. Autonomous systems and their underlying software

and human-machine interface (HMI) systems should
only be accessible by authorized users.

II. If remote intervention is allowed, only authenticated
and authorized parties should be able to access
and influence the autonomous system and related
communication networks.

While this handbook does not go further into cybersecurity-
related issues, these topics are worth considering and
discussing in relation to autonomous system development
and testing.

B. Functional safety (ISO 26262)
Autonomy programs need to analyze the sub-component
risk, system-level risk, and functional safety for each
autonomy feature and each software and hardware system
element they develop. ISO 26262 allows the decomposition
of a system into subsystems which are then evaluated
regarding the respective risk they induce on the whole
system. The so-called Automotive Safety Integrity Level
(ASIL) Levels A-D deliver a basis for the demanded risk
evaluation for each sub-system.

I. Most autonomy programs use traditional safety
analysis techniques such as failure mode effects
analysis (FMEA), fault tree analysis (FTA), and hazard
analysis and risk assessment (HARA). FMEA concerns

9Applied Intuition — Building Safe Autonomous Systems | I. Safety Framework Best Practices

a vehicle’s system architecture. FTA follows a deductive
approach by breaking down vehicle- and product-
level goals into lower-level safety requirements. In
the context of ISO 26262, HARA involves looking at
malfunctions, identifying corresponding hazards, and
assessing the risk of those hazards.

II. Autonomy programs also use systems theoretic
process analysis (STPA) to conduct complex system
hazard analyses and complement traditional safety
analysis techniques. Compared to FMEA and FTA,
STPA is more efficient at identifying, analyzing, and
mitigating non-obvious component interactions that
can cause hazards and risks.

A detailed description of how FMEA, FTA, and STPA are
applied to ADAS and ADS V&V is outside the scope of this
handbook.

C. Safety of the intended
functionality (ISO 21448)
In autonomy development, it is critical to identify unknown
issues upfront as soon as possible. Since some of these
unknowns are impossible to anticipate ahead of time
(“unknown unknowns”), autonomy programs need to
continually validate their safety claims to successfully
ensure the safety of an autonomous system’s intended
functionality. Programs also need to demonstrate that they
have robust processes in place to continuously identify
hazards (both in simulation and real-world circumstances)
and measure test coverage as validation efforts progress.

Deductive and inductive approaches
Top autonomy programs combine both deductive and
inductive approaches to evaluate the safety of an
autonomous system. Deductive safety approaches include
using HARA and STPA methods in the context of ISO
21448, which focus more on safety issues stemming from
functional insufficiencies, performance limitations, and
foreseeable misuses. Programs can use these methods
to enumerate possible conflicts and hazards that might
emerge from safety or system requirements. However,
these worst-case scenarios inducted from product
requirements merely provide a theoretical view and need

to be supplemented with hazards that occur during testing.
This is what inductive approaches facilitate.

Inductive safety approaches differ from deductive safety
approaches in that they focus on identifying issues from
specific observations. When following inductive safety
approaches, it is best to use a designated triage or event
review team to trace all failures and hazards from real-
world testing (e.g., driver interventions during safety driver
testing) and simulation testing back to requirements.
This includes conducting HARA on each of these events.
Inductive approaches also help autonomy programs
ensure that their requirements are comprehensive as new
information about the ODD emerges during real-world
testing.

ODD databases
In addition to combining deductive and inductive safety
approaches, autonomy programs can manage an internal
database of the scenarios and objects they encounter in
the autonomous system’s ODD during testing. This helps
programs understand the scenarios and objects that
their system can handle safely and lets them identify new
objects when they occur during operation. This internal
database can be supplemented with external databases
(e.g., crash or naturalistic driving databases). External
databases are valuable because collecting fleet data
is expensive and time-consuming. A third-party data
source can thus provide a neutral, supplemental source
of ODD information and edge cases. By maintaining these
databases and classifying tests according to objects and
interactions in the scenario, autonomy programs can
measure test coverage across ODD categories, detect out-
of-ODD events, and catch new scenarios and objects that
were not previously covered.

D. Evidence-based safety
In addition to functional safety and safety of the intended
functionality, another safety process that autonomy
programs should demonstrate in their safety framework
(and eventually in their safety case) is evidence-based
or “proven” safety. Evidence-based safety focuses more
on demonstrating safety through quantitative statistical

10Applied Intuition — Building Safe Autonomous Systems | I. Safety Framework Best Practices

analysis. Many successful autonomy teams use the
following methods to demonstrate evidence-based safety:

Metrics and evaluation
I. Leverage automatic rules for evaluating system

performance, especially against requirements. For
example, apply acceptance criteria on the maximum
lane deviation or minimum lateral safety buffer.

II. As collisions occur very infrequently, surrogate safety
measures can serve as stand-in metrics by tracking
events that either precede collisions or are predictive
of collisions. Use surrogate safety measures—such
as time-to-collision (TTC), deceleration rate (DR),
and post-encroachment time (PET)—alongside other
advanced metrics.

III. Define and use metrics that compare autonomous
system behaviors to observed human behaviors
(e.g., maneuver execution time or reaction time).
These metrics allow autonomy programs to answer
sophisticated questions such as: “Does this
autonomous system change lanes like a human driver?”

IV. Verify and update the above metrics using data from
simulations, structured test track testing, real-world
testing, and production operations.

V. Define, analyze, and monitor safety performance
indicators (SPIs) for all safety-related areas of an
autonomy program. SPIs are metrics that measure
some aspect of autonomous system safety and
include a threshold value for evaluating a particular
safety claim.

VI. Monitor the above metrics regularly (e.g., in daily
reporting) to help ensure safe development, testing,
and operation.

Statistical coverage
I. Create a formal ODD definition that enumerates

scenario categorizations and expected parameter
ranges and dimensions (e.g., lead vehicle speed, lane
change duration, static obstacle size). As the system’s
capabilities improve and more data is collected, the
ODD definition expands as well.

II. Use simulation at scale to test all possible scenario

variations across the ODD scope needed for full
coverage.

III. Combine coverage and performance metrics
to statistically demonstrate acceptable system
safety over a sufficient area of the ODD.

Adversarial testing
I. Leverage independent verification and validation

(IV&V) testing to define and execute a set of adversarial
tests to examine the bounds of system performance.
IV&V testing provides an objective, third-party
perspective of what should be tested, as there is no a
priori information about how the autonomous system
is designed.

II. Perform stress tests in simulation and on the test track
to provide evidence of and understand the limits of the
underlying autonomous system.

Reproducibility
I. Conduct experiments to demonstrate that simulation

results are reproducible in real-world tests, especially
in modeling vehicle controls and dynamics. Provide
these experimental results to regulators as evidence
of thorough and successful testing.

II. These experiments could include executing a
scenario on a test track, recording pose data (from
vehicle telemetry or external measurement devices),
comparing validation key performance indicators
(KPIs), and conducting qualitative correlations with
the corresponding re-simulation (i.e., a deterministic
reproduction of how the vehicle would have behaved
in that situation).

E. Safety governance and culture
Based on industry best practices, autonomy programs can
take the following two-fold approach to safety governance
and culture:
I. Have cross-functional teams meet regularly to analyze

safety issues stemming from key sources, including
real-world testing, risk management, and any product
or software deployment decisions.

II. Establish a formal safety board or governance structure

11Applied Intuition — Building Safe Autonomous Systems | I. Safety Framework Best Practices

that brings together leaders and experts across
engineering, safety, and product teams to ensure the
company’s safety framework is current and adhered to
throughout the organization.

F. Safe operations
Autonomy programs can follow several measures to ensure
the safe operation of their autonomous systems:
I. Utilize rigorous hiring, training, and ongoing

performance evaluation programs for safety drivers
to ensure a standard bar of operational safety and
consistency in vehicle operation and testing processes.

II. Use driver-monitoring systems on testing fleets
in order to coach and train drivers on safe testing
practices.

III. Use a salient HMI to clearly instruct drivers when to
take over the vehicle (e.g., during ADAS operation or
ADS testing) and to communicate the current status
of the system (e.g., if the autonomous system is
currently engaged or if the system is experiencing a
malfunction).

IV. Automate processes around disengagement analysis
(i.e., analyzing situations where the safety driver
disengages autonomous mode during L4 ADS testing)
and re-simulation.

V. Establish redundancies in data-logging systems to
ensure that crashes can be diagnosed and learned
from.

VI. Execute well-defined post-crash operations to act on
accidents quickly and ensure adequate documentation
of crash details for further analysis.

VII. Leverage system redundancies to help ensure
operational safety for cases in which unforeseen
hardware or software errors and malfunctions occur.

Combined, the six principles outlined in this section
establish the first steps towards building a robust
safety framework. As autonomy programs build their
safety framework and look to deploy their autonomous
system, they need to solve the challenges of determining
appropriate requirements, evaluating hazards and faults,
anticipating the ODD’s unknowns, quantifying safety
evidence, enforcing a safety culture, and supporting safe
operations.

12Applied Intuition — Building Safe Autonomous Systems | I. Safety Framework Best Practices

Defining a safety framework is a vital first step toward
defining how autonomy programs think about and
ensure safety. This lends itself to the question: “How can
autonomy programs build out robust V&V processes to
practically adhere to their safety framework and deliver a
safe product?”

Based on the six safety framework principles outlined in
the previous part of this handbook (I. Safety Framework
Best Practices), the following part walks through the
stages and best practices that autonomy programs can
follow to implement a robust V&V process that will help
them adhere to their safety framework principles. First,
it will discuss some of the nuances of operationalization,
such as balancing V-model and agile development,
managing release validation, and establishing a safety-
focused organization. While “robust” V&V is extremely
important for mature autonomy programs, it may be
hard to justify implementing a comprehensive approach
while the autonomous system is still undergoing major
development in the earlier stages of development. Thus,
Applied recommends an incremental strategy where V&V

grows as development progresses, leveraging continuous
testing and evaluation to guide development efforts.
The following section (A. V&V lifecycle) introduces the
major processes that make up a V&V workflow—including
defining requirements, creating tests at scale, deciding
which tests to execute and when, and measuring test
performance. This section also lays out the types of
tests teams should leverage (i.e., under which conditions
simulation-based testing is valuable and when real-world
driving is necessary).

A. V&V lifecycle
Autonomy programs should aim to set up a rigorous V&V
process that individuals across the organization—from
test engineers to developers to safety drivers—contribute
towards. A rigorous V&V process can prevent product
recalls and negative public perception and helps teams
develop a safe, validated, and successful product. Since
safety is never a one-and-done task, teams can adopt
the following V&V lifecycle throughout system design,
development, and post-deployment (Figure 2).

Figure 2: The V&V lifecycle is a continuous process with four distinct steps

II. V&V Best Practices

13Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

At a high level, autonomy programs should:
I. Start by defining and reviewing requirements and

the ODD definition (see “1. Define goals” in Figure 2).
Often, the responsibility for this task falls upon the
systems and test engineering teams. These teams
review product capabilities, user expectations, legal
and regulatory rules, and safety literature to define the
autonomous system’s requirements.

II. Then, teams need to design appropriate test cases to
evaluate the autonomous system based on the defined
requirements (see “2. Build coverage”).

III. The next step is to execute this library of tests
continuously throughout development and thoroughly
when evaluating a release candidate (see “3. Execute
tests”). For the most part, testing progresses from
lower-cost to higher-cost environments. All test
environments are used throughout development but
can start with simulation and then move on to test
track and real-world tests.

IV. Throughout all testing, testers and developers analyze
results (see “4. Analyze and report”). Performance
results help guide improvements to the system
and help teams determine what to fix next and
if any requirements need adjustment. In addition
to performance results, coverage analysis helps
determine which new tests autonomy programs need
to create and conduct.

B. Stages of V&V
Different autonomy programs might be in different stages
of their development and validation. The following table
outlines what early-, mid-, and late-stage autonomy
programs might look like across various V&V dimensions
(Figure 3). “Early-stage” refers to teams who are just
starting their V&V journey. “Mid-stage” refers to teams that
have already established some of their V&V processes but
are roughly more than two years away from commercial
deployment. “Late-stage” refers to teams eyeing
commercial deployment within the next one to two years.

The following table is a snapshot of the autonomy
landscape’s current state. It can serve as a quick reference
to assess which stage a specific autonomy program

is at today and how it compares to other programs in
the industry. This table does not, however, serve as an
exhaustive, definite source of truth, as a recommendation,
or as a definition of an autonomy program’s goal in any of
the three stages. Together with the rest of this handbook,
this table can also serve as a guide regarding the validation
practices that programs can realistically leverage to
achieve the safe and rapid commercial deployment of their
autonomous systems.

14Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

Early-stage Mid-stage Late-stage

Team Team of feature developers (e.g.,
planning, perception) who are also
in charge of scenario creation and
testing

Growing test engineering team, who
will take on scenario creation and
testing responsibilities

Mature validation organization with
subteams for systems, test, and
validation engineering, simulation
operations, and triage

Safety
governance
structure

No formal structure yet Senior hire formally in charge of
safety

Formal safety board or governance
structure that brings together leaders
and experts across engineering,
safety, and product teams to ensure
the company’s safety framework is
up to date and implemented correctly

Safety case Does not exist yet, but target ODD
and end use case are defined

Starting definition and gathering
evidence for safety arguments

Finalized definition and gathering
evidence until sufficient; safety
framework is shared publicly

Release
validation
and approval
process

No formal process Release review process to compare
new stack versions with the previous
build and find regressions to fix

New releases are rigorously validated
and issues are addressed before
approval or deployment to the fleet;
automatic approval process for minor
changes; more rigorous approval
process for major changes driven by
safety board

Requirements
and
requirements
management

Minimal requirements are written
out; tracked in spreadsheets or
documents

In the process of building out formal
requirements; usage of a designated
application lifecycle management
(ALM) tool to author and trace
requirements to tests; starting to
establish approval processes

Complete set of requirements for
the ODD, defined in a unified tool
that might integrate with previously
used ALM tools (to shore up for
shortcomings with existing ALM tools
for autonomy validation); changes
to requirements undergo rigorous
approval process by safety board

Test
methods/
environments
used

Using closed test track and, in some
cases, real-world testing, unless the
team has access to a high-quality
simulator; model-in-the-loop (MIL)
testing and hardware-in-the-loop
(HIL) testing are also utilized

A mix of MIL, software-in-the-loop
(SIL) simulation, and test track
testing; ramping up HIL, vehicle
integration, and real-world testing
(including drive log collection)

Usage of all test environments,
including MIL, SIL, HIL, and vehicle
testing (i.e., vehicle integration,
vehicle-in-the-loop (VIL), test track,
and real-world); executing the
majority of tests in simulation due to
scale and cost

Simulation
scenario
library

Initial set of simulation smoke tests
with some closed-track testing; focus
on expanding the initial set of smoke
tests to cover the functional areas
currently in development

A handful of scenarios for each
scenario category or requirement
across the ODD; early usage of
fuzzing/parameterization; scenario
creation is aligned with feature
release cadences and active feature
development

Full scenario library across the
ODD, requirements, and scenario
categories; each scenario generates
many concrete variations for
thorough parameter coverage; focus
on finding and creating edge case
and long-tail scenarios (from real-
world drives or randomized methods)
and new sets of scenarios for the
next ODD

15Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

Role of test
track/public
road testing

Most ADAS testing occurs on closed
test tracks to find bugs and issues
while the team starts transitioning to
simulation testing; ADS teams might
operate a small public road fleet

Usage of test track testing to verify
simulation fidelity, with a small public
road fleet finding inspiration for new
scenarios

Large public road fleet continuously
testing new releases and collecting
edge case data for re-simulation;
usage of test track testing to verify
simulation fidelity

Coverage
analysis

Coverage is either not tracked or
lightly measured by number of tests
overall, perhaps split by scenario
category

Coverage is measured by number of
tests split by scenario category; early
calculation of requirements coverage,
scenario parameter space coverage,
map coverage (based on limited
geofenced region of target ODD), and
ODD coverage

Rigorous requirements coverage,
scenario parameter space coverage,
map coverage (based on full
geofenced region of target ODD), and
statistical ODD coverage (including
by scenario category)

Performance
analysis

Fixing all failures from smoke tests,
which are prioritized by severity;
initial observers (i.e., rules for
determining whether a result should
pass or fail) are still being developed
and tuned (need to track stability);
weekly tracking of KPIs and SPIs

Ramping up formal A/B testing
to reflect an iterative model of
development and to fix regressions;
initial set of observers in place with
advanced observers being developed
and tuned (with need to track
stability); daily tracking of KPIs and
SPIs

Heavy A/B testing and statistical
analysis of quantitative improvement
from previous release, including
evaluating tradeoffs between SPIs
and KPIs; daily tracking of KPIs and
SPIs

Approximate
performance
level

0 - 65% passing rate 50 - 90% passing rate > 90% passing rate

Figure 3: Typical aspects of V&V for an autonomy program depending on its maturity stage

To help autonomy programs get to the optimal position
for safe and rapid commercial deployment, the following
section of the handbook provides prescriptive steps
and best practices for teams to implement the right V&V
processes as well as incorporate the four steps of the V&V
lifecycle into their program.

C. Processes and people
Before going into the specifics of V&V, this section
discusses the cornerstones of every successful program—
processes and people. To start with, this section outlines
how autonomy programs can manage their product
development processes, to what extent they can apply
previous models from the automotive industry, and how
they can adapt those models specifically for autonomy
development (see Managing product development
processes). As many of the challenges in autonomous
system development reside on the software side, this
section also covers how teams can set up software release
validation processes and productionize them to ensure

quick but thorough development and testing cycles (see
Productionizing a release validation process). Lastly, this
section discusses who should be responsible for leading
V&V efforts. Within an organization, safety should be
everyone’s responsibility. However, designated safety
leadership and governance are crucial to establishing and
maintaining a strong safety culture (see Establishing a
safety governance board).

Managing product development processes
Autonomy development and validation teams should
take a hybrid approach of both the traditional V-model
(commonplace throughout automotive) and agile methods
(commonplace throughout software development)
(Figure 4).

The V-model is a top-down method that automotive
companies have used traditionally for decades. It
prescribes that teams should define requirements and
then design, implement, and test one part of the system,

16Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

Figure 4: In autonomy development, a hybrid of the traditional automotive V-model (left) and agile methods is recommended to form an iterative product
development lifecycle (right)

before repeating this same process with all other parts of
the system. With this approach, validation teams need to
devote upfront effort to defining requirements—whether
they cover the system, the end product, or even safety
or legal elements. When executed correctly, the V-model
results in well-defined requirements for both safety and
the overall design process. This helps teams save time and
costs down the road, as mistakes or sub-optimal system
and product designs are less likely to occur. However, a
drawback of the V-model approach is that it assumes an
a priori understanding of the ODD’s full complexity. When
following the V-model approach, teams need to describe
all requirements comprehensively before starting to
implement the system.

As autonomy programs might learn new information about
the ODD and its complexity throughout the system’s
development, testing, and operation in the field, they
must be able to update their requirements throughout
development and even post-deployment. Developers should
combine the traditional V-model with an agile approach to
accomplish this. In an agile approach, autonomy programs
can build a mature system design iteratively from a more
limited starting point. The agile approach seeks to define
and execute an initial version of the product and then
iteratively refine this product towards maturity. As teams
can deploy and test an initial working solution sooner, the
agile approach also helps provide critical information about

the system design, optimal testing methods, and even new
requirements that teams should verify.

Autonomy programs can streamline autonomous system
development according to the proposed hybrid approach
by setting up the following process and repeating it for
each iterative release:
I. If the team is starting the first iteration, building new

functionalities, or expanding into new areas, define
an initial set of requirements and an ODD. If the team
is iterating on an existing version of the product or
existing functionalities, update existing requirements
and ODD definitions if needed (e.g., you learn through
real-world testing that a new vehicle type such as
electric scooters has started appearing in your ODD).

II. Design tests for the features being built or updated.
III. Develop new or updated features for autonomous

functionality.
IV. Execute a set of relevant tests against the system

during development. Leverage continuous integration
(CI) testing.

V. Finalize a release candidate and test it comprehensively
across the entire test set.

VI. Analyze results, identify issues, and fix those issues by
either iterating on existing system features or building
new ones.

To minimize iteration cycles and make the hybrid approach

17Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

more efficient, autonomy teams should be cognizant of
deploying their testing resources effectively. Traditional
automotive systems are often tested primarily in the
physical world, but the advent of virtual simulation allows
for test results in a matter of minutes, not days or longer.
Of course, as autonomous systems are ultimately physical
systems, real-world testing is inevitable. The topic of
different test environments and when to leverage each will
be discussed further in the Using each test environment
effectively section of this handbook.

By implementing a hybrid approach of the V-model and
agile methods, autonomy teams can balance the benefits of
each and ensure the fast, efficient, and safe development
of a thoughtfully designed final system.

Productionizing a release validation process
Once autonomy teams have finalized their development
for a release, they need to rigorously test and evaluate
the resulting release candidate before approving it for
deployment. Teams should adhere to a formal release
validation process to ensure the deployment of safe
software and preserve speed throughout development.
Development and validation velocity is key to optimizing
time-to-market. Hence, the validation and approval process
should be continuous, automated, and virtual as much as
possible. Autonomy programs can consider the following
diagram for a release validation workflow that incorporates

Figure 5: Autonomy programs should validate each software release candidate using formal testing, analysis, review, and approval processes

scenario-based testing, evaluation, and approval for each
new software release candidate (Figure 5).

According to this diagram, autonomy programs may
approve a software release automatically if it meets
pre-defined criteria. If not, teams need to triage failures
quickly, and a safety board or a central authority can
conditionally approve a release for limited functionality.
The more rigorous this process, the faster development
and validation will be. Programs can take the following
key points and steps into account when productionizing a
release validation process:
I. Define the scenario-based testing suite (see Scenario

creation) and test each new software release
candidate on it. The tests should cover the broad set
of capabilities of the system, but they may also be
tailored to a specific release. For instance, if the release
focuses on improving lane-changing capabilities, the
team should test more scenarios for lane changes.
Teams should still run tests for all other capabilities
to rule out accidental regressions. Running tests in
simulation can save teams time and costs compared
to real-world testing because it allows teams to test
situations that are hard to set up or encounter in real-
world and closed test track environments.

II. Define criteria that, if met, allow for automatic approval
of the release. Teams can center these criteria around
ensuring that there is a quantitative improvement from

18Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

the previous release, no critical issues are detected,
and all core requirements and capabilities are met up
to an acceptable level. For minor software releases,
as long as there are no regressions or critical failures,
teams can save time by avoiding a heavy-handed
review process.

III. Evaluate the performance of the release. For larger
releases, this involves a thorough analysis of the
performance results. Some autonomy programs might
have formal triage or software quality operations teams
dedicated to triaging failures, prioritizing them to filter
out any false positives, and generating a release report
for review.

IV. The release report should cover which known critical
issues exist and assess overall performance by
capability (see Analyzing performance). Once the
release report is drafted, the safety team should
review it and, given the capability-level performance
and list of known issues, decide whether the release is
safe for conditional or final approval.

V. If the safety team approves the release, the release
lead can then deploy the changes. The development
team should receive a version of the release report—
including the prioritized and triaged list of issues—to
make fixes or address them in the next release.

Establishing a safety governance board
Safety governance boards are crucial to ensuring that
established safety standards and best practices are
adhered to across an entire organization. Most autonomy
programs do not enact formal safety governance structures
until late in the development and validation process (Figure
6). Instead, they might have individuals or small teams
responsible for safety topics. A decentralized approach

can work for early- and mid-stage programs, but it will
not scale as testing increases. To ensure a strong safety
culture, it is generally better to establish a formal safety
governance board as early as possible.

Autonomy programs can take the following steps to
establish a formal safety governance board:
I. Select key stakeholders across the program’s

engineering, safety, and product teams to form a
safety board.

II. Set up a recurring meeting (monthly cadence
recommended) to review the program’s current safety
framework and check whether it is being adhered to
by:
a. Driving an investigation and review of the
current safety levels for current and future
rounds of testing or operation.

b. Drafting and managing the safety case, including
an external version that is shared publicly.

c. Reviewing system requirements and ODD
definition(s).

d. Offering a forum to review internally and
externally reported safety incidents.

D. Requirements management and
traceability

Defining requirements and the ODD
Autonomy programs usually start by defining requirements
as best as they can during early-stage development. They
might then expand on these definitions and start using a
designated requirements management tool during mid-
stage development (Figure 7). Teams can also get ahead by
starting to use a requirements and test case management
tool earlier on in development.

Stage Description

Early-stage None

Mid-stage Senior hire formally in charge of safety

Late-stage
Formal safety board or governance structure brings together leaders and experts across engineering, safety, and
product teams to ensure the company’s safety framework is current and adhered to

Figure 6: Typical safety governance structures by stages of V&V

19Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

Autonomy programs can consider the following
recommendations to create their requirements and ODD
definitions smoothly and accurately:
I. Define requirements before and during development in

an agile manner (see Managing product development
processes). This helps teams strike a balance between
properly scoping out the areas they know and iteratively
refining the areas where they still need to gather more
data. Before full system deployment, the organization
should have requirements enumerated for all aspects
of the system, including each sub-system and the
system’s capabilities, and have a process for iterating
on new requirements as system capability expands.

II. Appoint a designated team—independent of feature
developers and with input from an appropriate body of
stakeholders—to own the definition of requirements.
This helps avoid a conflict of interest between
requirements authors—who should objectively define
the necessary system capabilities—and developers.
This is typically the systems engineering team.

III. Define requirements with clear evaluation criteria,
justified by literature and experimental results, for
whether the requirement is satisfied or not. Without
clear evaluation criteria, it is unclear when the system
sufficiently meets each requirement. For example, a
specific requirement might state that the autonomous
system needs to remain at a safe distance from
bicyclists. In this case, the evaluation criteria would
include a precise distance or a range of distances (e.g.,
a conditional distance dependent on the autonomous
system’s velocity and/or weather conditions) that is
considered safe for both the autonomous system and
the other actors in the scene. When choosing this

evaluation criterion, the team should justify why this
distance or range of distances is considered safe.

IV. Define the ODD as a detailed, data-driven definition
of the scenery, environmental conditions, and dynamic
elements in which the autonomous system should
safely function. This includes all enumerated attributes
with exact values and potential ranges (e.g., precise
times of day, temperatures, and mapped zones).
Additionally, define the ODD with a formal taxonomy
to allow each test to be tagged according to the
ODD attributes for coverage analysis. For example,
an autonomy program might specify “weather” as an
environmental condition and list “clear,” “rain,” “fog,”
“snow,” “hail,” and “smoke” as attributes. For the “rain”
attribute, the team might list parameter ranges of
possible precipitation intensities.

Managing requirements
Once defined, teams need to properly manage and
maintain all requirements to ensure they are up-to-date
and used correctly. Autonomy programs should consider
the following recommendations:
I. Allow feature developers to view all requirements (not

just the ones directly assigned to them and in their areas
of work). Requirements provide necessary context
that every developer needs insight into, as engineering
work might impact unexpected requirements.

II. Host requirements from across the organization and
for each subsystem in a central location. Then, users
will be able to assess the effects of implementation
changes on individual requirements and measure
tradeoffs between requirements’ performance.

III. Manage requirements in a version-controlled system

Stage Description

Early-stage Minimal requirements written out and tracked in spreadsheets or documents

Mid-stage In the process of building out formal requirements; using a ALM tool

Late-stage
Complete set of requirements for the ODD; requiring a unified tool that might integrate with previously used ALM
tools (to shore up for shortcomings with existing ALM tools for autonomy validation)

Figure 7: Typical requirements management process by stages of V&V

20Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

with restricted access. Maintain past versions of
requirements as they evolve. As requirements form the
core of a safety case, programs should restrict editing
privileges to team members who have the proper
context. Before any team member can make an edit,
programs should conduct a formal review process
based on their safety governance processes. The
review process should include clear evidence of why
the edit is needed.

IV. Track all changes to requirements. Future audits may
require autonomy programs to provide snapshots of
what requirements the system was expected to handle
at different points in time. This is essential in the event
of any future accidents as the autonomous system is
continuously deployed and improved.

Setting up requirements traceability
Requirements traceability establishes links between the
overall goals of an autonomy program and the end product.
It encompasses the implementation process, each test,
and each test result, and it helps teams understand
the downstream and upstream effects of any changes.
Autonomy programs should consider the following two
steps to achieve successful requirements traceability:
I. Link requirements to all test cases across SIL, HIL,

and vehicle environments to thoroughly demonstrate
safety and verify system requirements. This helps
ensure that all testing is utilized appropriately for
verification and that there is traceability from test
results back to requirements.

II. Use a requirements management tool that allows
bi-directional traceability between requirements,
test cases, scenarios, test results, issues, and
implementation. This helps teams understand
the impact of new tests, software updates, and
requirements updates. Traceability with system
implementation allows users to see how requirements
relate to the implementation and shows where the
code tests for different requirements. This allows
teams to set clear goals and have full transparency
for auditors and regulators. By linking open issues to
closed ones, teams can see the current blockers for
requirement verification and have a historical view of

previous issues in case similar issues or regressions
arise later.

E. Scenario creation
The following table shows how autonomy programs
typically approach scenario creation depending on their
development stage (Figure 8). Earlier teams usually focus on
building broad coverage across requirements and scenario
categories. Once they have built strong, broad coverage,
later-stage teams focus on collecting and generating edge
case scenarios and expanding into new domains.

Crafting a comprehensive scenario library
Autonomy programs need to build a comprehensive
scenario library that covers the entire ODD for the intended
deployment. Using this library, teams can test their
autonomous system against key performance and safety
benchmarks for the set of scenarios that could occur in
the ODD.

According to the safety of the intended functionality
(SOTIF), an autonomy program’s goal is to minimize the risk
that the autonomous system could encounter something
in the real world that it 1) cannot handle safely, or 2) has
not seen before and could potentially be unable to handle
safely. Autonomy programs can use two approaches to
build out a comprehensive scenario library:
• Deductive approach: Identify scenarios and potential

hazards from system and product requirements. Have
test and systems engineers work together to anticipate
what could go wrong for each system requirement. This
helps form a list of hazards, which teams should then
test by building scenarios. The deductive approach is
a first-principles way to determine hazards and build
scenarios that the autonomous system needs to be
able to handle safely. However, the deductive approach
is rather theoretical and needs to be combined with
observations from actual testing. Hence, an inductive
approach is also necessary.

• Inductive approach: Identify observed hazards
and failure scenarios from real-world testing and
operation. These hazards typically come from 1) driver
interventions, disengagements, or takeover events

21Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

observed during real-world testing and operation, 2)
accidents or near-accidents observed during real-
world testing and operation, or 3) re-simulation and
fuzzing of drive logs. Whenever a safety driver is not
confident that the autonomous system could handle
an event safely, they should have the ability to label
the event for further investigation by a triage team.
Teams should also trace these disengagements
and hazards back to requirements and refine
their definitions continually based on new data.

Autonomy programs can leverage the following techniques
to deductively and inductively build out a comprehensive
scenario library:
I. Nominal synthetic scenarios: Start by building

out broad scenario coverage of each requirement
and capability with synthetic simulation scenarios
(deductive approach). Teams should define the core
scene and attributes they need to test. They should
then parameterize each attribute and ensure that
the cross-product of each combination of parameter
values is testable. The system’s attributes, such as
intended maneuver, actor type, actor maneuver, road
obstacle, weather, road infrastructure, and location,
should be parameterized and tested in a scenario
library. Ideally, these synthetic scenarios should also
be map-agnostic to ensure that teams can scale them
across the maps in the ODD.

II. IV&V scenario libraries: Since the deductive approach
is highly dependent on how internal teams choose
to test requirements (and on the requirements

themselves), autonomy programs should complement
their internal scenario creation efforts with external
ones. IV&V teams can provide a set of adversarial tests
created independently from an internal team’s tests.
These independently created tests help functionally
test and stress-test the system. External teams do not
have bias and prior knowledge of the system. They
can generate functional tests based on their own best
practices, find failures, and consider situations that
internal teams may have missed.

III. Real-world drive data: As autonomy programs develop
test vehicles, they can be driven autonomously or
manually in the real world to collect representative data
from the ODD. Teams should record all logs from these
drives or save the most interesting snippets—usually
those deemed to be hazards or disengagements—
as part of the scenario library. Teams can then reuse
those drive logs as inspiration for new synthetic
scenario tests or adopt a simulation framework that
allows for replay and fuzzing of collected drive logs to
achieve higher-fidelity testing.

IV. Edge case simulation scenarios: As teams conduct
more real-world testing, collected data will inspire
new scenarios that need to be covered. Autonomy
programs should build out new synthetic scenarios to
address these edge cases. They can create synthetic
scenarios—including synthetic data for sensor
simulation—for situations that rarely occur in the
real world or would be dangerous to collect in a real-
world setting. For instance, teams can use synthetic
simulation to create scenarios involving children and

Stage Description

Early-stage Initial set of smoke tests run in simulation to expose common failures, with some closed track testing; the focus
of new scenario creation is on building out nominal scenarios for smoke tests and taking basic drive logs and
generating scenarios from them

Mid-stage A handful of scenarios for each scenario category or requirement; focus is usually on building coverage depth for a
few scenario categories or requirements at a time—typically aligned with feature developer release cadences and
active feature development

Late-stage Full scenario library across the ODD, requirements, and scenario categories; focus is on edge case and long-tail
scenarios—either from real-world drives or randomized methods—or on building a new set of scenarios for the next
ODD

Figure 8: Scenario creation by stages of V&V

22Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

other vulnerable road users, rare weather conditions,
and extreme or dangerous actor behaviors.

Sometimes, autonomy programs build out their scenario
libraries by dedicating operations teams to creating
synthetic scenarios or reviewing events from collected
fleet data. However, the operational burden of managing
this process can be a heavy lift, especially for resource-
constrained, early-stage teams. An alternative approach
could be to purchase pre-built libraries of common
functional tests or datasets of real-world logs to create
scenarios from them rather than spending time creating
scenarios from scratch. As long as these scenarios are
high quality (e.g., have realistic behaviors, parameter
selections, and evaluation criteria) and are tied back to or
built according to the team’s requirements and capabilities,
purchasing pre-built libraries is a viable option.

Defining evaluation criteria and metrics
What changes a scenario into a test case is the specification
of evaluation criteria that test the system’s performance.
Autonomy programs should track a measurable, overall
pass/fail outcome for each test case. This outcome is a
composite of key competency, safety, and comfort factors,
where all non-optional evaluation rules must pass with the
ability to dig into each of them and their underlying metrics.
The following list contains metrics and evaluation criteria
that teams should assess for their test cases:
I. Test validity: Ensure that the scenario represents the

intended test design. For example, in an actor cut-in
scenario, the actor always executes a lane change in
front of the autonomous system.

II. System’s core intent: Ensure that the autonomous
system completes the main goal of the test case
(e.g., reaching the intended destination in a left turn
scenario).

III. Safety: Collisions are the most obvious metric to
track when it comes to safety. As collisions occur
infrequently, teams can measure additional metrics
as a proxy. Teams should calculate and track
surrogate safety measures like TTC, PET, deceleration
rate to avoid collision (DRAC), and metrics that
capture severity, such as velocity at collision. Other

informational metrics like responsibility-sensitive
safety (RSS), lateral and longitudinal distance to
other actors, and deviation from lane center are also
beneficial to measure and track.

IV. Comfort: Measure the smoothness (e.g., jerk) of the
autonomous system.

V. Assertiveness: Measure whether the system takes
the first safe opportunity for a maneuver. For example,
for an unprotected right turn, there might be several
“gaps” in traffic where the system could safely make
the turn. In this case, it is helpful to measure whether
the system takes the earliest possible safe gap.

VI. Efficiency: Measure whether the trip or task
is completed and the routing efficiency of the
autonomous system. For example, a completed task
might be an autonomous truck picking up and dropping
off cargo from a desired origin and destination within a
reasonable time frame.

VII. Road rules: Measure that the system follows the rules
of the road or public environment. For road vehicles,
this typically includes road signs (e.g., stop, yield),
traffic lights, and speed limits.

Maintaining scenario health over time
Scenario health refers to the “freshness” or the maintained
viability of each test case as the system and testing
infrastructure change. For instance, if an actor cut-
in scenario is several months or even years old, the
autonomous system’s behavior might have changed
significantly enough so that the actor is no longer cutting in
front of the autonomous system. At this point, the scenario
is “stale” because it no longer tests what is intended.
Hence, autonomy programs need a system to maintain
freshness and identify stale scenarios that need to be
updated over time. For instance, teams need to execute
any new scenario a few times to assess whether it is useful
and testing what is intended. As development proceeds,
teams should monitor scenarios to ensure they have not
gone stale. This involves checking whether a scenario is
still valid and whether it results in false positives or false
negatives. Teams can take the following steps to address
both needs:
I. When creating a scenario, monitor it for a few runs

23Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

and software builds. Depending on how often teams
release builds and run test batches, this could take
one week to three months.

II. Run the scenario through planned ad-hoc assessments
and add it to a CI pipeline or nightly testing cadence.
When adding the scenario to a CI pipeline, label the
scenario as non-blocking, as the test is not in a stable
stage and should not be a part of any formal release
validation or analysis workflows yet.

III. Track the scenario for the metrics defined in the
Defining evaluation criteria and metrics section. In
particular, monitor the test validity and the test’s core
intent, viewing playback to ensure there is nothing
unexpected in the scenario and that it is testing what
is intended.

IV. Anytime an issue occurs in a scenario, the simulation
operations team—or a designated scenario creation
and/or triage team—should diagnose the cause, issue
a fix, and restart the process until the scenario has
proven maturity and robustness.

V. Once a scenario is deemed stable, teams can use it
actively for ad-hoc testing, add it to a CI pipeline or
nightly assessments, and tag it by scenario and ODD
taxonomy to contribute to overall coverage.

VI. Teams should track the health of all scenarios—even
once they are deemed stable—to ensure that they do
not go stale. This can be done by tracking scenario
metrics in a dashboard daily and setting up recurring
(e.g., monthly or release-dependent) reviews. These

F. Test execution
The following table lays out which test methods autonomy
programs typically use at each stage in their development
and what role real-world tests play at each stage (Figure
9). Autonomy teams can prevent scaling and cost issues
by ramping up simulation usage as soon as possible. It can
also be beneficial to transition vehicle tests to focus less
on core testing and more on final validation and edge case
discovery.

Using each test environment effectively
Through its published validation methods for automated
driving (VMAD) and the New Assessment/Test Method for
Automated Driving (NATM) (Figure 10), the United Nations

Stage Description

Early-stage

Testing mainly on a closed test track, unless the team has access to a high-quality simulator (where it would be
looking to ramp up simulation usage); most testing is done through test track/vehicle testing or, in some cases,
real-world testing to find bugs and issues as the team transitions to simulation; MIL testing is also utilized for earlier
algorithmic development, and HIL testing is used for network design and development (including communication
and diagnostic testing)

Mid-stage
Mostly using a mix of MIL, SIL, and test track testing, but ramping up HIL, vehicle integration, and real-world testing
(including drive log collection)

Late-stage
Using all test environments, including MIL, SIL, HIL, and vehicle (vehicle integration, VIL, test track, and real-
world) testing; primarily using vehicle tests to verify simulation fidelity, test vehicle integration, and find edge case
scenarios on public roads; executing the majority of tests in simulation due to scale and cost

Figure 9: Test methods by stages of V&V

reviews should explore each scenario to ensure that
it does not contain anything unexpected and tests
what is intended. For example, if a scenario starts
failing although no changes have been made to the
part of the stack that is being tested, it is advisable to
test the scenario for staleness. Either the scenario is
failing because of the downstream impact of changes
elsewhere in the stack, or it has gone stale. Teams
should especially do these reviews after major updates
to the autonomous system software, map data, and
metric or observer logic.

Autonomy programs should also set up a similar process
to track and manage custom metric and observer health.

24Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

Figure 10: NATM is a multi-pillar approach to ADS validation by UNECE and the Working Party on Automated/Autonomous and Connected Vehicles (GRVA)

Similarly, the Association for Standardization of Automation
and Measuring Systems (ASAM) published a report in
2022 which lays out the different test procedures and
environments needed for ADAS and ADS validation (Figure
11).

Economic Commission for Europe (UNECE) has proposed
a multi-pillar approach to ADS validation. The different
test methods and environments that autonomy programs
should use are most relevant to the following subsection
of this handbook.

Figure 11: ASAM’s test landscape covering test methods and environments for ADAS and ADS testing

https://unece.org/sites/default/files/2021-04/ECE-TRANS-WP29-2021-61e.pdf
https://report.asam.net/#open

25Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

Test environment Description Pros Cons

Virtual testing and
simulation

Includes MIL, SIL, HIL, and VIL
testing; in each, different levels of
software and hardware elements
interact with a virtual environment

• Any system changes can be re-
tested quickly

• Teams have high control over
what can be tested, including
scenarios that are dangerous
and hard to collect or recreate in
real-world settings

• The same test can be
executed again with minimal
to no deviation from previous
executions

• Lower cost to set up and
execute virtual tests compared
with physical testing

• Simulation fidelity needs to
be demonstrated and is hard
to achieve for every tested
scenario

• Quality of testing is also
dependent on the quality of the
scenario library

• Difficult to evaluate and define
objective pass/fail criteria for
a safety driver’s “subjective
feel” of driving performance or
smoothness

Test track Physical vehicle testing on a closed
testing ground with real obstacles
and surrogates

• User can control what is tested
to a higher degree than real-
world driving

• Higher fidelity than virtual
testing

• The same test can be executed
again with relatively small
deviations from previous
executions

• Safer than real-world testing

• Takes substantial cost and time
to set up and execute (due to
the personnel and specialized
equipment needed)

• Test variability is restricted to
the test track infrastructure,
conditions, and equipment
available (e.g., testing different
weather conditions, different
actor types)

• There are still safety risks to
take into account for safety
drivers

Real-world testing
(e.g., on public
roads)

Testing system in real-world traffic
conditions and the true operating
environment

• Highest fidelity compared to all
other test environments

• Allows testing in the true
operating environment

• Ability to discover new events
that were not previously
considered

• Ability to test vehicle in
conditions unavailable on test
track (e.g., bridges, tunnels)

• Difficult to control which exact
situations will occur in the real
world

• The same test cannot easily be
executed again without medium
to major deviations from the
previous execution

• Scaling the number of tests
causes increased costs
(personnel to operate,
specialized test equipment)

• Some situations are important
but rare or dangerous to test
in the real world (e.g., children
running across a street)

Figure 12: Pros and cons of virtual, track, and real-world testing, adapted from NATM

Each of the test environments mentioned in Figures 10 and
11 comes with its strengths and weaknesses. The table
above discusses the strengths and weaknesses of each
environment (Figure 12).

While all test environments are necessary, there is an
optimal way to use each of them. The following list lays out
how autonomy programs should use each test environment
to get the most out of their testing resources:

https://unece.org/sites/default/files/2021-04/ECE-TRANS-WP29-2021-61e.pdf

26Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

I. Teams should run the majority of testing in SIL
simulation test environments through a mix of
synthetic and re-simulation testing. A simulation-first
testing strategy is fast, safe, and economically viable.

II. Teams should execute the first pass of testing in
simulation. They will want to save HIL and real-
world, scenario-based testing resources until they
are confident that the system passes the majority of
simulation tests. HIL testing is often used for network
design and development (including communication
and diagnostic testing) early on.

III. Teams should then conduct test track testing to
physically test a subset of scenarios. They should
also use the test track to validate that simulation
testing is modeled properly and test the vehicle’s
overall performance in a closed environment before
proceeding to real-world testing.

IV. Once there is high enough confidence that the system
can pass situations in simulated and closed test track
environments, teams can use real-world testing on
public roads to further validate simulation fidelity.
Real-world testing is also best used to identify new
scenarios for track and virtual testing (through both
synthetic scenarios and re-simulation).

V. For ADS programs, only mature programs are certified
to conduct real-world testing in autonomous mode.

Early on, autonomy programs should wait to conduct
real-world testing until there is enough confidence in
the system. Once the system is mature enough, real-
world testing can occur in parallel with simulation
and test track testing. However, when testing new
functionalities, teams should still use simulation testing
as the first pass and checkpoint before proceeding to
the higher-cost test environments.

Combating combinatorial explosion in scenario-
based testing
Autonomy programs must bias resources towards situations
and scenarios that are safety-critical, as those provide the
most information to validation, safety, and development
teams. However, scenario libraries continually increase in
size as the overall testing program matures. The number of
scenarios that teams need to test usually increases linearly
relative to the number of new requirements. The volume
of the scenario space and the total number of scenarios
that teams need to execute increases exponentially with
the number of ODD attributes and parameters they need
to cover.

The graphic below shows that an autonomy program
would need to test 1.6 million variations to exhaustively
evaluate all permutations of a single test case (Figure 13).

Figure 13: Example cut-in scenario; exhaustively testing a handful of values for each test parameter would require 1.6 million variations for a single test case

27Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

Stage Description

Early-stage Building broad coverage using standard statistical techniques such as importance sampling

Mid-stage
Building broad coverage using importance sampling, then prioritizing most of the cost and time on adversarially
sampling the capabilities that the release is focused on

Late-stage
Building broad coverage using importance sampling, then combining generative and more complex featurization
techniques in adversarial sampling to stress-test the entire system

Figure 14: Recommended optimization goals of intelligent scenario-based testing methods by V&V stage

This example excludes different environmental conditions
(e.g., time of day, rainfall), map locations, and higher
granularity of behavioral parameters that would
exponentially increase the required number of tests. On
top of that, this graphic only contains a single test case,
while autonomy programs need to run thousands of
test cases in every release. This example illustrates the
problem of combinatorial explosion in exhaustive testing of
autonomous systems.

How can autonomy programs pragmatically combat com-
binatorial explosion? To start with, Applied recommends a
simulation-first testing strategy (see Using each test envi-
ronment effectively), as sufficient coverage is only possible
with scaled simulation. The challenge is that even with sim-
ulation, teams still potentially need to execute hundreds of
millions of scenarios for each software release.

To supplement a scaled simulation strategy, autonomy
programs should intelligently sample multi-dimensional pa-
rameter spaces based on their needs. Depending on the
program’s stage of maturity, the optimization goal should
be a mix of testing for coverage and information gain re-
garding the ODD on the one hand, and finding safety-crit-
ical scenarios to drive development forward on the other
(Figure 14).

Programs can leverage different techniques to speed
up their testing, their development, and the gathering of
important information based on their specific goals:
I. Early-stage programs should begin with statistical

techniques such as importance sampling to identify
the scenario variations that provide the largest

amount of new information. When using importance
sampling, teams can identify particularly sensitive—
and, therefore, important—regions of the scenario
space by measuring the variance of metrics collected
during drives and simulations relative to parameters
of interest. This helps autonomy programs discover
issues with their system faster rather than by relying
on a naive grid sampling approach (i.e., testing every
combination of parameters).

II. Mid-stage programs should implement a mix of
importance sampling and adversarial sampling
techniques to identify the regions of the multi-
dimensional parameter space that are likely to fail.
Adversarial sampling allows teams to stress-test
specific capabilities (e.g., cut-in performance) and
categorize failure regions by identifying combinations
of parameters that have a high impact on pass/fail
probabilities. Importance sampling, on the other hand,
helps teams build coverage more broadly.

III. Late-stage programs are at the maturity stage where
most tests are passing. Their goal should be to discover
edge cases. Teams should run a set of nominal cases
to check against regressions. Then, they should use
adversarial sampling—assisted by generative and
more complex featurization techniques—to identify
the safety-critical variables on which to focus their
testing. This practice helps reduce the number of
variations run by multiple orders of magnitude because
it introduces a significant bias away from nominal and
easily handled test cases.

Of course, autonomy programs cannot feasibly test all
possible combinations of scenarios. Hence, as part of

28Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

their final safety evaluation and safety case, programs
need to demonstrate two things to regulators, auditors,
and customers: 1) Why they decided to test particular test
cases and scenario variations, and 2) why those test cases
and scenario variations are sufficient. The Defining and
measuring coverage section discusses this topic further.

G. Analytics and reporting

Defining and measuring coverage
Coverage measures what the autonomous system has
been tested on so far. A formal measurement of cover-
age is necessary for autonomy programs to demonstrate
the comprehensiveness of their testing. For a coverage
methodology to be sufficient, it must measure the space
of known/unknown information (i.e., information that you
know/do not know exists and can be tested) and covered/
uncovered information (i.e, information that has/has not al-
ready been tested). The table below illustrates this practice
(Figure 15). Pragmatically, early-stage programs should
put a larger focus on what is known, while later-stage pro-
grams should put a larger focus on what is unknown.

In other words, coverage is the ratio between what is known
and tested on the one hand, and the total space of possible
situations that the system may find itself in on the other.
Autonomy programs should first define the ODD. They
should then define a method for determining whether a part
of the ODD is sufficiently tested. Once these two aspects
are defined, teams can measure coverage independently
at any level of granularity, from the individual scenario/
test case level up to the autonomy program’s entire
ODD (Figure 16). For early-stage autonomy programs,
coverage can begin as a simple count of the number of
tests for each scenario category. For later-stage programs,

coverage needs to evolve into a statistical measure of the
comprehensiveness of what has been tested.

For programs in the earlier stages of V&V, the primary goal
should be feature development. To this end, the role of
measuring coverage for early programs is to help identify
and fill potential feature gaps. Thus, any coverage metric
must help answer the following questions:
• What are the most important features to develop?
• Which features need the most work?
• Which features are not being tested enough?

In this stage, it is critical to define the ODD thoroughly
through the processes described above (see Defining
requirements and the ODD, Crafting a comprehensive
scenario library). Once functional requirements are defined,
the most relevant coverage metric is the percentage of
requirements and test cases that are tested in relation to
the known ODD space.

As an autonomy program begins to mature towards the
mid-stage, its focus should shift towards creating its safety
case. In this stage, the role of coverage shifts away from
driving feature development and moves towards proving
maturity and safety. Thus, the primary questions for
coverage metrics become the following:
• What additional work is required for a feature to be

considered mature?
• Are there any situations where certain feature behavior

is unknown?

Once a program is in the late stage and most of the formally
defined nominal requirements are fully covered, the focus

Known information space Known and unknown Unknown information space

Covered information space Early-stage programs Mid-stage programs Mid-stage programs

Uncovered information space Early-stage programs Mid-stage programs Late-stage programs

Figure 15: The information (known/unknown and covered/uncovered) autonomy programs should measure by V&V stage

29Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

shifts again to covering the untested unknowns. Now, the
primary questions for coverage metrics are:
• How safe is the stack given the known ODD information

space?
• How safe is the stack in situations that it has not yet

encountered?

At this stage, and to address these new questions, teams
should also measure coverage using the arrival rate of new
information to quantitatively measure an upper bound for
the limit of unknowns in an ODD.

Autonomy programs can take the following steps to define
coverage metrics and set up coverage analysis workflows:
I. Define the ODD as early as possible using a formalized

taxonomy. An ODD taxonomy is an organized set of
attributes, each with an enumerated set of parameters
(or parameter ranges for continuous values), that
define the possible environmental conditions, objects,
behaviors, and road infrastructure that the autonomous
system needs to be able to handle in its ODD. It is
composed of two core building blocks:
• ODD attributes define an aspect of the ODD
(e.g, “road type,” “road curvature,” or “time of
day”).

• ODD parameters define and quantify an ODD
attribute (e.g., for the ODD attribute “road type,”
the parameters might be “local,” “arterial,” and
“collector”).

One reference that can aid in enumerating the ODD
attributes and parameters in the taxonomy is the
PEGASUS method, which provides a model for

systematically describing scenarios based on six
independent layers (Figure 17): environment topology,
traffic infrastructure, environment state, objects
and agents, environmental conditions, and digital
information.

II. Categorize each test according to the defined
taxonomy.

III. Link tests to requirements; track ODD coverage (i.e.,
the statistical measure of how much of the ODD
taxonomy has been covered so far) and, increasingly,
requirements coverage (i.e., the number of tests
assessing each requirement).

IV. During early-stage development, measure coverage
by assessing the number of tests for each capability,
scenario category, and ODD attribute.

V. During mid-stage development, measure ODD
coverage by calculating the weighted sum of
the coverage of all possible test cases and
situations as defined by the ODD taxonomy
(each attribute’s combination of parameters).
In addition, begin assessing the number of tests for
each requirement as they are built out.

VI. As real-world testing begins, start assessing if any
new objects or scenarios are encountered that
were not previously defined in the ODD taxonomy.
Begin categorizing drive tests according to the ODD
taxonomy.

VII. Formalize these ODD parameter combinations into
additional scenarios that need to be covered.

VIII. Use drive data and real-world distributions to measure
the probability for each type of situation. This serves
as an objective measure of the ratio of covered real-
world events.

Stage Description

Early-stage
Measure coverage according to the number of tests for each high-level capability, scenario category, and ODD
attribute

Mid-stage
Add measurement of the number of tests for each requirement (as requirements are built out) and begin tracking
ODD coverage more granularly by each ODD attribute’s parameters; early coverage analysis of maps can also begin

Late-stage Add statistical measures of coverage

Figure 16: Recommended ways of measuring coverage by V&V stage

https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUS-Gesamtmethode.pdf

30Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

IX. Measure requirements coverage both by the
percentage of requirements that have test cases
associated with them and by the number of test cases
used to verify requirements.

X. Measure map coverage by assessing the distribution
of tests across different map elements (e.g., different
road curvatures, road conditions, and road types) and
map segments (e.g., physical locations in a geofenced
region).

XI. During late-stage development, define a rigorous
coverage metric based on the arrival rate of new
information.

XII. Track these coverage metrics throughout development
to guide feature development, scenario creation, and
real-world testing. Heavily reference these metrics in
your safety case, especially as part of the SOTIF and
evidence-based safety pillars.

Ultimately, defining and increasing coverage helps

autonomy programs by:
I. Quantitatively prioritizing features, bug fixes, and

stack tuning relative to the frequency and importance
of these items in the ODD.

II. Iteratively discovering, covering, and performing on
rarer subsets of the ODD. This allows the stack to
progress from covering simple situations to covering
incredibly complex and nuanced ones.

III. Optimizing data collection and scenario creation by
understanding in which situations more real-world
data needs to be collected or scenarios need to be
created based on coverage uncertainty and coverage
gap metrics.

IV. Rigorously defining the statistical likelihood of new,
uncovered events occurring during operation and the
likelihood that these events will cause any safety-
critical issues.

V. Measuring if the ODD has been tested sufficiently to
assess if there are any missing scenarios that should

Figure 17: PEGASUS layers for scenario modeling; not pictured is the sixth layer for digital information (e.g., vehicle-to-everything, digital data/map
information)

31Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

be tested.
VI. Contributing to key parts of safety argumentation

and building trust with consumers and regulators that
the system has been tested on all the scenarios it is
expected to be able to operate safely in.

Analyzing performance
This section of the handbook should be read in tandem
with Productionizing a release validation process and
Defining evaluation criteria and metrics. The goal of
performance analysis is to understand the conditions that
the autonomous system can and cannot handle safely. The
former, coupled with coverage analysis, serves as the safe
operating area that the system should be able to perform
in. The latter serves as the focus area for improvements
on the development side. Performance analysis also
helps measure progressions and regressions from the
previous release and decide whether the release is worthy
of approval. The following table lays out recommended
performance analysis processes for early-, mid-, and late-
stage autonomy programs (Figure 18). All teams should
track KPIs and SPIs. Formal A/B testing becomes a point
of emphasis for later-stage programs. A/B testing is the
practice of evaluating and comparing the performance of
the master and development branches on the same set
of tests to determine regressions and progressions in a
controlled experiment.

Teams should generally conduct performance analysis
throughout development and testing in the following way:
I. Define KPIs and SPIs that will measure the overall

system performance and safety (see examples in the
Defining evaluation criteria and metrics section).

II. Create a high-level view of the performance of each
KPI and SPI in the form of a live dashboard. Every
member of the organization, including executives, can
use these dashboards to:
a. Present the most updated information, either
from the current software build or from the
most recent batch of tests (e.g., from a nightly
assessment), with the ability to compare with
previous builds.

b. Make decisions on whether to approve a release
and monitor the overall safety and performance
levels of the program.

c. Add visualizations that allow team members
to view trends, by release and by test, in each
metric over time.

d. Add visualizations that allow team members to
view the value of each metric, its distribution,
and its deviation from expected or safe values.

III. Review this dashboard regularly (e.g., daily). Act
on failures and regressions. The triage team should
diagnose the root cause of the issue and send a failure
report—with a copy of the test results and playback—
to the developer in charge of addressing it.

IV. Create a more detailed dashboard that developers
can use. Developers should leverage the high-level
performance dashboard but use the more detailed
dashboard for rigorous A/B testing. Developers need
to understand the impact of each code change.
To achieve this, they may collaborate with other

Stage Description

Early-stage
Fixing all failures from smoke tests, prioritized by severity; initial observers are still being developed and tuned
(need to track stability); weekly tracking of KPIs and SPIs

Mid-stage
Ramping up formal A/B testing (to reflect iterative model of development and fix regressions); initial set of observers
in place, with advanced observers now being developed and tuned (with need to track stability); daily tracking of
KPIs and SPIs

Late-stage
Heavy A/B testing and statistical analysis of quantitative improvements from previous release, including evaluating
tradeoffs between SPIs and KPIs; daily tracking of KPIs and SPIs

Figure 18: Performance analysis processes by V&V stage

32Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

departments, such as statistics or data science, to
evaluate whether there is a quantitative improvement
from the previous release. This group may also work
together to look at performance across all test types
and evaluate tradeoffs in the inevitable case where
progressions occur for some metrics and regressions
occur for others.

V. Carefully scrutinize each selected regression to
understand why it occurred. Create an issue ticket for
each regression to track that it is resolved in the next
release. Teams can celebrate a progression as a win,
but they also need to track it carefully to ensure that it
does not regress in future releases.

VI. Analyze each release on the requirements level.
Measure each requirement on whether it passes up to
an acceptable level.

VII. Performance reports should be regularly compiled for
historic documentation and traceability.

Measuring and assessing performance helps autonomy
programs by:
I. Improving the ability to quantitatively determine which

features are performing well and which ones need the
most work. This allows teams to objectively prioritize
which features to work on.

II. Preventing regressions in behavior, which allows for
faster development velocity by ensuring that all work
contributes to the autonomy program’s progress.

III. Contributing to key parts of safety argumentation and
building trust with consumers and regulators that the
system performs well on all the scenarios it is expected
to be able to safely operate in.

33Applied Intuition — Building Safe Autonomous Systems | Conclusion

Conclusion
This handbook aims to support autonomy programs in
building a safety framework and establishing robust V&V
processes. We hope that it can serve as an active resource
to help your autonomy program define a safety framework
and safely develop, test, and deploy your autonomous
systems for commercialization.

While this handbook answers many questions surrounding
how to build a safety framework and how to perform V&V
in practice, some questions are likely left unanswered
regarding the specifics of your autonomy program. The
Applied team is ready to support your program in its V&V
and commercialization goals through a combination of
industry-leading autonomy development and validation
solutions and expertise in the industry’s best practices.

Contact us at applied.co/contact to ask questions or learn
more about about Applied’s V&V platform Basis.

https://www.appliedintuition.com/contact
https://www.appliedintuition.com/product/basis

34Applied Intuition — Building Safe Autonomous Systems | Glossary

Glossary
ACC: adaptive cruise control
ADAS: advanced driver-assistance system
ADS: automated driving system
AEB: automatic emergency braking
ALKS: automated lane-keeping system
ALM: application lifecycle management
ASAM: Association for Standardization of Automation and Measuring Systems
ASIL: Automotive Safety Integrity Level
AVSC: Automated Vehicle Safety Consortium
CI: continuous integration
DIL: driver-in-the-loop
DR: deceleration rate
DRAC: deceleration rate to avoid collision
EU: European Union
FAA: Federal Aviation Administration
FMEA: failure mode effects analysis
FTA: fault tree analysis
GRVA: Working Party on Automated/Autonomous and Connected Vehicles
HARA: hazard analysis and risk assessment
HIL: hardware-in-the-loop
HMI: human-machine interface
ISO: International Organization for Standardization
IV&V: independent verification and validation
KPI: key performance indicator
L2: SAE Level 2
L3: SAE Level 3
L4: SAE Level 4
MIL: model-in-the-loop
NATM: New Assessment/Test Method for Automated Driving
NCAP: New Car Assessment Program
NHTSA: National Highway Traffic Safety Administration
ODD: operational design domain
PET: post-encroachment time
RSS: responsibility-sensitive safety
SAE: Society of Automotive Engineers
SIL: software-in-the-loop
SOTIF: safety of the intended functionality
SPI: safety performance indicator
STPA: systems theoretic process analysis
TTC: time-to-collision
UL: Underwriters Laboratories
UN: United Nations
UNECE: United Nations Economic Commission for Europe
V&V: verification and validation
VIL: vehicle-in-the-loop
VMAD: validation methods for automated driving
VSSA: voluntary safety self-assessment

35Applied Intuition — Building Safe Autonomous Systems | Glossary

applied.co/contact

https://www.appliedintuition.com/contact
https://www.appliedintuition.com/

