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Executive Summary
A. Challenge
Safely developing and deploying autonomous systems is a 
challenging task. Autonomy programs need to define and 
follow a rigorous verification & validation (V&V) process 
to ensure the safety of the systems they develop. The 
V&V process helps teams test their autonomous systems 
against design requirements in different environments, 
including real-world testing, test track testing, simulation, 
and more. Unfortunately, autonomous systems are 
especially complex due to the unbounded conditions they 
need to handle safely in their operational space. On top 
of that, there is limited regulatory guidance surrounding 
autonomous system safety and how programs can work 
towards safe commercial deployment. As a result of these 
challenges, some autonomy programs are hesitant to 
invest in V&V early on in their development, hoping that 
it will get easier to establish V&V processes once their 
system is developed further. However, those programs 
might overlook that foundational development and testing 
practices are best established jointly. By setting up the right 
foundations early and maturing V&V processes over time, 
teams can develop autonomous systems more efficiently 
against clearly defined goals, avoid delays, and achieve a 
safer, more performant end product.

B. Goals
Robust V&V as critical as functionality development itself. 
When defining a development and validation strategy, 
autonomy programs should strive towards two goals:
I. Establish a safety framework: Outline which safety 

principles to follow. A safety framework can later 
help an autonomy program build its safety case (i.e., 
a structured argument that justifies the safety of the 
autonomous system) to build trust among regulators 
and the general public that the performance of the 
autonomous system is validated and minimizes harm 
to an acceptable level.

II. Implement comprehensive V&V processes:  Set up a 
robust set of processes to validate a safe product in a 
reasonable time span.

This handbook aims to provide autonomy programs with 
principles to consider for their safety framework (I. Safety 
Framework Best Practices) and best practices for setting 
up their V&V processes  (II. V&V Best Practices).

The first part of this handbook (I. Safety Framework Best 
Practices) defines six core principles, which we propose 
autonomy programs adopt as the foundation of their safety 
frameworks. These principles prescribe that the product 
is safely designed, is functionally safe, accounts for the 
safety of the intended function, demonstrates evidence-
based safety, is produced by a program with a strong 
safety governance structure and culture, and is safely 
operated. By following this framework, programs will have 
rigorous data, traceability, and documentation to convince 
themselves, regulators, and the general public that their 
autonomous system is safe enough to be deployed 
commercially.

The second part of this handbook (II. V&V Best Practices) 
provides a practical guide for implementation that autonomy 
programs can refer back to throughout development 
and validation. This part aims to be an active reference 
whenever programs need advice on core topics, including 
how to:
I. Set up a hybrid between the V-model and the agile 

product development processes.
II. Set up a formal release validation process and safety 

governance board.
III. Build a comprehensive simulation scenario library.
IV. Use simulation, track, and real-world test environments; 

perform scenario-based testing economically and 
effectively.

V. Determine whether the system is safe enough to be 
deployed without comprehensively testing every 
possible aspect of the operational design domain 
(ODD).

Applied Intuition has leveraged its unique position in 
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the autonomy industry to create this handbook. Over 
the years, our team has acquired extensive industry 
experience, worked with customers to help them progress 
towards their validation and safety goals, tracked the latest 
research, collaborated with regulators and standardization 
committees, and developed new tools and processes to 
support our customers.

This handbook serves as an evolving resource for 
autonomy programs to define their safety framework and 
then implement V&V best practices to safely develop, test, 
and deploy autonomous systems for commercialization. It 
also aims to spark conversations with stakeholders across 
the industry. We look forward to these conversations and 
welcome feedback for future iterations of this handbook.

C. Preview
Below are only a few examples of the topics that readers 
can learn about in this handbook.

Stages of V&V
Autonomy programs can be in different stages of their 
development and validation efforts. The Stages of V&V 
section of this handbook lays out what early-, mid-, and 
late-stage autonomy programs might look like across 
various V&V dimensions such as safety governance 
structure, safety case, release validation process, 
requirements management, test methods, coverage 
analysis, and performance analysis.

After Stages of V&V,  subsequent sections of this handbook 
lay out best practices for early-, mid-, and late-stage 
autonomy programs separately.

Coverage
The Defining and measuring coverage section of this 
handbook covers how to qualitatively and quantitatively 
determine if autonomy programs have tested their systems 
enough. The section defines coverage as the ratio between 
what is known and tested on the one hand, and the total 
space of possible situations that the system may find itself 
in on the other.

While it is useful to measure coverage according to the 
number of tests of each capability, scenario category, and 
requirement, this section discusses an approach based on 
the ODD definition. Using an ODD taxonomy, where the 
ODD is defined using a set of attributes and parameters, 
programs can assess coverage at the ODD level, allowing 
for a semantic understanding of what types of scenarios 
need additional coverage. The section concludes with 
a discussion of statistical coverage metrics that assess 
coverage more rigorously from an information theory 
perspective as well as the key benefits of measuring and 
assessing coverage at the program level.

Scenario creation
The Scenario creation section of this handbook shows 
how autonomy programs typically approach scenario 
creation depending on their development stage. Early-
stage autonomy programs usually focus on building broad 
coverage across requirements and scenario categories. 
Once they have built broad coverage, later-stage teams 
focus on collecting and generating edge case scenarios 
and expanding into new domains.

Taking procedural aspects of the test case aside, what 
changes a scenario into a test case is the specification 
of evaluation criteria that test the system’s performance. 
Autonomy programs should track a measurable, overall 
pass/fail outcome for each test case. This outcome is a 
composite of key competency, safety, and comfort factors, 
where all non-optional evaluation rules must pass, with the 
ability to dig into each of them and their underlying metrics. 
The Defining evaluation criteria and metrics subsection 
lists out metrics and evaluation criteria that teams should 
assess for their test cases.
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Introduction
A. The challenge of autonomous 
system validation
Autonomy programs need to demonstrate to themselves, 
to regulatory agencies, and to the general public that their 
autonomous systems are trustworthy and safe to use. 
Robust and comprehensive V&V processes that fulfill these 
regulatory guidelines are thus critical for the successful 
development and commercialization of autonomous 
systems. However, unlike established fields such as the 
traditional automotive, aviation, and aerospace industries, 
autonomous system V&V is an emerging field that 
faces more complex challenges. New advanced driver-
assistance systems (ADAS) (i.e., SAE Level 1-2 systems) 
and automated driving systems (ADS) (i.e., SAE Level 
3-5 systems) target complex ODDs and are expected to 
handle more scenarios than can be verified with a finite set 
of tests. As a result, there will always exist the possibility 
of unknown hazards that might not be captured in an 
autonomous system’s preliminary design and that have not 
been tested for. Although ADAS and ADS have extensive 
hardware components, software V&V thus poses new 
problems due to the complex and much larger operational 
space.

B. Regulatory landscape
At the time of writing, there are relatively lightweight 
but evolving frameworks for the regulation of ADAS and 
ADS. The following overview describes the autonomy 
regulatory landscape at a high level. The descriptions 
of various frameworks below summarize the current 
state of regulatory programs, but they are by no means 
comprehensive.

U.S. regulatory landscape: 
Automated driving systems (ADS)
It is the responsibility of each autonomy program to 
validate its ADS properly. Current regulatory guidance 
hints at adopting V&V methodologies during the production 
and post-production phases of ADS development. While 
federal regulatory guidance exists to a certain degree, it 

is often unclear which specific methodologies autonomy 
programs should adhere to when validating their ADS. 

For example, in the aviation industry, the U.S. Federal 
Aviation Administration (FAA) prescribes specific industry 
standards and requires aircraft manufacturers to obtain 
certifications according to those standards. In comparison, 
the U.S. National Highway Traffic Safety Administration 
(NHTSA) does not currently require autonomy programs to 
comply with any functional or system safety regulations for 
ADS. Instead, NHTSA allows the “self-certification” of ADS 
through voluntary safety self-assessments (VSSAs) that 
are made available to the public by ADS developers and 
manufacturers themselves or through the NHTSA website. 
NHTSA’s VSSA template suggests—but does not require—
information that autonomy programs can use to summarize 
their approach to addressing safety. NHTSA does retain 
the authority to enforce against any motor vehicle or 
motor vehicle equipment that poses an “unreasonable risk 
to safety” through the traditional safety recall process, 
and has done so on one occasion with respect to an ADS 
developer.

While the federal government regulates the design, 
construction, and performance of motor vehicles, state 
governments have specific authority to regulate the 
operation of motor vehicles, which includes issues such 
as licensing drivers, traffic enforcement, insurance, 
and registering vehicles. In the absence of federal 
regulations governing autonomous vehicle safety, many 
state governments have begun regulating the operation 
of ADS on their own roadways through guidelines, state 
laws, and executive orders. The National Conference of 
State Legislatures maintains a database of enacted state 
legislation and executive actions. 

U.S. regulatory landscape: Advanced driver-
assistance systems (ADAS)

https://www.sae.org/blog/sae-j3016-update
https://www.sae.org/blog/sae-j3016-update
https://www.sae.org/blog/sae-j3016-update
https://www.nhtsa.gov/automated-driving-systems/voluntary-safety-self-assessment
https://www.ncsl.org/research/transportation/autonomous-vehicles-legislative-database.aspx
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In comparison to ADS, NHTSA has defined more specific 
guidelines for ADAS functions such as automatic 
emergency braking (AEB), traffic jam assist, and blind-
spot intervention, and the agency continues to advance 
rulemakings to regulate crash avoidance technologies (e.g., 
AEB for heavy-duty vehicles). NHTSA provides prescriptive 
test protocols for these ADAS functions in the form of 
specific initial and ending test conditions and descriptions 
of scenarios and evaluation criteria that autonomy 
programs should use. Unfortunately, these test protocols 
are only incomplete lists of possible functional tests. They 
do not cover all possible situations an ADAS function might 
encounter in an ODD. Hence, autonomy programs can only 
use these test protocols to measure whether their ADAS 
system can functionally meet a federally recommended 
baseline level of performance.

Autonomy programs cannot utilize NHTSA’s test protocols 
to comprehensively ensure an ADAS’ safety for all possible 
conditions during its operation. Similarly, the New Car 
Assessment Program (NCAP) also provides test protocols 
for ADAS functions such as AEB, and it is still evolving. For 
example, in March 2022, NHTSA released a request for 
comments regarding the evaluation of new ADAS functions. 
However, these test protocols also only provide examples 
of functional tests instead of listing all possible scenarios 
that an ADAS function could encounter in an ODD.

Global guidance
Most global regulations on autonomous systems concern 
ADAS, but some include ADS as well. In the summer of 
2021, Germany passed a law on Level 4 (L4) autonomous 
systems. This law is an amendment to the “Road Traffic 
Act and Compulsory Insurance Act - Act on Autonomous 
Driving” that allows the usage of ADS in approved, defined 
operating areas. China, Japan, and Europe have similar 
regulations and standards surrounding the testing of 
ADS—even some that touch on the testing of artificial 
intelligence systems.

United Nations (UN) regulation No. 157 on automated 
lane-keeping systems (ALKS) is the most notable one. This 
regulation, which is approved by 42 countries, specifies 

some of the requirements and testing methods for Level 
3 (L3) ALKS system compliance. In May 2022, Mercedes-
Benz was the first automotive company to receive approval 
from the German government to let consumers operate 
L3 systems on public roads. In April 2022, the European 
Union (EU) released draft ADS legislation, which proposes 
uniform procedures and technical specifications for the 
type approval of “fully automated vehicles.” As part of 
the type approval application, ADS manufacturers would 
be required to provide documentation to type approval 
authorities of its “safety concept” demonstrating the 
safety of the ADS. However, these requirements are not 
yet in force.

The concern with existing global regulations is the same 
as for U.S. regulations: While they define high-level 
requirements, intended operating conditions, and test 
scenarios, they do not provide a comprehensive set of test 
cases, evaluation criteria, and validation methodologies 
necessary to ensure the safety of an autonomous system. 
Autonomy programs still need to rigorously construct an 
argument for why their system is safe and complies with 
each pertinent regulation, especially since it is impossible 
for any regulatory body to enumerate every possible 
scenario an autonomous vehicle could encounter and thus 
should handle safely. Hence, autonomy programs often 
find additional value in analyzing and referencing standards 
such as Underwriters Laboratories (UL) 4600, the various 
best practice documents by the Automated Vehicle Safety 
Consortium (AVSC), the Society of Automotive Engineers 
(SAE) J3018, and the various International Organization 
for Standardization (ISO) standards (e.g., ISO 21448, ISO 
26262) in building out a formal argument for safety.

https://www.govinfo.gov/content/pkg/FR-2022-03-09/pdf/2022-04894.pdf
https://www.govinfo.gov/content/pkg/FR-2022-03-09/pdf/2022-04894.pdf
https://insideevs.com/news/584686/mercedes-level-3-autonomous-tech-launch-germany/
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I. Safety Framework 
Best Practices

Figure 1: Core principles that every autonomy program should adopt as part of its safety framework

The lack of clear regulatory guidance leaves autonomy 
programs in a challenging position. Programs need 
to develop autonomous systems quickly to remain 
competitive and meet growing consumer demands, while 
simultaneously establishing a framework for ensuring the 
safety of the systems they develop. A key component of 
every autonomy program’s validation efforts is a safety 
case—an evidence-backed, structured argument used to 
justify that the autonomous system in question is safe.

Safety frameworks define the core principles around how 
an autonomy program creates a safety case and justifies 
safety. They apply to all developers of autonomous 
systems and all the various levels of autonomy. A rigorous 
safety case helps programs convince regulators that their 
autonomous system is safe to deploy commercially. It also 
provides points of reference that the autonomy program 
can leverage throughout development to ensure that 
safety is always top-of-mind. 

Good safety frameworks leverage a foundation of several 
references, including academic research, industry 
standards and best practices, and government regulations 
and guidance. Additionally, safety frameworks should 
evolve as more information about the system and other 
industry standards and best practices emerge. 

Based on a review of the top autonomy programs’ VSSAs, 
academic research, standards, regulations, and industry 
best practices, this part of the handbook covers six core 
principles that every autonomy program should adopt as 
part of its safety framework (Figure 1). These core principles 
are important for every autonomy program to include, 
but depending on the program, additional principles 
might be required. For example, autonomy programs can 
complement these core principles with standards such as 
UL 4600, which covers similar topics and provides a high-
level checklist for what should be included in a safety case.



8Applied Intuition — Building Safe Autonomous Systems | I. Safety Framework Best Practices

A. Safety-oriented design
The following section focuses on the two most important 
aspects of safety-oriented design for autonomy V&V: 
Requirements-driven design, fallback, and cybersecurity. 
Other aspects, such as mechanical engineering reliability, 
are not the focus of this handbook but should also 
be considered as part of overall autonomous system 
development.

Requirements-driven design
Requirements-driven design is the process of designing 
and developing a system (i.e., the various software and 
hardware components) according to specific requirements. 
The requirements for autonomous system design need 
to cover everything from functional to safety to legal 
needs (e.g., accounting for pertinent federal, state, and 
local laws). Requirements-driven design allows teams 
to focus their efforts and reduce the risk of errors in the 
final product. Successful autonomy programs define an 
initial version of requirements along with the autonomous 
system’s ODD as early as possible. They then refine those 
requirements iteratively throughout development and 
testing. These definitions—especially the set of system 
requirements—might evolve as the autonomous system or 
the scope of its ODD expands. However, the more rigorous 
these definitions are early on in the system’s design and 
development, the better. Clear requirements and ODD 
definitions help programs set a clear scope, align teams 
internally, and ensure that the developers build to the 
correct specifications. This practice helps avoid wasted 
engineering efforts due to internal misalignment and 
prevents significant project delays.

Fallback
While focusing on ensuring the system can operate safely 
under normal conditions, it is also important to consider 
circumstances under which the system is not able to 
operate safely. For ADAS systems, these could be cases in 
which the system detects an unsafe condition or a scenario 
that is not within its capabilities or ODD. In this case, the 
system should notify the driver to take back control safely. 
For ADS systems, there might be no human driver in the 
loop, in which case the system must be able to transition—

or “fall back”—into a minimal risk condition. 

Autonomy programs need to document their fallback 
strategy during operation (i.e., the system’s process for 
transitioning to a minimal risk condition when there is an 
issue or situation the system cannot handle safely). 

Cybersecurity
Cybersecurity is a large contributing factor to an 
autonomous system’s safety, as cyberattacks pose a 
significant threat during vehicle operation and testing. 
Regardless of the intended level of autonomy (e.g., L2 
or L4), programs should consider the following design 
choices:
I. Autonomous systems and their underlying software 

and human-machine interface (HMI) systems should 
only be accessible by authorized users.

II. If remote intervention is allowed, only authenticated 
and authorized parties should be able to access 
and influence the autonomous system and related 
communication networks.

While this handbook does not go further into cybersecurity-
related issues, these topics are worth considering and 
discussing in relation to autonomous system development 
and testing.

B. Functional  safety (ISO 26262)
Autonomy programs need to analyze the sub-component 
risk, system-level risk, and functional safety for each 
autonomy feature and each software and hardware system 
element they develop. ISO 26262 allows the decomposition 
of a system into subsystems which are then evaluated 
regarding the respective risk they induce on the whole 
system. The so-called Automotive Safety Integrity Level 
(ASIL) Levels A-D deliver a basis for the demanded risk 
evaluation for each sub-system.

I. Most autonomy programs use traditional safety 
analysis techniques such as failure mode effects 
analysis (FMEA), fault tree analysis (FTA), and hazard 
analysis and risk assessment (HARA). FMEA concerns 
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a vehicle’s system architecture. FTA follows a deductive 
approach by breaking down vehicle- and product-
level goals into lower-level safety requirements. In 
the context of ISO 26262, HARA involves looking at 
malfunctions, identifying corresponding hazards, and 
assessing the risk of those hazards.

II. Autonomy programs also use systems theoretic 
process analysis (STPA) to conduct complex system 
hazard analyses and complement traditional safety 
analysis techniques. Compared to FMEA and FTA, 
STPA is more efficient at identifying, analyzing, and 
mitigating non-obvious component interactions that 
can cause hazards and risks.

A detailed description of how FMEA, FTA, and STPA are 
applied to ADAS and ADS V&V is outside the scope of this 
handbook.

C. Safety of the intended 
functionality (ISO 21448)
In autonomy development, it is critical to identify unknown 
issues upfront as soon as possible. Since some of these 
unknowns are impossible to anticipate ahead of time 
(“unknown unknowns”), autonomy programs need to 
continually validate their safety claims to successfully 
ensure the safety of an autonomous system’s intended 
functionality. Programs also need to demonstrate that they 
have robust processes in place to continuously identify 
hazards (both in simulation and real-world circumstances) 
and measure test coverage as validation efforts progress.

Deductive and inductive approaches
Top autonomy programs combine both deductive and 
inductive approaches to evaluate the safety of an 
autonomous system. Deductive safety approaches include 
using HARA and STPA methods in the context of ISO 
21448, which focus more on safety issues stemming from 
functional insufficiencies, performance limitations, and 
foreseeable misuses. Programs can use these methods 
to enumerate possible conflicts and hazards that might 
emerge from safety or system requirements. However, 
these worst-case scenarios inducted from product 
requirements merely provide a theoretical view and need 

to be supplemented with hazards that occur during testing. 
This is what inductive approaches facilitate. 

Inductive safety approaches differ from deductive safety 
approaches in that they focus on identifying issues from 
specific observations. When following inductive safety 
approaches, it is best to use a designated triage or event 
review team to trace all failures and hazards from real-
world testing (e.g., driver interventions during safety driver 
testing) and simulation testing back to requirements. 
This includes conducting HARA on each of these events. 
Inductive approaches also help autonomy programs 
ensure that their requirements are comprehensive as new 
information about the ODD emerges during real-world 
testing.

ODD databases
In addition to combining deductive and inductive safety 
approaches, autonomy programs can manage an internal 
database of the scenarios and objects they encounter in 
the autonomous system’s ODD during testing. This helps 
programs understand the scenarios and objects that 
their system can handle safely and lets them identify new 
objects when they occur during operation. This internal 
database can be supplemented with external databases 
(e.g., crash or naturalistic driving databases). External 
databases are valuable because collecting fleet data 
is expensive and time-consuming. A third-party data 
source can thus provide a neutral, supplemental source 
of ODD information and edge cases. By maintaining these 
databases and classifying tests according to objects and 
interactions in the scenario, autonomy programs can 
measure test coverage across ODD categories, detect out-
of-ODD events, and catch new scenarios and objects that 
were not previously covered.

D. Evidence-based safety
In addition to functional safety and safety of the intended 
functionality, another safety process that autonomy 
programs should demonstrate in their safety framework 
(and eventually in their safety case) is evidence-based 
or “proven” safety. Evidence-based safety focuses more 
on demonstrating safety through quantitative statistical 
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analysis. Many successful autonomy teams use the 
following methods to demonstrate evidence-based safety:

Metrics and evaluation
I. Leverage automatic rules for evaluating system 

performance, especially against requirements. For 
example, apply acceptance criteria on the maximum 
lane deviation or minimum lateral safety buffer.

II. As collisions occur very infrequently, surrogate safety 
measures can serve as stand-in metrics by tracking 
events that either precede collisions or are predictive 
of collisions. Use surrogate safety measures—such 
as time-to-collision (TTC), deceleration rate (DR), 
and post-encroachment time (PET)—alongside other 
advanced metrics.

III. Define and use metrics that compare autonomous 
system behaviors to observed human behaviors 
(e.g., maneuver execution time or reaction time). 
These metrics allow autonomy programs to answer 
sophisticated questions such as: “Does this 
autonomous system change lanes like a human driver?” 

IV. Verify and update the above metrics using data from 
simulations, structured test track testing, real-world 
testing, and production operations.

V. Define, analyze, and monitor safety performance 
indicators (SPIs) for all safety-related areas of an 
autonomy program. SPIs are metrics that measure 
some aspect of autonomous system safety and 
include a threshold value for evaluating a particular 
safety claim.

VI. Monitor the above metrics regularly (e.g., in daily 
reporting) to help ensure safe development, testing, 
and operation.

Statistical coverage
I. Create a formal ODD definition that enumerates 

scenario categorizations and expected parameter 
ranges and dimensions (e.g., lead vehicle speed, lane 
change duration, static obstacle size). As the system’s 
capabilities improve and more data is collected, the 
ODD definition expands as well.

II. Use simulation at scale to test all possible scenario 

variations across the ODD scope needed for full 
coverage.

III. Combine coverage and performance metrics 
to statistically demonstrate acceptable system 
safety over a sufficient area of the ODD. 

Adversarial testing
I. Leverage independent verification and validation 

(IV&V) testing to define and execute a set of adversarial 
tests to examine the bounds of system performance. 
IV&V testing provides an objective, third-party 
perspective of what should be tested, as there is no a 
priori information about how the autonomous system 
is designed.

II. Perform stress tests in simulation and on the test track 
to provide evidence of and understand the limits of the 
underlying autonomous system.

Reproducibility
I. Conduct experiments to demonstrate that simulation 

results are reproducible in real-world tests, especially 
in modeling vehicle controls and dynamics. Provide 
these experimental results to regulators as evidence 
of thorough and successful testing.

II. These experiments could include executing a 
scenario on a test track, recording pose data (from 
vehicle telemetry or external measurement devices), 
comparing validation key performance indicators 
(KPIs), and conducting qualitative correlations with 
the corresponding re-simulation (i.e., a deterministic 
reproduction of how the vehicle would have behaved 
in that situation).

E. Safety governance and culture
Based on industry best practices, autonomy programs can 
take the following two-fold approach to safety governance 
and culture:
I. Have cross-functional teams meet regularly to analyze 

safety issues stemming from key sources, including 
real-world testing, risk management, and any product 
or software deployment decisions.

II. Establish a formal safety board or governance structure 
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that brings together leaders and experts across 
engineering, safety, and product teams to ensure the 
company’s safety framework is current and adhered to 
throughout the organization.

F. Safe operations
Autonomy programs can follow several measures to ensure 
the safe operation of their autonomous systems:
I. Utilize rigorous hiring, training, and ongoing 

performance evaluation programs for safety drivers 
to ensure a standard bar of operational safety and 
consistency in vehicle operation and testing processes.

II. Use driver-monitoring systems on testing fleets 
in order to coach and train drivers on safe testing 
practices.

III. Use a salient HMI to clearly instruct drivers when to 
take over the vehicle (e.g., during ADAS operation or 
ADS testing) and to communicate the current status 
of the system (e.g., if the autonomous system is 
currently engaged or if the system is experiencing a 
malfunction).

IV. Automate processes around disengagement analysis 
(i.e., analyzing situations where the safety driver 
disengages autonomous mode during L4 ADS testing) 
and re-simulation.

V. Establish redundancies in data-logging systems to 
ensure that crashes can be diagnosed and learned 
from.

VI. Execute well-defined post-crash operations to act on 
accidents quickly and ensure adequate documentation 
of crash details for further analysis.

VII. Leverage system redundancies to help ensure 
operational safety for cases in which unforeseen 
hardware or software errors and malfunctions occur.

Combined, the six principles  outlined in this section 
establish the first steps towards building a robust 
safety framework. As autonomy programs build their 
safety framework and look to deploy their autonomous 
system, they need to solve the challenges of determining 
appropriate requirements, evaluating hazards and faults, 
anticipating the ODD’s unknowns, quantifying safety 
evidence, enforcing a safety culture, and supporting safe 
operations.
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Defining a safety framework is a vital first step toward 
defining how autonomy programs think about and 
ensure safety. This lends itself to the question: “How can 
autonomy programs build out robust V&V processes to 
practically adhere to their safety framework and deliver a 
safe product?” 

Based on the six safety framework principles outlined in 
the previous part of this handbook (I. Safety Framework 
Best Practices), the following part walks through the 
stages and best practices that autonomy programs can 
follow to implement a robust V&V process that will help 
them adhere to their safety framework principles. First, 
it will discuss some of the nuances of operationalization, 
such as balancing V-model and agile development, 
managing release validation, and establishing a safety-
focused organization. While “robust” V&V is extremely 
important for mature autonomy programs, it may be 
hard to justify implementing a comprehensive approach 
while the autonomous system is still undergoing major 
development in the earlier stages of development. Thus, 
Applied recommends an incremental strategy where V&V 

grows as development progresses, leveraging continuous 
testing and evaluation to guide development efforts. 
The following section (A. V&V lifecycle) introduces the 
major processes that make up a V&V workflow—including 
defining requirements, creating tests at scale, deciding 
which tests to execute and when, and measuring test 
performance. This section also lays out the types of 
tests teams should leverage (i.e., under which conditions 
simulation-based testing is valuable and when real-world 
driving is necessary).

A. V&V lifecycle
Autonomy programs should aim to set up a rigorous V&V 
process that individuals across the organization—from 
test engineers to developers to safety drivers—contribute 
towards. A rigorous V&V process can prevent product 
recalls and negative public perception and helps teams 
develop a safe, validated, and successful product. Since 
safety is never a one-and-done task, teams can adopt 
the following V&V lifecycle throughout system design, 
development, and post-deployment (Figure 2).

Figure 2: The V&V lifecycle is a continuous process with four distinct steps

II. V&V Best Practices 
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At a high level, autonomy programs should:
I. Start by defining and reviewing requirements and 

the ODD definition (see “1. Define goals” in Figure 2). 
Often, the responsibility for this task falls upon the 
systems and test engineering teams. These teams 
review product capabilities, user expectations, legal 
and regulatory rules, and safety literature to define the 
autonomous system’s requirements.

II. Then, teams need to design appropriate test cases to 
evaluate the autonomous system based on the defined 
requirements (see “2. Build coverage”). 

III. The next step is to execute this library of tests 
continuously throughout development and thoroughly 
when evaluating a release candidate (see “3. Execute 
tests”). For the most part, testing progresses from 
lower-cost to higher-cost environments. All test 
environments are used throughout development but 
can start with simulation and then move on to test 
track and real-world tests. 

IV. Throughout all testing, testers and developers analyze 
results (see “4. Analyze and report”). Performance 
results help guide improvements to the system 
and help teams determine what to fix next and 
if any requirements need adjustment. In addition 
to performance results, coverage analysis helps 
determine which new tests autonomy programs need 
to create and conduct. 

B. Stages of V&V
Different autonomy programs might be in different stages 
of their development and validation. The following table 
outlines what early-, mid-, and late-stage autonomy 
programs might look like across various V&V dimensions 
(Figure 3). “Early-stage” refers to teams who are just 
starting their V&V journey. “Mid-stage” refers to teams that 
have already established some of their V&V processes but 
are roughly more than two years away from commercial 
deployment. “Late-stage” refers to teams eyeing 
commercial deployment within the next one to two years.

The following table is a snapshot of the autonomy 
landscape’s current state. It can serve as a quick reference 
to assess which stage a specific autonomy program 

is at today and how it compares to other programs in 
the industry. This table does not, however, serve as an 
exhaustive, definite source of truth, as a recommendation, 
or as a definition of an autonomy program’s goal in any of 
the three stages. Together with the rest of this handbook, 
this table can also serve as a guide regarding the validation 
practices that programs can realistically leverage to 
achieve the safe and rapid commercial deployment of their 
autonomous systems.
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Early-stage Mid-stage Late-stage

Team Team of feature developers (e.g., 
planning, perception) who are also 
in charge of scenario creation and 
testing

Growing test engineering team, who 
will take on scenario creation and 
testing responsibilities

Mature validation organization with 
subteams for systems, test, and 
validation engineering, simulation 
operations, and triage

Safety 
governance 
structure

No formal structure yet Senior hire formally in charge of 
safety

Formal safety board or governance 
structure that brings together leaders 
and experts across engineering, 
safety, and product teams to ensure 
the company’s safety framework is 
up to date and implemented correctly

Safety case Does not exist yet, but target ODD 
and end use case are defined

Starting definition and gathering 
evidence for safety arguments

Finalized definition and gathering 
evidence until sufficient; safety 
framework is shared publicly

Release 
validation 
and approval 
process

No formal process Release review process to compare 
new stack versions with the previous 
build and find regressions to fix

New releases are rigorously validated 
and issues are addressed before 
approval or deployment to the fleet; 
automatic approval process for minor 
changes; more rigorous approval 
process for major changes driven by 
safety board

Requirements 
and 
requirements 
management

Minimal requirements are written 
out; tracked in spreadsheets or 
documents

In the process of building out formal 
requirements; usage of a designated 
application lifecycle management 
(ALM) tool to author and trace 
requirements to tests; starting to 
establish approval processes

Complete set of requirements for 
the ODD, defined in a unified tool 
that might integrate with previously 
used ALM tools (to shore up for 
shortcomings with existing ALM tools 
for autonomy validation); changes 
to requirements undergo rigorous 
approval process by safety board

Test 
methods/ 
environments 
used

Using closed test track and, in some 
cases, real-world testing, unless the 
team has access to a high-quality 
simulator; model-in-the-loop (MIL) 
testing and hardware-in-the-loop 
(HIL) testing are also utilized

A mix of MIL, software-in-the-loop 
(SIL) simulation, and test track 
testing; ramping up HIL, vehicle 
integration, and real-world testing 
(including drive log collection)

Usage of all test environments, 
including MIL, SIL, HIL, and vehicle 
testing (i.e., vehicle integration, 
vehicle-in-the-loop (VIL), test track, 
and real-world); executing the 
majority of tests in simulation due to 
scale and cost

Simulation 
scenario 
library

Initial set of simulation smoke tests 
with some closed-track testing; focus 
on expanding the initial set of smoke 
tests to cover the functional areas 
currently in development

A handful of scenarios for each 
scenario category or requirement 
across the ODD; early usage of 
fuzzing/parameterization; scenario 
creation is aligned with feature 
release cadences and active feature 
development

Full scenario library across the 
ODD, requirements, and scenario 
categories; each scenario generates 
many concrete variations for 
thorough parameter coverage; focus 
on finding and creating edge case 
and long-tail scenarios (from real-
world drives or randomized methods) 
and new sets of scenarios for the 
next ODD 
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Role of test 
track/public 
road testing

Most ADAS testing occurs on closed 
test tracks to find bugs and issues 
while the team starts transitioning to 
simulation testing; ADS teams might 
operate a small public road fleet

Usage of test track testing to verify 
simulation fidelity, with a small public 
road fleet finding inspiration for new 
scenarios

Large public road fleet continuously 
testing new releases and collecting 
edge case data for re-simulation; 
usage of test track testing to verify 
simulation fidelity

Coverage 
analysis

Coverage is either not tracked or 
lightly measured by number of tests 
overall, perhaps split by scenario 
category

Coverage is measured by number of 
tests split by scenario category; early 
calculation of requirements coverage, 
scenario parameter space coverage, 
map coverage (based on limited 
geofenced region of target ODD), and 
ODD coverage 

Rigorous requirements coverage, 
scenario parameter space coverage, 
map coverage (based on full 
geofenced region of target ODD), and 
statistical ODD coverage (including 
by scenario category)

Performance 
analysis

Fixing all failures from smoke tests, 
which are prioritized by severity; 
initial observers (i.e., rules for 
determining whether a result should 
pass or fail) are still being developed 
and tuned (need to track stability); 
weekly tracking of KPIs and SPIs

Ramping up formal A/B testing 
to reflect an iterative model of 
development and to fix regressions; 
initial set of observers in place with 
advanced observers being developed 
and tuned (with need to track 
stability); daily tracking of KPIs and 
SPIs

Heavy A/B testing and statistical 
analysis of quantitative improvement 
from previous release, including 
evaluating tradeoffs between SPIs 
and KPIs; daily tracking of KPIs and 
SPIs

Approximate 
performance 
level

0 - 65% passing rate 50 - 90% passing rate > 90% passing rate

Figure 3: Typical aspects of V&V for an autonomy program depending on its maturity stage

To help autonomy programs get to the optimal position 
for safe and rapid commercial deployment, the following 
section of the handbook provides prescriptive steps 
and best practices for teams to implement the right V&V 
processes as well as incorporate the four steps of the V&V 
lifecycle into their program.

C. Processes and people
Before going into the specifics of V&V, this section 
discusses the cornerstones of every successful program—
processes and people. To start with, this section outlines 
how autonomy programs can manage their product 
development processes, to what extent they can apply 
previous models from the automotive industry, and how 
they can adapt those models specifically for autonomy 
development (see Managing product development 
processes). As many of the challenges in autonomous 
system development reside on the software side, this 
section also covers how teams can set up software release 
validation processes and productionize them to ensure 

quick but thorough development and testing cycles (see 
Productionizing a release validation process). Lastly, this 
section discusses who should be responsible for leading 
V&V efforts. Within an organization, safety should be 
everyone’s responsibility. However, designated safety 
leadership and governance are crucial to establishing and 
maintaining a strong safety culture (see Establishing a 
safety governance board).

Managing product development processes
Autonomy development and validation teams should 
take a hybrid approach of both the traditional V-model 
(commonplace throughout automotive) and agile methods 
(commonplace throughout software development) 
(Figure 4).

The V-model is a top-down method that automotive 
companies have used traditionally for decades. It 
prescribes that teams should define requirements and 
then design, implement, and test one part of the system, 
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Figure 4: In autonomy development, a hybrid of the traditional automotive V-model (left) and agile methods is recommended to form an iterative product 
development lifecycle (right)

before repeating this same process with all other parts of 
the system. With this approach, validation teams need to 
devote upfront effort to defining requirements—whether 
they cover the system, the end product, or even safety 
or legal elements. When executed correctly, the V-model 
results in well-defined requirements for both safety and 
the overall design process. This helps teams save time and 
costs down the road, as mistakes or sub-optimal system 
and product designs are less likely to occur. However, a 
drawback of the V-model approach is that it assumes an 
a priori understanding of the ODD’s full complexity. When 
following the V-model approach, teams need to describe 
all requirements comprehensively before starting to 
implement the system. 

As autonomy programs might learn new information about 
the ODD and its complexity throughout the system’s 
development, testing, and operation in the field, they 
must be able to update their requirements throughout 
development and even post-deployment. Developers should 
combine the traditional V-model with an agile approach to 
accomplish this. In an agile approach, autonomy programs 
can build a mature system design iteratively from a more 
limited starting point. The agile approach seeks to define 
and execute an initial version of the product and then 
iteratively refine this product towards maturity. As teams 
can deploy and test an initial working solution sooner, the 
agile approach also helps provide critical information about 

the system design, optimal testing methods, and even new 
requirements that teams should verify. 

Autonomy programs can streamline autonomous system 
development according to the proposed hybrid approach 
by setting up the following process and repeating it for 
each iterative release:
I. If the team is starting the first iteration, building new 

functionalities, or expanding into new areas, define 
an initial set of requirements and an ODD. If the team 
is iterating on an existing version of the product or 
existing functionalities, update existing requirements 
and ODD definitions if needed (e.g., you learn through 
real-world testing that a new vehicle type such as 
electric scooters has started appearing in your ODD).

II. Design tests for the features being built or updated.
III. Develop new or updated features for autonomous 

functionality.
IV. Execute a set of relevant tests against the system 

during development. Leverage continuous integration 
(CI) testing.

V. Finalize a release candidate and test it comprehensively 
across the entire test set.

VI. Analyze results, identify issues, and fix those issues by 
either iterating on existing system features or building 
new ones.

To minimize iteration cycles and make the hybrid approach 
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more efficient, autonomy teams should be cognizant of 
deploying their testing resources effectively. Traditional 
automotive systems are often tested primarily in the 
physical world, but the advent of virtual simulation allows 
for test results in a matter of minutes, not days or longer. 
Of course, as autonomous systems are ultimately physical 
systems, real-world testing is inevitable. The topic of 
different test environments and when to leverage each will 
be discussed further in the Using each test environment 
effectively section of this handbook.

By implementing a hybrid approach of the V-model and 
agile methods, autonomy teams can balance the benefits of 
each and ensure the fast, efficient, and safe development 
of a thoughtfully designed final system.

Productionizing a release validation process
Once autonomy teams have finalized their development 
for a release, they need to rigorously test and evaluate 
the resulting release candidate before approving it for 
deployment. Teams should adhere to a formal release 
validation process to ensure the deployment of safe 
software and preserve speed throughout development. 
Development and validation velocity is key to optimizing 
time-to-market. Hence, the validation and approval process 
should be continuous, automated, and virtual as much as 
possible. Autonomy programs can consider the following 
diagram for a release validation workflow that incorporates 

Figure 5: Autonomy programs should validate each software release candidate using formal testing, analysis, review, and approval processes

scenario-based testing, evaluation, and approval for each 
new software release candidate (Figure 5).

According to this diagram, autonomy programs may 
approve a software release automatically if it meets 
pre-defined criteria. If not, teams need to triage failures 
quickly, and a safety board or a central authority can 
conditionally approve a release for limited functionality. 
The more rigorous this process, the faster development 
and validation will be. Programs can take the following 
key points and steps into account when productionizing a 
release validation process:
I. Define the scenario-based testing suite (see Scenario 

creation) and test each new software release 
candidate on it. The tests should cover the broad set 
of capabilities of the system, but they may also be 
tailored to a specific release. For instance, if the release 
focuses on improving lane-changing capabilities, the 
team should test more scenarios for lane changes. 
Teams should still run tests for all other capabilities 
to rule out accidental regressions. Running tests in 
simulation can save teams time and costs compared 
to real-world testing because it allows teams to test 
situations that are hard to set up or encounter in real-
world and closed test track environments. 

II. Define criteria that, if met, allow for automatic approval 
of the release. Teams can center these criteria around 
ensuring that there is a quantitative improvement from 
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the previous release, no critical issues are detected, 
and all core requirements and capabilities are met up 
to an acceptable level. For minor software releases, 
as long as there are no regressions or critical failures, 
teams can save time by avoiding a heavy-handed 
review process.

III. Evaluate the performance of the release. For larger 
releases, this involves a thorough analysis of the 
performance results. Some autonomy programs might 
have formal triage or software quality operations teams 
dedicated to triaging failures, prioritizing them to filter 
out any false positives, and generating a release report 
for review.

IV. The release report should cover which known critical 
issues exist and assess overall performance by 
capability (see Analyzing performance). Once the 
release report is drafted, the safety team should 
review it and, given the capability-level performance 
and list of known issues, decide whether the release is 
safe for conditional or final approval. 

V. If the safety team approves the release, the release 
lead can then deploy the changes. The development 
team should receive a version of the release report—
including the prioritized and triaged list of issues—to 
make fixes or address them in the next release.

Establishing a safety governance board
Safety governance boards are crucial to ensuring that 
established safety standards and best practices are 
adhered to across an entire organization. Most autonomy 
programs do not enact formal safety governance structures 
until late in the development and validation process (Figure 
6). Instead, they might have individuals or small teams 
responsible for safety topics. A decentralized approach 

can work for early- and mid-stage programs, but it will 
not scale as testing increases. To ensure a strong safety 
culture, it is generally better to establish a formal safety 
governance board as early as possible.

Autonomy programs can take the following steps to 
establish a formal safety governance board:
I. Select key stakeholders across the program’s 

engineering, safety, and product teams to form a 
safety board. 

II. Set up a recurring meeting (monthly cadence 
recommended) to review the program’s current safety 
framework and check whether it is being adhered to 
by:
a. Driving an investigation and review of the 
current safety levels for current and future 
rounds of testing or operation.

b. Drafting and managing the safety case, including 
an external version that is shared publicly.

c. Reviewing system requirements and ODD 
definition(s).

d. Offering a forum to review internally and 
externally reported safety incidents.

D. Requirements management and 
traceability

Defining requirements and the ODD
Autonomy programs usually start by defining requirements 
as best as they can during early-stage development. They 
might then expand on these definitions and start using a 
designated requirements management tool during mid-
stage development (Figure 7). Teams can also get ahead by 
starting to use a requirements and test case management 
tool earlier on in development.

Stage Description

Early-stage None

Mid-stage Senior hire formally in charge of safety

Late-stage
Formal safety board or governance structure brings together leaders and experts across engineering, safety, and 
product teams to ensure the company’s safety framework is current and adhered to

Figure 6: Typical safety governance structures by stages of V&V
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Autonomy programs can consider the following 
recommendations to create their requirements and ODD 
definitions smoothly and accurately:
I. Define requirements before and during development in 

an agile manner (see Managing product development 
processes). This helps teams strike a balance between 
properly scoping out the areas they know and iteratively 
refining the areas where they still need to gather more 
data. Before full system deployment, the organization 
should have requirements enumerated for all aspects 
of the system, including each sub-system and the 
system’s capabilities, and have a process for iterating 
on new requirements as system capability expands.

II. Appoint a designated team—independent of feature 
developers and with input from an appropriate body of 
stakeholders—to own the definition of requirements. 
This helps avoid a conflict of interest between 
requirements authors—who should objectively define 
the necessary system capabilities—and developers. 
This is typically the systems engineering team.

III. Define requirements with clear evaluation criteria, 
justified by literature and experimental results, for 
whether the requirement is satisfied or not. Without 
clear evaluation criteria, it is unclear when the system 
sufficiently meets each requirement. For example, a 
specific requirement might state that the autonomous 
system needs to remain at a safe distance from 
bicyclists. In this case, the evaluation criteria would 
include a precise distance or a range of distances (e.g., 
a conditional distance dependent on the autonomous 
system’s velocity and/or weather conditions) that is 
considered safe for both the autonomous system and 
the other actors in the scene. When choosing this 

evaluation criterion, the team should justify why this 
distance or range of distances is considered safe.

IV. Define the ODD as a detailed, data-driven definition 
of the scenery, environmental conditions, and dynamic 
elements in which the autonomous system should 
safely function. This includes all enumerated attributes 
with exact values and potential ranges (e.g., precise 
times of day, temperatures, and mapped zones). 
Additionally, define the ODD with a formal taxonomy 
to allow each test to be tagged according to the 
ODD attributes for coverage analysis. For example, 
an autonomy program might specify “weather” as an 
environmental condition and list “clear,” “rain,” “fog,” 
“snow,” “hail,” and “smoke” as attributes. For the “rain” 
attribute, the team might list parameter ranges of 
possible precipitation intensities.

Managing requirements
Once defined, teams need to properly manage and 
maintain all requirements to ensure they are up-to-date 
and used correctly. Autonomy programs should consider 
the following recommendations:
I. Allow feature developers to view all requirements (not 

just the ones directly assigned to them and in their areas 
of work). Requirements provide necessary context 
that every developer needs insight into, as engineering 
work might impact unexpected requirements.

II. Host requirements from across the organization and 
for each subsystem in a central location. Then, users 
will be able to assess the effects of implementation 
changes on individual requirements and measure 
tradeoffs between requirements’ performance.

III. Manage requirements in a version-controlled system 

Stage Description

Early-stage Minimal requirements written out and tracked in spreadsheets or documents

Mid-stage In the process of building out formal requirements; using a ALM tool

Late-stage
Complete set of requirements for the ODD; requiring a unified tool that might integrate with previously used ALM 
tools (to shore up for shortcomings with existing ALM tools for autonomy validation)

Figure 7: Typical requirements management process by stages of V&V
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with restricted access. Maintain past versions of 
requirements as they evolve. As requirements form the 
core of a safety case, programs should restrict editing 
privileges to team members who have the proper 
context. Before any team member can make an edit, 
programs should conduct a formal review process 
based on their safety governance processes. The 
review process should include clear evidence of why 
the edit is needed.

IV. Track all changes to requirements. Future audits may 
require autonomy programs to provide snapshots of 
what requirements the system was expected to handle 
at different points in time. This is essential in the event 
of any future accidents as the autonomous system is 
continuously deployed and improved.

Setting up requirements traceability
Requirements traceability establishes links between the 
overall goals of an autonomy program and the end product. 
It encompasses the implementation process, each test, 
and each test result, and it helps teams understand 
the downstream and upstream effects of any changes. 
Autonomy programs should consider the following two 
steps to achieve successful requirements traceability:
I. Link requirements to all test cases across SIL, HIL, 

and vehicle environments to thoroughly demonstrate 
safety and verify system requirements. This helps 
ensure that all testing is utilized appropriately for 
verification and that there is traceability from test 
results back to requirements.

II. Use a requirements management tool that allows 
bi-directional traceability between requirements, 
test cases, scenarios, test results, issues, and 
implementation. This helps teams understand 
the impact of new tests, software updates, and 
requirements updates. Traceability with system 
implementation allows users to see how requirements 
relate to the implementation and shows where the 
code tests for different requirements. This allows 
teams to set clear goals and have full transparency 
for auditors and regulators. By linking open issues to 
closed ones, teams can see the current blockers for 
requirement verification and have a historical view of 

previous issues in case similar issues or regressions 
arise later.

E. Scenario creation
The following table shows how autonomy programs 
typically approach scenario creation depending on their 
development stage (Figure 8). Earlier teams usually focus on 
building broad coverage across requirements and scenario 
categories. Once they have built strong, broad coverage, 
later-stage teams focus on collecting and generating edge 
case scenarios and expanding into new domains.

Crafting a comprehensive scenario library
Autonomy programs need to build a comprehensive 
scenario library that covers the entire ODD for the intended 
deployment. Using this library, teams can test their 
autonomous system against key performance and safety 
benchmarks for the set of scenarios that could occur in 
the ODD. 

According to the safety of the intended functionality 
(SOTIF), an autonomy program’s goal is to minimize the risk 
that the autonomous system could encounter something 
in the real world that it 1) cannot handle safely, or 2) has 
not seen before and could potentially be unable to handle 
safely. Autonomy programs can use two approaches to 
build out a comprehensive scenario library:
• Deductive approach: Identify scenarios and potential 

hazards from system and product requirements. Have 
test and systems engineers work together to anticipate 
what could go wrong for each system requirement. This 
helps form a list of hazards, which teams should then 
test by building scenarios. The deductive approach is 
a first-principles way to determine hazards and build 
scenarios that the autonomous system needs to be 
able to handle safely. However, the deductive approach 
is rather theoretical and needs to be combined with 
observations from actual testing. Hence, an inductive 
approach is also necessary.

• Inductive approach: Identify observed hazards 
and failure scenarios from real-world testing and 
operation. These hazards typically come from 1) driver 
interventions, disengagements, or takeover events
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observed during real-world testing and operation, 2) 
accidents or near-accidents observed during real-
world testing and operation, or 3) re-simulation and 
fuzzing of drive logs. Whenever a safety driver is not 
confident that the autonomous system could handle 
an event safely, they should have the ability to label 
the event for further investigation by a triage team. 
Teams should also trace these disengagements 
and hazards back to requirements and refine 
their definitions continually based on new data. 

Autonomy programs can leverage the following techniques 
to deductively and inductively build out a comprehensive 
scenario library:
I. Nominal synthetic scenarios: Start by building 

out broad scenario coverage of each requirement 
and capability with synthetic simulation scenarios 
(deductive approach). Teams should define the core 
scene and attributes they need to test. They should 
then parameterize each attribute and ensure that 
the cross-product of each combination of parameter 
values is testable. The system’s attributes, such as 
intended maneuver, actor type, actor maneuver, road 
obstacle, weather, road infrastructure, and location, 
should be parameterized and tested in a scenario 
library. Ideally, these synthetic scenarios should also 
be map-agnostic to ensure that teams can scale them 
across the maps in the ODD. 

II. IV&V scenario libraries: Since the deductive approach 
is highly dependent on how internal teams choose 
to test requirements (and on the requirements 

themselves), autonomy programs should complement 
their internal scenario creation efforts with external 
ones. IV&V teams can provide a set of adversarial tests 
created independently from an internal team’s tests. 
These independently created tests help functionally 
test and stress-test the system. External teams do not 
have bias and prior knowledge of the system. They 
can generate functional tests based on their own best 
practices, find failures, and consider situations that 
internal teams may have missed.

III. Real-world drive data: As autonomy programs develop 
test vehicles, they can be driven autonomously or 
manually in the real world to collect representative data 
from the ODD. Teams should record all logs from these 
drives or save the most interesting snippets—usually 
those deemed to be hazards or disengagements—
as part of the scenario library. Teams can then reuse 
those drive logs as inspiration for new synthetic 
scenario tests or adopt a simulation framework that 
allows for replay and fuzzing of collected drive logs to 
achieve higher-fidelity testing.

IV. Edge case simulation scenarios: As teams conduct 
more real-world testing, collected data will inspire 
new scenarios that need to be covered. Autonomy 
programs should build out new synthetic scenarios to 
address these edge cases. They can create synthetic 
scenarios—including synthetic data for sensor 
simulation—for situations that rarely occur in the 
real world or would be dangerous to collect in a real-
world setting. For instance, teams can use synthetic 
simulation to create scenarios involving children and 

Stage Description

Early-stage Initial set of smoke tests run in simulation to expose common failures, with some closed track testing; the focus 
of new scenario creation is on building out nominal scenarios for smoke tests and taking basic drive logs and 
generating scenarios from them

Mid-stage A handful of scenarios for each scenario category or requirement; focus is usually on building coverage depth for a 
few scenario categories or requirements at a time—typically aligned with feature developer release cadences and 
active feature development

Late-stage Full scenario library across the ODD, requirements, and scenario categories; focus is on edge case and long-tail 
scenarios—either from real-world drives or randomized methods—or on building a new set of scenarios for the next 
ODD

Figure 8: Scenario creation by stages of V&V
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other vulnerable road users, rare weather conditions, 
and extreme or dangerous actor behaviors.

Sometimes, autonomy programs build out their scenario 
libraries by dedicating operations teams to creating 
synthetic scenarios or reviewing events from collected 
fleet data. However, the operational burden of managing 
this process can be a heavy lift, especially for resource-
constrained, early-stage teams. An alternative approach 
could be to purchase pre-built libraries of common 
functional tests or datasets of real-world logs to create 
scenarios from them rather than spending time creating 
scenarios from scratch. As long as these scenarios are 
high quality (e.g., have realistic behaviors, parameter 
selections, and evaluation criteria) and are tied back to or 
built according to the team’s requirements and capabilities, 
purchasing pre-built libraries is a viable option.

Defining evaluation criteria and metrics
What changes a scenario into a test case is the specification 
of evaluation criteria that test the system’s performance. 
Autonomy programs should track a measurable, overall 
pass/fail outcome for each test case. This outcome is a 
composite of key competency, safety, and comfort factors, 
where all non-optional evaluation rules must pass with the 
ability to dig into each of them and their underlying metrics. 
The following list contains metrics and evaluation criteria 
that teams should assess for their test cases:
I. Test validity: Ensure that the scenario represents the 

intended test design. For example, in an actor cut-in 
scenario, the actor always executes a lane change in 
front of the autonomous system.

II. System’s core intent: Ensure that the autonomous 
system completes the main goal of the test case 
(e.g., reaching the intended destination in a left turn 
scenario).

III. Safety: Collisions are the most obvious metric to 
track when it comes to safety. As collisions occur 
infrequently, teams can measure additional metrics 
as a proxy. Teams should calculate and track 
surrogate safety measures like TTC, PET, deceleration 
rate to avoid collision (DRAC), and metrics that 
capture severity, such as velocity at collision. Other 

informational metrics like responsibility-sensitive 
safety (RSS), lateral and longitudinal distance to 
other actors, and deviation from lane center are also 
beneficial to measure and track.

IV. Comfort: Measure the smoothness (e.g., jerk) of the 
autonomous system.

V. Assertiveness: Measure whether the system takes 
the first safe opportunity for a maneuver. For example, 
for an unprotected right turn, there might be several 
“gaps” in traffic where the system could safely make 
the turn. In this case, it is helpful to measure whether 
the system takes the earliest possible safe gap.

VI. Efficiency: Measure whether the trip or task 
is completed and the routing efficiency of the 
autonomous system. For example, a completed task 
might be an autonomous truck picking up and dropping 
off cargo from a desired origin and destination within a 
reasonable time frame.

VII. Road rules: Measure that the system follows the rules 
of the road or public environment. For road vehicles, 
this typically includes road signs (e.g., stop, yield), 
traffic lights, and speed limits.

Maintaining scenario health over time
Scenario health refers to the “freshness” or the maintained 
viability of each test case as the system and testing 
infrastructure change. For instance, if an actor cut-
in scenario is several months or even years old, the 
autonomous system’s behavior might have changed 
significantly enough so that the actor is no longer cutting in 
front of the autonomous system. At this point, the scenario 
is “stale” because it no longer tests what is intended. 
Hence, autonomy programs need a system to maintain 
freshness and identify stale scenarios that need to be 
updated over time. For instance, teams need to execute 
any new scenario a few times to assess whether it is useful 
and testing what is intended. As development proceeds, 
teams should monitor scenarios to ensure they have not 
gone stale. This involves checking whether a scenario is 
still valid and whether it results in false positives or false 
negatives. Teams can take the following steps to address 
both needs:
I. When creating a scenario, monitor it for a few runs 



23Applied Intuition — Building Safe Autonomous Systems | II. V&V Best Practices

and software builds. Depending on how often teams 
release builds and run test batches, this could take 
one week to three months. 

II. Run the scenario through planned ad-hoc assessments 
and add it to a CI pipeline or nightly testing cadence. 
When adding the scenario to a CI pipeline, label the 
scenario as non-blocking, as the test is not in a stable 
stage and should not be a part of any formal release 
validation or analysis workflows yet.

III. Track the scenario for the metrics defined in the 
Defining evaluation criteria and metrics section. In 
particular, monitor the test validity and the test’s core 
intent, viewing playback to ensure there is nothing 
unexpected in the scenario and that it is testing what 
is intended.

IV. Anytime an issue occurs in a scenario, the simulation 
operations team—or a designated scenario creation 
and/or triage team—should diagnose the cause, issue 
a fix, and restart the process until the scenario has 
proven maturity and robustness.

V. Once a scenario is deemed stable, teams can use it 
actively for ad-hoc testing, add it to a CI pipeline or 
nightly assessments, and tag it by scenario and ODD 
taxonomy to contribute to overall coverage.

VI. Teams should track the health of all scenarios—even 
once they are deemed stable—to ensure that they do 
not go stale. This can be done by tracking scenario 
metrics in a dashboard daily and setting up recurring 
(e.g., monthly or release-dependent) reviews. These 

F. Test execution
The following table lays out which test methods autonomy 
programs typically use at each stage in their development 
and what role real-world tests play at each stage (Figure 
9). Autonomy teams can prevent scaling and cost issues 
by ramping up simulation usage as soon as possible. It can 
also be beneficial to transition vehicle tests to focus less 
on core testing and more on final validation and edge case 
discovery. 

Using each test environment effectively
Through its published validation methods for automated 
driving (VMAD) and the New Assessment/Test Method for 
Automated Driving (NATM) (Figure 10), the United Nations 

Stage Description

Early-stage

Testing mainly on a closed test track, unless the team has access to a high-quality simulator (where it would be 
looking to ramp up simulation usage); most testing is done through test track/vehicle testing or, in some cases, 
real-world testing to find bugs and issues as the team transitions to simulation; MIL testing is also utilized for earlier 
algorithmic development, and HIL testing is used for network design and development (including communication 
and diagnostic testing)

Mid-stage
Mostly using a mix of MIL, SIL, and test track testing, but ramping up HIL, vehicle integration, and real-world testing 
(including drive log collection)

Late-stage
Using all test environments, including MIL, SIL, HIL, and vehicle (vehicle integration, VIL, test track, and real-
world) testing; primarily using vehicle tests to verify simulation fidelity, test vehicle integration, and find edge case 
scenarios on public roads; executing the majority of tests in simulation due to scale and cost

Figure 9: Test methods by stages of V&V

reviews should explore each scenario to ensure that 
it does not contain anything unexpected and tests 
what is intended. For example, if a scenario starts 
failing although no changes have been made to the 
part of the stack that is being tested, it is advisable to 
test the scenario for staleness. Either the scenario is 
failing because of the downstream impact of changes 
elsewhere in the stack, or it has gone stale. Teams 
should especially do these reviews after major updates 
to the autonomous system software, map data, and 
metric or observer logic.

Autonomy programs should also set up a similar process 
to track and manage custom metric and observer health.
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Figure 10: NATM is a multi-pillar approach to ADS validation by UNECE and the Working Party on Automated/Autonomous and Connected Vehicles (GRVA)

Similarly, the Association for Standardization of Automation 
and Measuring Systems (ASAM) published a report in 
2022 which lays out the different test procedures and 
environments needed for ADAS and ADS validation (Figure 
11). 

Economic Commission for Europe (UNECE) has proposed 
a multi-pillar approach to ADS validation. The different 
test methods and environments that autonomy programs 
should use are most relevant to the following subsection 
of this handbook.

Figure 11: ASAM’s test landscape covering test methods and environments for ADAS and ADS testing

https://unece.org/sites/default/files/2021-04/ECE-TRANS-WP29-2021-61e.pdf
https://report.asam.net/#open
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Test environment Description Pros Cons

Virtual testing and 
simulation

Includes MIL,  SIL, HIL, and VIL 
testing; in each, different levels of 
software and hardware elements 
interact with a virtual environment

• Any system changes can be re-
tested quickly

• Teams have high control over 
what can be tested, including 
scenarios that are dangerous 
and hard to collect or recreate in 
real-world settings

• The same test can be 
executed again with minimal 
to no deviation from previous 
executions 

• Lower cost to set up and 
execute virtual tests compared 
with physical testing

• Simulation fidelity needs to 
be demonstrated and is hard 
to achieve for every tested 
scenario

• Quality of testing is also 
dependent on the quality of the 
scenario library

• Difficult to evaluate and define 
objective pass/fail criteria for 
a safety driver’s “subjective 
feel” of driving performance or 
smoothness

Test track Physical vehicle testing on a closed 
testing ground with real obstacles 
and surrogates

• User can control what is tested 
to a higher degree than real-
world driving 

• Higher fidelity than virtual 
testing

• The same test can be executed 
again with relatively small 
deviations from previous 
executions

• Safer than real-world testing

• Takes substantial cost and time 
to set up and execute (due to 
the personnel and specialized 
equipment needed)

• Test variability is restricted to 
the test track infrastructure, 
conditions, and equipment 
available (e.g., testing different 
weather conditions, different 
actor types)

• There are still safety risks to 
take into account for safety 
drivers

Real-world testing 
(e.g., on public 
roads)

Testing system in real-world traffic 
conditions and the true operating 
environment

• Highest fidelity compared to all 
other test environments

• Allows testing in the true 
operating environment

• Ability to discover new events 
that were not previously 
considered

• Ability to test vehicle in 
conditions unavailable on test 
track (e.g., bridges, tunnels)

• Difficult to control which exact 
situations will occur in the real 
world

• The same test cannot easily be 
executed again without medium 
to major deviations from the 
previous execution

• Scaling the number of tests 
causes increased costs 
(personnel to operate, 
specialized test equipment)

• Some situations are important 
but rare or dangerous to test 
in the real world (e.g., children 
running across a street)

Figure 12: Pros and cons of virtual, track, and real-world testing, adapted from NATM

Each of the test environments mentioned in Figures 10 and 
11 comes with its strengths and weaknesses. The table 
above discusses the strengths and weaknesses of each 
environment (Figure 12).

While all test environments are necessary, there is an 
optimal way to use each of them. The following list lays out 
how autonomy programs should use each test environment 
to get the most out of their testing resources:

https://unece.org/sites/default/files/2021-04/ECE-TRANS-WP29-2021-61e.pdf
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I. Teams should run the majority of testing in SIL 
simulation test environments through a mix of 
synthetic and re-simulation testing. A simulation-first 
testing strategy is fast, safe, and economically viable.

II. Teams should execute the first pass of testing in 
simulation. They will want to save HIL and real-
world, scenario-based testing resources until they 
are confident that the system passes the majority of 
simulation tests. HIL testing is often used for network 
design and development (including communication 
and diagnostic testing) early on.

III. Teams should then conduct test track testing to 
physically test a subset of scenarios. They should 
also use the test track to validate that simulation 
testing is modeled properly and test the vehicle’s 
overall performance in a closed environment before 
proceeding to real-world testing. 

IV. Once there is high enough confidence that the system 
can pass situations in simulated and closed test track 
environments, teams can use real-world testing on 
public roads to further validate simulation fidelity. 
Real-world testing is also best used to identify new 
scenarios for track and virtual testing (through both 
synthetic scenarios and re-simulation).

V. For ADS programs, only mature programs are certified 
to conduct real-world testing in autonomous mode. 

Early on, autonomy programs should wait to conduct 
real-world testing until there is enough confidence in 
the system. Once the system is mature enough, real-
world testing can occur in parallel with simulation 
and test track testing. However, when testing new 
functionalities, teams should still use simulation testing 
as the first pass and checkpoint before proceeding to 
the higher-cost test environments.

Combating combinatorial explosion in scenario-
based testing
Autonomy programs must bias resources towards situations 
and scenarios that are safety-critical, as those provide the 
most information to validation, safety, and development 
teams. However, scenario libraries continually increase in 
size as the overall testing program matures. The number of 
scenarios that teams need to test usually increases linearly 
relative to the number of new requirements. The volume 
of the scenario space and the total number of scenarios 
that teams need to execute increases exponentially with 
the number of ODD attributes and parameters they need 
to cover. 

The graphic below shows that an autonomy program 
would need to test 1.6 million variations to exhaustively 
evaluate all permutations of a single test case (Figure 13).   

Figure 13: Example cut-in scenario; exhaustively testing a handful of values for each test parameter would require 1.6 million variations for a single test case
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Stage Description

Early-stage Building broad coverage using standard statistical techniques such as importance sampling

Mid-stage
Building broad coverage using importance sampling, then prioritizing most of the cost and time on adversarially 
sampling the capabilities that the release is focused on

Late-stage
Building broad coverage using importance sampling, then combining generative and more complex featurization 
techniques in adversarial sampling to stress-test the entire system

Figure 14: Recommended optimization goals of intelligent scenario-based testing methods by V&V stage

This example excludes different environmental conditions 
(e.g., time of day, rainfall), map locations, and higher 
granularity of behavioral parameters that would 
exponentially increase the required number of tests. On 
top of that, this graphic only contains a single test case, 
while autonomy programs need to run thousands of 
test cases in every release. This example illustrates the 
problem of combinatorial explosion in exhaustive testing of 
autonomous systems.

How can autonomy programs pragmatically combat com-
binatorial explosion? To start with, Applied recommends a 
simulation-first testing strategy (see Using each test envi-
ronment effectively), as sufficient coverage is only possible 
with scaled simulation. The challenge is that even with sim-
ulation, teams still potentially need to execute hundreds of 
millions of scenarios for each software release. 

To supplement a scaled simulation strategy, autonomy 
programs should intelligently sample multi-dimensional pa-
rameter spaces based on their needs. Depending on the 
program’s stage of maturity, the optimization goal should 
be a mix of testing for coverage and information gain re-
garding the ODD on the one hand, and finding safety-crit-
ical scenarios to drive development forward on the other 
(Figure 14).

Programs can leverage different techniques to speed 
up their testing, their development, and the gathering of 
important information based on their specific goals:
I. Early-stage programs should begin with statistical 

techniques such as importance sampling to identify 
the scenario variations that provide the largest 

amount of new information. When using importance 
sampling, teams can identify particularly sensitive—
and, therefore, important—regions of the scenario 
space by measuring the variance of metrics collected 
during drives and simulations relative to parameters 
of interest. This helps autonomy programs discover 
issues with their system faster rather than by relying 
on a naive grid sampling approach (i.e., testing every 
combination of parameters).

II. Mid-stage programs should implement a mix of 
importance sampling and adversarial sampling 
techniques to identify the regions of the multi-
dimensional parameter space that are likely to fail. 
Adversarial sampling allows teams to stress-test 
specific capabilities (e.g., cut-in performance) and 
categorize failure regions by identifying combinations 
of parameters that have a high impact on pass/fail 
probabilities. Importance sampling, on the other hand, 
helps teams build coverage more broadly.

III. Late-stage programs are at the maturity stage where 
most tests are passing. Their goal  should be to discover 
edge cases. Teams should run a set of nominal cases 
to check against regressions. Then, they should use 
adversarial sampling—assisted by generative and 
more complex featurization techniques—to identify 
the safety-critical variables on which to focus their 
testing. This practice helps reduce the number of 
variations run by multiple orders of magnitude because 
it introduces a significant bias away from nominal and 
easily handled test cases.

Of course, autonomy programs cannot feasibly test all 
possible combinations of scenarios. Hence, as part of 
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their final safety evaluation and safety case, programs 
need to demonstrate two things to regulators, auditors, 
and customers: 1) Why they decided to test particular test 
cases and scenario variations, and 2) why those test cases 
and scenario variations are sufficient. The Defining and 
measuring coverage section discusses this topic further.

G. Analytics and reporting

Defining and measuring coverage
Coverage measures what the autonomous system has 
been tested on so far. A formal measurement of cover-
age is necessary for autonomy programs to demonstrate 
the comprehensiveness of their testing. For a coverage 
methodology to be sufficient, it must measure the space 
of known/unknown information (i.e., information that you 
know/do not know exists and can be tested) and covered/
uncovered information (i.e, information that has/has not al-
ready been tested). The table below illustrates this practice 
(Figure 15). Pragmatically, early-stage programs should 
put a larger focus on what is known, while later-stage pro-
grams should put a larger focus on what is unknown.

In other words, coverage is the ratio between what is known 
and tested on the one hand, and the total space of possible 
situations that the system may find itself in on the other. 
Autonomy programs should first define the ODD. They 
should then define a method for determining whether a part 
of the ODD is sufficiently tested. Once these two aspects 
are defined, teams can measure coverage independently 
at any level of granularity, from the individual scenario/
test case level up to the autonomy program’s entire 
ODD (Figure 16). For early-stage autonomy programs, 
coverage can begin as a simple count of the number of 
tests for each scenario category. For later-stage programs, 

coverage needs to evolve into a statistical measure of the 
comprehensiveness of what has been tested.

For programs in the earlier stages of V&V, the primary goal 
should be feature development. To this end, the role of 
measuring coverage for early programs is to help identify 
and fill potential feature gaps. Thus, any coverage metric 
must help answer the following questions:
• What are the most important features to develop?
• Which features need the most work?
• Which features are not being tested enough?

In this stage, it is critical to define the ODD thoroughly 
through the processes described above (see Defining 
requirements and the ODD, Crafting a comprehensive 
scenario library). Once functional requirements are defined, 
the most relevant coverage metric is the percentage of 
requirements and test cases that are tested in relation to 
the known ODD space.

As an autonomy program begins to mature towards the 
mid-stage, its focus should shift towards creating its safety 
case. In this stage, the role of coverage shifts away from 
driving feature development and moves towards proving 
maturity and safety. Thus, the primary questions for 
coverage metrics become the following:
• What additional work is required for a feature to be 

considered mature?
• Are there any situations where certain feature behavior 

is unknown?

Once a program is in the late stage and most of the formally 
defined nominal requirements are fully covered, the focus 

Known information space Known and unknown Unknown information space

Covered information space Early-stage programs Mid-stage programs Mid-stage programs

Uncovered information space Early-stage programs Mid-stage programs Late-stage programs

Figure 15: The information (known/unknown and covered/uncovered) autonomy programs should measure by V&V stage
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shifts again to covering the untested unknowns. Now, the 
primary questions for coverage metrics are: 
• How safe is the stack given the known ODD information 

space?
• How safe is the stack in situations that it has not yet 

encountered?

At this stage, and to address these new questions, teams 
should also measure coverage using the arrival rate of new 
information to quantitatively measure an upper bound for 
the limit of unknowns in an ODD.

Autonomy programs can take the following steps to define 
coverage metrics and set up coverage analysis workflows:
I. Define the ODD as early as possible using a formalized 

taxonomy. An ODD taxonomy is an organized set of 
attributes, each with an enumerated set of parameters 
(or parameter ranges for continuous values), that 
define the possible environmental conditions, objects, 
behaviors, and road infrastructure that the autonomous 
system needs to be able to handle in its ODD. It is 
composed of two core building blocks:
• ODD attributes define an aspect of the ODD 
(e.g, “road type,” “road curvature,” or “time of 
day”).

• ODD parameters define and quantify an ODD 
attribute (e.g., for the ODD attribute “road type,” 
the parameters might be “local,” “arterial,” and 
“collector”).

One reference that can aid in enumerating the ODD 
attributes and parameters in the taxonomy is the 
PEGASUS method, which provides a model for 

systematically describing scenarios based on six 
independent layers (Figure 17): environment topology, 
traffic infrastructure, environment state, objects 
and agents, environmental conditions, and digital 
information. 

II. Categorize each test according to the defined 
taxonomy.

III. Link tests to requirements; track ODD coverage (i.e., 
the statistical measure of how much of the ODD 
taxonomy has been covered so far) and, increasingly, 
requirements coverage (i.e., the number of tests 
assessing each requirement).

IV. During early-stage development, measure coverage 
by assessing the number of tests for each capability, 
scenario category, and ODD attribute.

V. During  mid-stage development, measure  ODD  
coverage by calculating the weighted sum of 
the coverage of all possible test cases and 
situations as defined by the ODD taxonomy 
(each attribute’s combination of parameters).  
In addition, begin assessing the number of tests for 
each requirement as they are built out.

VI. As real-world testing begins, start assessing if any 
new objects or scenarios are encountered that 
were not previously defined in the ODD taxonomy. 
Begin categorizing drive tests according to the ODD 
taxonomy.

VII. Formalize these ODD parameter combinations into 
additional scenarios that need to be covered.

VIII. Use drive data and real-world distributions to measure 
the probability for each type of situation. This serves 
as an objective measure of the ratio of covered real-
world events.

Stage Description

Early-stage
Measure coverage according to the number of tests for each high-level capability, scenario category, and ODD 
attribute

Mid-stage
Add measurement of the number of tests for each requirement (as requirements are built out) and begin tracking 
ODD coverage more granularly by each ODD attribute’s parameters; early coverage analysis of maps can also begin

Late-stage Add statistical measures of coverage

Figure 16: Recommended ways of measuring coverage by V&V stage

https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUS-Gesamtmethode.pdf
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IX. Measure requirements coverage both by the 
percentage of requirements that have test cases 
associated with them and by the number of test cases 
used to verify requirements.

X. Measure map coverage by assessing the distribution 
of tests across different map elements (e.g., different 
road curvatures, road conditions, and road types) and 
map segments (e.g., physical locations in a geofenced 
region).

XI. During late-stage development, define a rigorous 
coverage metric based on the arrival rate of new 
information.

XII. Track these coverage metrics throughout development 
to guide feature development, scenario creation, and 
real-world testing. Heavily reference these metrics in 
your safety case, especially as part of the SOTIF and 
evidence-based safety pillars.

Ultimately, defining and increasing coverage helps 

autonomy programs by:
I. Quantitatively prioritizing features, bug fixes, and 

stack tuning relative to the frequency and importance 
of these items in the ODD.

II. Iteratively discovering, covering, and performing on 
rarer subsets of the ODD. This allows the stack to 
progress from covering simple situations to covering 
incredibly complex and nuanced ones.

III. Optimizing data collection and scenario creation by 
understanding in which situations more real-world 
data needs to be collected or scenarios need to be 
created based on coverage uncertainty and coverage 
gap metrics.

IV. Rigorously defining the statistical likelihood of new, 
uncovered events occurring during operation and the 
likelihood that these events will cause any safety-
critical issues.

V. Measuring if the ODD has been tested sufficiently to 
assess if there are any missing scenarios that should 

Figure 17: PEGASUS layers for scenario modeling; not pictured is the sixth layer for digital information (e.g., vehicle-to-everything, digital data/map 
information)
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be tested.
VI. Contributing to key parts of safety argumentation 

and building trust with consumers and regulators that 
the system has been tested on all the scenarios it is 
expected to be able to operate safely in.

Analyzing performance
This section of the handbook should be read in tandem 
with Productionizing a release validation process and 
Defining evaluation criteria and metrics. The goal of 
performance analysis is to understand the conditions that 
the autonomous system can and cannot handle safely. The 
former, coupled with coverage analysis, serves as the safe 
operating area that the system should be able to perform 
in. The latter serves as the focus area for improvements 
on the development side. Performance analysis also 
helps measure progressions and regressions from the 
previous release and decide whether the release is worthy 
of approval. The following table lays out recommended 
performance analysis processes for early-, mid-, and late-
stage autonomy programs (Figure 18). All teams should 
track KPIs and SPIs. Formal A/B testing becomes a point 
of emphasis for later-stage programs. A/B testing is the 
practice of evaluating and comparing the performance of 
the master and development branches on the same set 
of tests to determine regressions and progressions in a 
controlled experiment.

Teams should generally conduct performance analysis 
throughout development and testing in the following way:
I. Define KPIs and SPIs that will measure the overall 

system performance and safety (see examples in the 
Defining evaluation criteria and metrics section).

II. Create a high-level view of the performance of each 
KPI and SPI in the form of a live dashboard. Every 
member of the organization, including executives, can 
use these dashboards to:
a. Present the most updated information, either 
from the current software build or from the 
most recent batch of tests (e.g., from a nightly 
assessment), with the ability to compare with 
previous builds.

b. Make decisions on whether to approve a release 
and monitor the overall safety and performance 
levels of the program.

c. Add visualizations that allow team members 
to view trends, by release and by test, in each 
metric over time.

d. Add visualizations that allow team members to 
view the value of each metric, its distribution, 
and its deviation from expected or safe values.

III. Review this dashboard regularly (e.g., daily). Act 
on failures and regressions. The triage team should 
diagnose the root cause of the issue and send a failure 
report—with a copy of the test results and playback—
to the developer in charge of addressing it.

IV. Create a more detailed dashboard that developers 
can use. Developers should leverage the high-level 
performance dashboard but use the more detailed 
dashboard for rigorous A/B testing. Developers need 
to understand the impact of each code change. 
To achieve this, they may collaborate with other 

Stage Description

Early-stage
Fixing all failures from smoke tests, prioritized by severity; initial observers are still being developed and tuned 
(need to track stability); weekly tracking of KPIs and SPIs

Mid-stage
Ramping up formal A/B testing (to reflect iterative model of development and fix regressions); initial set of observers 
in place, with advanced observers now being developed and tuned (with need to track stability); daily tracking of 
KPIs and SPIs

Late-stage
Heavy A/B testing and statistical analysis of quantitative improvements from previous release, including evaluating 
tradeoffs between SPIs and KPIs; daily tracking of KPIs and SPIs

Figure 18: Performance analysis processes by V&V stage
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departments, such as statistics or data science, to 
evaluate whether there is a quantitative improvement 
from the previous release. This group may also work 
together to look at performance across all test types 
and evaluate tradeoffs in the inevitable case where 
progressions occur for some metrics and regressions 
occur for others.

V. Carefully scrutinize each selected regression to 
understand why it occurred. Create an issue ticket for 
each regression to track that it is resolved in the next 
release. Teams can celebrate a progression as a win, 
but they also need to track it carefully to ensure that it 
does not regress in future releases. 

VI. Analyze each release on the requirements level. 
Measure each requirement on whether it passes up to 
an acceptable level.

VII. Performance reports should be regularly compiled for 
historic documentation and traceability.

Measuring and assessing performance helps autonomy 
programs by:
I. Improving the ability to quantitatively determine which 

features are performing well and which ones need the 
most work. This allows teams to objectively prioritize 
which features to work on.

II. Preventing regressions in behavior, which allows for 
faster development velocity by ensuring that all work 
contributes to the autonomy program’s progress.

III. Contributing to key parts of safety argumentation and 
building trust with consumers and regulators that the 
system performs well on all the scenarios it is expected 
to be able to safely operate in.
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Conclusion
This handbook aims to support autonomy programs in 
building a safety framework and establishing robust V&V 
processes. We hope that it can serve as an active resource 
to help your autonomy program define a safety framework 
and safely develop, test, and deploy your autonomous 
systems for commercialization.

While this handbook answers many questions surrounding 
how to build a safety framework and how to perform V&V 
in practice, some questions are likely left unanswered 
regarding the specifics of your autonomy program. The 
Applied team is ready to support your program in its V&V 
and commercialization goals through a combination of 
industry-leading autonomy development and validation 
solutions and expertise in the industry’s best practices. 

Contact us at applied.co/contact to ask questions or learn 
more about about Applied’s V&V platform Basis.

https://www.appliedintuition.com/contact
https://www.appliedintuition.com/product/basis
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Glossary
ACC: adaptive cruise control
ADAS: advanced driver-assistance system
ADS: automated driving system
AEB: automatic emergency braking
ALKS: automated lane-keeping system
ALM: application lifecycle management
ASAM: Association for Standardization of Automation and Measuring Systems
ASIL: Automotive Safety Integrity Level
AVSC: Automated Vehicle Safety Consortium
CI: continuous integration
DIL: driver-in-the-loop
DR: deceleration rate
DRAC: deceleration rate to avoid collision
EU: European Union
FAA: Federal Aviation Administration
FMEA: failure mode effects analysis
FTA: fault tree analysis
GRVA: Working Party on Automated/Autonomous and Connected Vehicles
HARA: hazard analysis and risk assessment
HIL: hardware-in-the-loop
HMI: human-machine interface
ISO: International Organization for Standardization
IV&V: independent verification and validation
KPI: key performance indicator
L2: SAE Level 2
L3: SAE Level 3
L4: SAE Level 4
MIL: model-in-the-loop
NATM: New Assessment/Test Method for Automated Driving
NCAP: New Car Assessment Program
NHTSA: National Highway Traffic Safety Administration
ODD: operational design domain
PET: post-encroachment time
RSS: responsibility-sensitive safety
SAE: Society of Automotive Engineers
SIL: software-in-the-loop
SOTIF: safety of the intended functionality
SPI: safety performance indicator
STPA: systems theoretic process analysis
TTC: time-to-collision
UL: Underwriters Laboratories
UN: United Nations
UNECE: United Nations Economic Commission for Europe
V&V: verification and validation
VIL: vehicle-in-the-loop
VMAD: validation methods for automated driving
VSSA: voluntary safety self-assessment
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