
1Applied Intuition — Powering Autonomy With Log Data |

1 ST E D I T I ON • OCTOBER 2022

Powering
Autonomy
With Log Data
Handbook for log data management in
autonomous systems development

2Applied Intuition — Powering Autonomy With Log Data | Contents

Contents
Executive Summary...3

Introduction...5
A. What is log data?...5
B. What does effective log data management look like?..5
C. Who should read this handbook?...5
D. What are the different workflows powered by log data?...5

I. Log Collection...7
A. Choosing the right log collection methods.. 7
B. Challenges with recording log data..8
C. Collecting logs from a test fleet.. 10

II. Log Exploration...13
A. Goal: Extracting value from logs efficiently... 13
B. Processing the firehose of incoming data... 13
C. Building indices for fast data retrieval.. 14
D. Enriching log data with offline algorithms... 15
E. Surfacing interesting events for additional review... 16
F. Enabling easy visualization of all data.. 18
G. Understanding current performance and coverage... 19

III. Log-Based Workflows..21
A. Triaging issues from the field.. 21
B. Curating datasets to train ML models..22
C. Using ground-truth labels to analyze perception performance...23
D. Improving prediction performance...24
E. Validating a supplier module..25
F. Improving motion planning performance...26

IV. Creating Test Cases From a Log.. 28
A. Reproducing an issue: Test case creation...28
B. Resolving the issue... 31
C. Ensuring the issue does not reappear: Regression and progression tests... 31
D. Advanced re-simulation: Fuzzing..32

V. Log Storage and Archival...34
A. Storage types and container formats...34
B. Data retention and archival..35

Conclusion..38

Glossary..39

3Applied Intuition — Powering Autonomy With Log Data | Executive Summary

A. Challenge
The collection and management of log data is one of the
most important tasks that every autonomy program needs
to master. A test fleet collects on average four terabytes
(TB) of log data per vehicle every day. A production fleet
(i.e., vehicles purchased by individual consumers) can
generate millions of events per day. This firehose of data
from test and production fleets has enormous potential to
drive development velocity across an entire organization.

Due to the costs and risks involved in real-world testing, it
is crucial that autonomy programs collect and manage their
log data effectively. For example, the vehicles themselves,
their sensors, and the team of safety operators all incur
significant costs to operate and maintain a test fleet.
Additionally, the safety implications of real-world testing
are very high: One safety-critical mistake can put human
lives at risk. Autonomy programs should thus implement
practices to scale their data collection effectively, build
efficient log data management pipelines, and create
scalable workflows to ensure they use all of the collected
data to its full potential.

B. Goals
This handbook outlines the benefits of an expansive log
data management process, defines the components
involved, and provides tactical steps to reduce the cost of
implementing and executing such a process. It does not
prescribe a one-size-fits-all solution but rather explores
common industry practices for autonomy programs to pick
and choose from. As every autonomy program has different
needs and challenges, no log management process looks
the same.

The structure of this handbook follows the journey of
a log file from inception to long-term storage (Figure 1).
First, an autonomous system collects the log file (Log
Collection). Next, the log file is distributed through data
processing pipelines and data exploration frameworks
(Log Exploration, Log-Based Workflows, and Creating Test

Cases From a Log). Finally, it lands in long-term storage
(Log Storage and Archival).

Applied Intuition has partnered with leading organizations
to deploy automated ingestion, triage, and re-simulation
pipelines for their autonomous systems development.
Through our extensive industry experience, our team
has helped shape log management practices at some
of the world’s top autonomy programs. We look forward
to collaborating on solutions to the topics laid out in this
handbook and welcome your feedback for future iterations
of it.

Executive Summary

4Applied Intuition — Powering Autonomy With Log Data | Executive Summary

Figure 1: Components of a log data workflow.

5Applied Intuition — Powering Autonomy With Log Data | Introduction

A. What is log data?
In autonomous systems development, log data is any real-
world data collected on the system corresponding to the
autonomous task at hand. For autonomous vehicles, log
data is collected during a drive and ranges from raw sensor
inputs to pedal or wheel actuation commands.

B. What does effective log data
management look like?
Successful autonomy programs typically strive to make
log data accessible to their engineering team as quickly
as possible. They are also able to maintain efficient data
collection while rapidly scaling up real-world testing.

By contrast, teams who under-invest in their data
infrastructure might experience the following pain points:
•	 Development teams do not regularly use real-world log

data, leading to producing modules or algorithms that
underperform in real-world conditions.

•	 When using log data, teams might spend 30 minutes
or more to find and visualize a single incident. This is
especially problematic as less than 10% of collected
log data is useful for development.

•	 Finding events from previous log data may be difficult
and result in the expensive collection of new data to
test new versions of the software.

•	 Known issues remain unresolved and regularly occur
during testing.

•	 It is difficult or impossible to answer key questions on
the autonomous system’s progress (e.g., which root
cause was the largest source of issues in the most
recent software release).

•	 With increased real-world log collection, an autonomy
program’s data storage costs increase every single
day. Teams might find it difficult to decide which log
files to delete and which ones to store in the long term.

C. Who should read this handbook?
This handbook puts particular emphasis on supporting the
end users of log data (e.g., algorithm developers, systems

engineers, machine learning (ML) engineers, and triage
teams).

The concepts, principles, and approaches laid out in this
handbook apply to autonomy programs of all sizes and
across industries. Most of the metrics and examples used
to illustrate different topics in this handbook relate to
automotive SAE Level 2 (L2), L3, and L4 systems, but the
content of this handbook is equally relevant to autonomous
trucking, construction, mining, and agriculture as well as
warehouse robots, unmanned aerial systems, and other
types of autonomous systems.

D. What are the different workflows
powered by log data?
This handbook will cover the following log-based workflows
in autonomous systems development:
•	 Data science: Building a platform to mine data, run

analytics, and extract metrics from fleet data.
•	 Diagnosing issues: Triaging issues from real-world

testing effectively and assigning problems for
development teams to solve.

•	 Module development: Scaling the development
of perception, prediction, motion planning, and
localization modules in a cost-effective manner.

•	 Curating labeled datasets: Detecting events of
interest and creating labels for ML training.

•	 Simulation: Creating simulations from log data to
power development and triage.

•	 Acceptance testing: Verifying if the release of a new
software version is ready for further use.

•	 Validating supplier solutions: Determining if a system
provided by a Tier 1 or Tier 2 supplier performs to the
required specifications.

•	 Regression testing: Ensuring that previously solved
issues do not reappear.

Implementing these workflows requires the careful
collection, processing, and storage of log data. This

Introduction

https://www.sae.org/blog/sae-j3016-update

6Applied Intuition — Powering Autonomy With Log Data | Introduction

handbook explores these challenges and recommends
practices to implement each workflow effectively.

Log data can also be leveraged for the following use cases,
which will not be covered in this handbook:
•	 Mapping: Updating a map based on changes in the

real world.
•	 Cybersecurity: Detecting threats and measuring the

effectiveness of mitigations.
•	 Regulatory compliance: Reaching and maintaining

compliance with privacy, safety, and other regulations,
and providing a mechanism to report incidents to
regulatory bodies.

•	 Insurance compliance: Providing scheduled reports
about operational safety to insurance companies.

7Applied Intuition — Powering Autonomy With Log Data | I. Log Collection

I. Log Collection
The scale of log data that autonomy programs collect
grows rapidly with the number of vehicles in their fleet, the
number of sensors in their sensor suite, and the types of
events they aim to track. The infrastructure for collecting,
uploading, and processing log data needs to enable
autonomy programs to parallelize and scale all of these
processes.

Logging and recording autonomous system data presents
a unique systems engineering challenge, which requires
solutions different from those applied in other domains of
software engineering. For example, the best practices for
logging distributed systems and web applications assume
a persistent network connection, a small volume of log
data, and consistent formats. Logging autonomous system
data implies a variable network connection, a huge volume
of data, and extremely varied formats being recorded.

This section of the handbook discusses how to choose the
correct testing methodology, challenges in recording logs,
and how to scale log collection operationally.

A. Choosing the right log collection
methods
As part of their log collection efforts, autonomy programs
need to first choose the collection method (or combination
of methods) that best accomplishes their goals. The
following tables lay out different log collection methods for
test fleets (Figure 2) and production fleets (Figure 3) along
with their benefits and challenges. For test fleets, the log
recording method should stay the same no matter which
log collection methods a team chooses. For production
fleets, the log recording method is vehicle and program
specific.

Log collection method Description Benefits Challenges

Structured testing •	 A test run on a test track
(i.e., a private testing ground)
associated with a specific
requirement

•	 Controlled
•	 Repeatable
•	 Safe

•	 Limited variability
•	 Not fully representative of the
real world

Human driving •	 Human driving in a vehicle
with the full sensor suite in
an unstructured environment
(i.e., on a public road) that
represents the operational
design domain (ODD)

•	 Analysis of the collected data
takes place either offline or
in real time with a “shadow-
mode” system deployed on
the vehicle

•	 Safe: A human driver is in
control of the vehicle the
entire time

•	 Ability to target specific types
of drive data (e.g., left turns,
red flashing traffic lights, high-
speed highway merges)

•	 New insights are limited to
discovering edge cases

•	 Does not test the vehicle’s
controls module

Unstructured testing •	 A test run on public roads with
external traffic in the true ODD

•	 Investigation of operator
disengagements and system
escalations

•	 Ability to uncover new
unknowns and errors

•	 Representative of the real
world

•	 Dangerous if the system
has not yet been validated
in simulation and structured
testing

•	 Comprehensive training
required for safety operators

•	 Legal approval required

Figure 2: Different log collection methods for a test fleet along with their benefits and challenges.

8Applied Intuition — Powering Autonomy With Log Data | I. Log Collection

Log collection method Description Benefits Challenges

Static triggering (e.g.,
event data recorder
(EDR) logs)

•	 A vehicle owner drives their
vehicle

•	 A predefined set of rules
governs when to save a log
file

•	 Rules do not undergo regular
updates

•	 Relatively cost-effective to
build

•	 Predictable volume of data

•	 New insights are limited by
vehicle owner behavior

•	 Updating rules is cumbersome
and may require software
changes at a dealership

Dynamic data collection •	 A vehicle owner drives their
vehicle

•	 A rules-based system
discovers interesting events
automatically and saves log
files to later upload them to a
collection server

•	 Developers can update rules
over the air on a regular basis

•	 Scalable
•	 Events are sent as soon as
possible (based on network
availability)

•	 Determining when an event
occurred presents a tough
engineering challenge

•	 Creating and saving segments
of a log requires additional
computing power

•	 Unpredictable volume of
events, especially when
adding new rules

•	 Large network bandwidth
required to transmit recorded
data (via Wi-Fi or cellular
network)

Figure 3: Different log collection methods for a production fleet along with their benefits and challenges.

As seen in Figure 2, structured testing helps programs
test specific requirements of a test fleet in a private, safe
environment. Teams can also leverage human driving to
collect and test large amounts of sensor data. Unstructured
testing provides the largest amount of insights, but it also
bears the highest cost due to safety, training, and legal
requirements. Autonomy programs should thus leverage
unstructured testing only after they have validated a
release candidate in simulation environments and with a
large number of structured tests. As an autonomy program
matures, unstructured testing will make up a growing
percentage of its testing efforts.

As seen in Figure 3, static triggering is relatively cost-
effective with a predictable volume of data, but new insights
are limited and rules are difficult to update. Dynamic data
collection is scalable and fast, but its challenges include
clock management, computing power, data volume, and
network bandwidth.

Implementing programmable log collection from a
production fleet requires a number of different technical
considerations regarding the hardware and software

deployed on the vehicle as well as data formats, security,
transmission methods, and more. A detailed discussion of
these topics is outside the scope of this handbook.

B. Challenges with recording log
data
As autonomous system data is inherently multi-dimensional
and complex, log collection can pose various challenges to
autonomy programs. Examples of these challenges include:
•	 Recording fidelity: During the collection phase, it is

unclear how the team will use the collected data. This
uncertainty makes it difficult to decide at which fidelity
logs should be recorded.

•	 Clock synchronization: Teams might log each sensor
with its own clock timestamp, which may disagree with
other clocks in the system.

•	 Container format: Choosing a correct format to use in
real-time logging requires teams to balance tradeoffs
between flexibility, robustness, and compatibility with
supplier software.

Recording fidelity
Autonomy programs should record logs losslessly

https://www.nhtsa.gov/research-data/event-data-recorder

9Applied Intuition — Powering Autonomy With Log Data | I. Log Collection

without any downsampling (e.g., compressing images).
This recommendation stems from downstream log data
requirements that call for lossless fidelity. For systems
that are constrained by disk space, such as many
deployed L2 fleets, downsampling is required. However,
the downsampling should be limited to sensor data, and
the remaining signals should be kept as high-fidelity as
possible.

The two types of log data with distinct usage patterns are
sensor data and structured data. Sensor data, especially
camera images, should be labeled and provided to ML
models for training at the full resolution. Teams should
execute model training at the full resolution. Otherwise,
their model will either be too slow in production usage or
fail to perform its tasks. Structured data, which is made up
of numerical and string components, represents the state
of various modules. Teams should store structured data
without downsampling, as missing individual messages

from a signal would make it impossible to accurately
reconstruct an issue and reproduce it for testing. Structured
data is also very cost-effective to store, especially in a wire
format optimized for sending data over a network, such as
Protocol Buffers (Protobuf) or MessagePack.

In addition to the above recommendations, downsampling
data also incurs central processing unit (CPU) costs, thus
reducing the CPU budget for core autonomy tasks. When
writing at full fidelity instead, teams can increase their disk
utilization. Disk I/O (i.e., the measure of how long read
and write operations require on a hard disk) is generally
uncontested, as core robotic tasks are handled in memory
to reduce latency.

Besides avoiding downsampling, autonomy programs
should record log data into a log file located on the machine
or electronic control unit (ECU) that is processing the data
(Figure 4). For example, the computer that is reading from

Figure 4: Autonomy programs should record log data into a log file located on the machine that is processing the data.

10Applied Intuition — Powering Autonomy With Log Data | I. Log Collection

a camera and processing an image should be in charge
of recording that image along with the outputs generated
during processing. This solves two issues: First, it avoids
saturating the network with traffic only required for
logging. Second, it ensures that logging is more accurate,
as data gets recorded into a log file more quickly than if it
first needed to traverse across a network.

Clock synchronization
When separating log files across machines or ECUs as
described in the previous section of this handbook, it
becomes especially complex to reconstruct an accurate
view of the order of recorded data. To determine this
order, autonomy programs need to reliably determine
the first exact timing of each message in each log. Clock
synchronization helps solve this challenge.

Clock synchronization is a well-studied topic in software
and hardware engineering. Clock misalignment occurs
either due to incorrect syncing at the start of a process or
due to clock drift from small errors in clock hardware that
accumulate over time.

The correct clock synchronization solution differs based
on the hardware and software that an autonomy program
uses for its vehicle architecture. At a minimum, programs
should use a time protocol such as Network Time Protocol
(NTP) or, if available, Precision Time Protocol (PTP) at
system startup time. This way, each machine starts up,
receives a synchronization signal, and then uses that time
as the clock signal when recording data.

Choosing the correct logging format
Log data has many downstream users and is recorded
in a constrained environment. Autonomy programs thus
have many requirements and tradeoffs to consider when
choosing the correct logging format.

In order of priority, the following requirements are critical
when choosing a logging format:
1.	 Ability to handle the disk I/O throughput of the sensor

data and module communication without falling behind
2.	 Low CPU footprint

3.	 Robustness to corrupted inputs and interrupted writes

Generally, autonomy programs should collect logs in a
format that is optimized for real-time logging. This format
should be append-only, quick to write, and able to store
many different data types flexibly. The canonical example
of an ideal recording format is rosbag. Many autonomy
programs record logs in this format even if they do not
use Robot Operating System (ROS) as their middleware.
Rosbag is not optimized for compatibility with other
toolchains such as query engines or web frameworks. If an
autonomy program chooses to record to rosbag, the first
step in their data processing pipeline is usually to convert
files from rosbag to a different container format.

The following features help ensure that downstream
systems are able to effectively use the logged data. These
features are recommended but not required:
1.	 Inclusion of the message schema
2.	 Support for high frequency with small amounts of data

as well as low frequency with larger amounts of data
3.	 Readability by standard software

C. Collecting logs from a test fleet
The size of a test fleet is a major factor that influences
an autonomy program’s log collection process. The optimal
size of a test fleet usually depends on several different
factors: The needs of the engineering organization, the
scope of the required validation work, and the algorithm
engineering team’s organic demand for hours of testing.
This section lays out different log collection practices that
autonomy programs typically adopt depending on the size
of their test fleet.

Test fleet of 1-10 vehicles: Empowering safety
operators
In the early development stages, an autonomy program
might have a fleet size of 1-10 vehicles. At this stage,
vehicles usually return to a garage daily, where the team
uploads each vehicle’s entire logs to a blob store such as
Amazon S3 or Azure blob storage, or to a local machine.

To use all vehicles in their fleet effectively, autonomy

11Applied Intuition — Powering Autonomy With Log Data | I. Log Collection

programs should form a team that manages the fleet’s daily
operations. Beyond regular daily operations, this team also
prioritizes, schedules, and executes requests for specific
testing or data collection campaigns. Before submitting
requests for such campaigns, engineering teams should
first use available offline data and prove that existing data
is insufficient for their use case.

During testing, two safety operators are typically present
in the vehicle. One operator is responsible for ensuring
that the vehicle operates safely. In order to assess safety
risks during the test drive, they need to understand the
software changes that the team is testing. The other
operator triggers data collection and notes down additional
comments and insights regarding issues that the vehicle is
encountering during testing.

To support the work of the safety operators, each vehicle
usually features a rudimentary user interface (UI) that
shows the vehicle’s status. This UI should also monitor
the health of the logging system. This helps prevent data
loss and logging errors, thus saving operators valuable
time that they might otherwise spend collecting more
log data or debugging issues. For example, statistics on
machine usage such as the CPU, random-access memory
(RAM), and disk space as well as the current processing
bandwidth can indicate whether the logging system is in a
non-functional state. In addition to monitoring the logging
system during testing, operators should always check the
logging system’s health before each trip as part of their
pre-test checklist.

The logging system itself should make it easy for safety
operators to add comments to an event immediately.
Operators should also be able to edit their actions in case
they press a button by accident or trigger an event they did
not mean to trigger.

As they expand their testing and log collection efforts,
autonomy programs should increase the amount of data
types available for safety operators to collect and analyze.
For example, a basic visualization of some sensors and
their health allows operators to manually bookmark events

when issues occur (e.g., if the perception stack does not
correctly detect a pedestrian on the road). Additional
options for useful visualizations include fused perception
outputs, map data, and vehicle controller area network
(CAN) signals. Ideally, operators can also hide or customize
each sensor visualization based on their test requirements
and preference.

Finally, autonomy programs should keep the hardware
resources for their logging system, visualization
functionality, and stack separate in order to prevent issues
in one system from blocking or delaying other systems.

Test fleet of 10-100 vehicles: Automating event
detection
As their fleet reaches more than 10 vehicles, autonomy
programs may hit scaling limits in processing through all
logs and finding relevant events. Programs train their safety
operators to manually trigger data collection events when
issues occur and archive all other logs that do not contain
interesting events. However, operator feedback tends
to vary in quality. It can also be error-prone, especially
if multiple issues occur at the same time. Additionally,
programs may spread testing over a wider geographic area
without a persistent high-bandwidth network connection.
To solve these issues, programs should develop a method
of determining when an interesting event has occurred and
automatically uploading partial log artifacts.

Autonomy programs typically implement automatic rules
that determine when an interesting event has occurred.
For example, programs can implement diagnostic checks
on signals which automatically trigger data collection
events as soon as the vehicle fails to perform within certain
thresholds (e.g., if a camera fails to capture a frame for more
than 100 milliseconds or a planner outputs an empty plan).
For L4 autonomous systems, operator disengagements
(i.e., situations where the safety operator intervenes to
disengage autonomous mode) should automatically trigger
data collection events. Throughout development, teams
should be able to create new automatic rules for new
types of events and implement them across vehicles on
their fleet.

12Applied Intuition — Powering Autonomy With Log Data | I. Log Collection

Test fleet of 100+ vehicles: Scaling to production
size
When their fleet reaches over 100 vehicles, autonomy
programs should focus on minimizing issue resolution
times and scaling their fleet.

The primary goal of an autonomy program’s fleet of this
size is to identify and resolve issues and minimize the
amount of time that passes between issue discovery and
resolution. To minimize issue resolution time, programs
need to identify issues automatically, automate issue
reproduction, and assign bugs accurately to the correct
engineers.

Another goal at this stage is to efficiently grow the fleet.
Autonomy programs need to conduct careful supply chain
management to source vehicles while anticipating long
lead times and frequent interruptions. The engineering
team should focus on building the systems required to
eventually scale the fleet to production size.

A note on log collection from a production fleet
While L2-3 autonomy programs might already deploy
their software on production vehicles and record certain
types of log data for further research and development,
L4 autonomy programs are still preparing to build and
deploy production fleets with logging systems operating
in production environments. As vehicles have become
increasingly network-dependent, the production log
collection system needs to be robust to network failures.
Additionally, logging systems must be accessible to the
engineering team, and protected by a firewall to avoid
interference with the rest of the vehicle’s system.

The intricacies of production log collection and
management are deeply tied to the unique characteristics
of each autonomy program and its vehicle architecture.
The program’s organizational structure, the architecture
of its vehicles, and the ODD’s regulatory requirements all
shape what the program’s ideal back-office systems look
like. Due to the deeply specific nature of these systems,
a description of specific requirements for production fleet
log collection is outside the scope of this handbook.

13Applied Intuition — Powering Autonomy With Log Data | II. Log Exploration

Once an autonomy program has collected log data, it
needs to enable different teams to explore and extract
value from the recorded log data. In order to achieve this,
programs need to process the large amounts of collected
data and build indices to enable faster data retrieval. They
can then enrich log data with offline algorithms to better
evaluate the performance of their ML models, surface
interesting events for additional review, visualize data to
understand it more easily, and draw conclusions about
system performance and ODD coverage.

This section of the handbook discusses how autonomy
programs can build a processing pipeline, add indices to
enable efficient queries, enrich log data with additional
metadata, and create a data platform for downstream
workflows.

A. Goal: Extracting value from logs
efficiently
The goal of log exploration is to extract high-level insights
about the autonomous system’s current performance

and coverage across its ODD. Log exploration also allows
engineers to quickly find and investigate specific events.

As autonomy programs scale their log collection efforts,
they also need to efficiently extract value from more and
more collected logs. If they lack the infrastructure to scale
their log exploration processes effectively, the time and
cost programs spend exploring and understanding logs will
grow linearly relative to the amount of collected data.

B. Processing the firehose of
incoming data

Data processing
To make log data usable for downstream teams, autonomy
programs must process the data effectively. Examples of
different data processing jobs include:
•	 Transforming data into a different format to make it

more easily accessible and understandable.
•	 Encoding sensor and media data to optimize it for

II. Log Exploration

Figure 5: Data processing pipelines operate on log data to convert it into formats usable for analysis or exploration.

14Applied Intuition — Powering Autonomy With Log Data | II. Log Exploration

playback (Figure 5). Sensor data artifacts include
video, compressed or downsampled lidar, and radar.
The most important sensor data artifact is usually
video, as triage, operations, and engineering teams
rely on video streams to quickly understand the
situation they are investigating.

•	 Cropping the output files to ensure that each file has
a manageable size or to extract certain events of
interest.

•	 Optimizing time series metrics for querying.
•	 Removing personal information in compliance with

regulations such as the General Data Protection
Regulation (GDPR).

•	 Indexing the data to improve query performance and
enable filtering for interesting subsets of data (see
Building indices for fast data retrieval).

Beyond executing individual data processing jobs,
autonomy programs should implement an entire data
processing pipeline to inform time-sensitive decision
making such as the evaluation of safety-critical issues.
As the data processing pipeline can make or break a
program’s overall data availability, it needs to efficiently
scale alongside an increasing amount of data collection.

A data processing pipeline’s effectiveness can be quantified
with the help of specific target metrics. The following table
provides examples of such target metrics (Figure 6), but
programs should define additional metrics based on their
current priorities.

As seen in Figure 6, the recommended log ingestion
success rate is 99.9%. In other words, if 10 vehicles each
collect two logs per day, less than 10 logs should fail to

ingest over the course of one year. Failures might occur
due to erroneous data formats or infrastructure issues.

In general, the data processing pipeline’s target metrics
should incentivize autonomy programs to shorten their
iteration loop (i.e., the time that passes between the
introduction of a new change and the availability of new
logs that the team can access and query). This ensures
that autonomy programs make decisions based on the
most recent data possible instead of waiting days or weeks
before making an informed decision.

C. Building indices for fast data
retrieval
During data processing, autonomy programs should index
their ingested log data so that team members can quickly
find the subsets of logs relevant to them. Programs can
use several different indices concurrently. The following
four indices usually provide the most value:

Event index
The outcome of event indexing is a list of events that
match certain predefined criteria. An event index should
include the log of the event, the reason why this event is
of interest, specific sensors related to the event (if any),
and the time window during which the event occurs in its
source log. Additionally, autonomy programs can attach
associated taxonomy information to the event. The Log-
Based Workflows section discusses the types of events
that teams can index and extract. These types are not
limited to safety-critical events only but instead range from
information gathering for training to edge case reporting
and diagnostics.

Metric Recommended target

Time to ingestion in proportion to the original log duration 0.5-1x the original log duration

Time to query availability (i.e., how much time passes between

recording a log and being able to query it)
24 hours from the time of recording

Log ingestion success rate 99.9%

Figure 6: Metrics to measure a data processing pipeline’s effectiveness.

15Applied Intuition — Powering Autonomy With Log Data | II. Log Exploration

Geospatial index
Geospatial indexing (Figure 7) allows autonomy programs
to query logs based on geographic filters. More specifically,
geospatial indexing makes it easier for teams to build com-
plex location-based queries. For example, a team might
want to evaluate an autonomous system’s performance on
a certain stretch of road or terrain or, in a more complex
query, find all left turns that occur on a steep grade. In
both cases, programs can speed up the query process by
joining on geospatial indices.

Metrics index
Metrics indexing uses a columnar data store to enable per-
formant log queries based on the value of any time series
metric. This allows autonomy programs to quickly find log
snippets of when the autonomous system was in a spe-
cific state. These metrics can be highly specific to each
autonomy program’s domain, but they should generally be
useful to specific teams and easy to compute. Examples of
metrics include:
1.	 Engagement status
2.	 System’s velocity
3.	 Number of detected pedestrians

4.	 System’s chosen behavior
5.	 CPU usage

Log index
Log indexing enables autonomy programs to query their
collected log data based on metadata associated with
each log. This metadata includes the specific test vehicle,
the safety operator, the route, the date of recording, and
other mission-level parameters. Programs often use log
indexing to hone in on an event of interest on a specific
drive or test. For example, log indexing enables a query
to find all routes driven during a one-month period on a
certain vehicle.

D. Enriching log data with offline
algorithms
Autonomy programs should enrich their ingested log data
by running additional algorithms offline. This might seem
like a complex and daunting task, but it is typically worth
the effort. Offline algorithms can add metrics from external
sources or run ML models on the recorded log data instead.
This way, data enrichment allows programs to augment
logs with data that would be impossible to collect in real

Figure 7: A geospatial index visualized as a map of a driven route, with events highlighted.

16Applied Intuition — Powering Autonomy With Log Data | II. Log Exploration

time. For example, heavy ML models that cannot run on
an automotive ECU can be run offline and inserted into
the log. Common data enrichment methods include map-
based annotations, running computer vision algorithms,
and annotating the behavior of perceived actors.

Map data
Autonomy programs can enrich the autonomous system’s
location in the log data with data from high-definition (HD)
maps or open-source satellite data. For each frame, teams
should enrich map data with:
•	 Semantic information regarding the entity on which

the autonomous system is currently located (e.g., the
type of road, such as a highway, entry ramp, tunnel, or
surface street)

•	 Metrics associated with the autonomous system’s
position on the current map element (e.g., the lane
curvature or the distance from the lane center)

Computer vision models
In addition to ML models that can run online directly on
the test vehicle, autonomy programs can execute more
powerful computer vision models offline on the collected
sensor data. Offline models are less constrained by
hardware and timing requirements compared to online
models. The output of an offline computer vision model
might include:
•	 The raw detection positions in the sensor data (e.g.,

2D and 3D bounding boxes, lane line geometry)
•	 Metrics associated with object detection (e.g.,

obstacle class, count per obstacle)
•	 Discrepancy metrics between offline and online

perception systems (e.g., intersection over union—i.e.,
the measure of how much the predicted boundary
overlaps with the ground truth—per frame and per
object class) (see Automatic error detection for more
detail)

Using an offline model also allows programs to detect object
classes that the on-vehicle model has failed to detect.
For example, an offline model can distinguish between
“bicyclist walking their bicycle” versus “pedestrian” or
“bicyclist.”

Behavior annotation
Behavior annotation involves tagging the autonomous
system’s behavior and the behavior of other actors in
the scene. To annotate behavior accurately, autonomy
programs should use a combination of end-to-end learned
models alongside heuristics based on map information and
localization.

Behavior annotation is particularly important for motion
planning and controls teams, who spend much of their
time tuning behavior around cut-in maneuvers from other
vehicles. L2 through L4 systems all struggle to be robust
to cut-in and merging behaviors. The ability to detect
cut-ins and benchmark new algorithms against historic
scenarios helps accelerate motion planning and controls
development.

E. Surfacing interesting events for
additional review
Triage operations teams, algorithm engineers, and other
teams that use an autonomy program’s log data can utilize
both the original and the enriched data as inputs to surface
relevant events.

Operator disengagements and system escalations
All interventions that occur while the autonomous system
is engaged should be surfaced for review. Interventions
include operator disengagements (i.e., situations where
the safety operator intervenes to disengage autonomous
mode in L4 autonomous systems) and system escalations
(i.e., situations where the safety operator or the vehicle
owner intervenes to take control of an L2 or L3 autonomous
system). If available, the surfaced events should include
relevant safety operator comments. Safety operator
comments can help teams quickly review and root cause
events that may have been caused by a system failure.
Surfaced events might also contain the autonomous
system’s intended maneuver, the behavior of nearby
actors, and taxonomy information such as map information.
Taxonomy information helps teams classify an event as
occurring inside or outside of the autonomous system’s
ODD.

17Applied Intuition — Powering Autonomy With Log Data | II. Log Exploration

Scenario tags
Scenario tags enable validation teams to find scenarios
matching a specific situation. Scenario tags often combine
behavior annotation, map or geographic information, and
ODD data. For example, teams should surface and tag
scenarios such as “lane changes on highway” and “actor
cut-ins during rain.” They can then perform aggregate
analysis on scenarios with the same tags to understand
how the autonomous system tends to perform in specific
situations.

Autonomy programs can combine tags to create human
descriptions of especially difficult situations. For example,
filtering by “vehicle pulling out of parking spot” and “bicyclist
adjacent” will surface edge cases that are relevant to every
L4 planning team.

Automatic error detection
Autonomous systems development involves an abundance
of unlabeled raw data. Unfortunately, high-quality labels are
often expensive to obtain, and labeling common scenarios
such as standard highway driving has diminishing returns
on perception model performance. Perception models
should be trained on data that previous versions classified

incorrectly (Figure 8). Autonomy programs should have
a system that identifies these cases in logged data
automatically.

To surface potential errors automatically, teams should
compare the output of the on-vehicle model to the output
of their more powerful offline computer vision model
and find cases where the two models disagree. These
discrepancies likely indicate errors in the on-vehicle
perception stack and should be sent to a team member for
manual review and labeling.

Anomaly detection
Beyond finding specific predefined events, autonomy
programs typically find it useful to surface unpredicted
anomalies in their log data for manual review. Anomalies
can include known scenarios with unexpected metrics for
pre-chosen dimensions (e.g., the most aggressive cut-
ins) as well as unseen edge cases surfaced through ML. A
common ML-based anomaly detection technique leverages
unsupervised learning to detect unexpected data. Teams
train an ML model on a subset of the most relevant channels
in their log data to predict the next timestamp based on a
window of historical data. This model then runs on a log

Figure 8: An offline perception system can highlight failures in the on-vehicle perception system. A human review of the disagreements provides final
arbitration over which perception system is correct. Advanced autonomy programs retrain and rerun the offline model on the same data.

18Applied Intuition — Powering Autonomy With Log Data | II. Log Exploration

and surfaces events for which it has the largest prediction
gap. These are the cases where the autonomous system
behaved in the most unexpected way according to existing
data, or a sub-system behaved unpredictably.

Automated anomaly detection is an ongoing area of
research. However, it is increasingly popular among
autonomy programs that face the limits of automation
when combing through petabytes of log data.

F. Enabling easy visualization of all
data
To make manual data reviews more efficient, autonomy
programs should leverage a web-based visualizer that
can play back the autonomous system’s captured state
alongside its sensor data (Figure 9). The visualizer should
transform and encode sensor data to achieve performant
playback capabilities.

The visualizer should be web-based, easy to use, and allow
users to share specific log snippets via links. A simple and
convenient user experience allows teams to review on-
road events more quickly and facilitate discussions about

on-road performance across their entire organization. If a
visualizer is difficult to use or only usable by engineering
teams, this can severely reduce the value of a program’s
collected log data.

For example, viewing videos and visualizations for a
specific timestamp should be possible on a low-powered
laptop and take 10 seconds or less. This way, all team
members across an organization can use and discuss
autonomy data. Senior managers and executives might not
have access to powerful development desktop machines in
their day-to-day work, but supporting their ability to view
collected log data is especially important.

Figure 9: An urban scene with dense traffic, visualized in a web-based tool with easy access to any point of the log.

19Applied Intuition — Powering Autonomy With Log Data | II. Log Exploration

G. Understanding current
performance and coverage
Log data provides autonomy programs with an
understanding of their autonomous system’s performance
and coverage across the target ODD. Coverage is the ratio
between what is known and tested versus the total space of
possible situations that the system may encounter. Initially,
early-stage autonomy programs focus on building broad
coverage across known requirements, limited geographies,
and common test categories. As the autonomous system
matures, this focus shifts toward uncovering edge cases,
finding and filling coverage gaps, and refining the ODD
definition.

Visualizations of coverage should allow team members to
answer the following questions:
•	 How does stack performance vary across different

dimensions of the ODD?
•	 Which areas of the ODD are underrepresented in the

collected data?
•	 Do newly uncovered issues stem from regressions or

new edge cases?

Our verification and validation (V&V) handbook contains
further details regarding defining and measuring coverage.

Performance and coverage can both serve as inputs for
systems engineers to refine the ODD definition and work
toward the autonomous system’s deployment. They also
permit teams to find specific areas in the ODD where the
system performs poorly or where there is a lack of data.
Programs can address these issues by using synthetic
simulations to fill in coverage gaps and by increasing on-
road data collection for relevant sections of the ODD if
possible.

Keeping existing log data usable
Whenever autonomy programs make changes to their
autonomous system, they need to quickly validate these
changes. If indexed correctly, recorded logs serve as
a powerful resource to quickly validate stack changes,
thus sparing teams the need to conduct slower and more
expensive real-world tests. Teams can leverage log re-

simulation to test their new stack version on millions
of existing logs. Log re-simulation is a deterministic
reproduction of how the autonomous system would have
behaved in a specific situation. In contrast to regular log
replay, log re-simulation achieves determinism by adding
a simulator into the loop (see Log re-simulation for more
detail).

Autonomy programs should thus keep some of their
existing log data “fresh” so that it is usable in re-simulation.
Other than re-simulation, there are other use cases, such
as data visualization and reporting to regulatory bodies,
which require log data to stay fresh. Log data usually
belongs to one of the following three categories:
•	 Unimportant data: This includes recordings of the

inside of an autonomy program’s garage, many
uninteresting miles of unstructured testing, and false
interventions where the safety operator needed a
break.

•	 Data that is important in the short term: This includes
non-critical interventions and interventions based on
discomfort. Once these events go through a triage
process and are assigned, fixed, and deployed, they
are not necessarily needed for re-simulation in the
future.

•	 Data that is important in the long term: This includes
all critical interventions such as collision-prevention
interventions. This also includes a few non-critical
intervention events to track metrics such as comfort
and efficiency, and a number of events to track ODD
coverage. Autonomy programs should keep log data
in this category fresh to leverage it for re-simulation
when needed. This data should be kept for regulatory
compliance as well.

There are several strategies to keep log data fresh. Some
examples include:
•	 Maintaining a careful versioning system for log data.

For any log, it should be obvious which log schema
version and stack version were used to record it.

•	 Writing an associated data migration for every change

https://blog.applied.co/blog-post/verification-and-validation-handbook-part-1

20Applied Intuition — Powering Autonomy With Log Data | II. Log Exploration

to the log schema. This data migration should be able
to update existing data to the latest version. Teams
should consider including a test in their continuous
integration (CI) system that prevents merging schema
changes unless they have a migration associated with
it. For ROS-based stacks, rosbag migrations are a
useful framework.

•	 Ensuring that every data change is backward-
compatible.

•	 Replaying sensor data through newer vehicle code to
generate the most up-to-date outputs.

This section of the handbook laid out the systems required
to explore log data, enrich it, and manage the complexity
of processing tasks. The next section discusses core
workflows involving logs that power an autonomy program’s
entire development life cycle.

21Applied Intuition — Powering Autonomy With Log Data | III. Log-Based Workflows

Throughout an autonomy program, a variety of different
teams leverage log data for their work. Each team has
its unique workflow with specific tooling requirements.
Triage teams need to investigate each field issue quickly
as it occurs. Perception engineers need to prepare data
for ML model development. Motion planning teams need
to create test cases based on logged data. On the surface,
all of these workflows vary so profoundly that they seem
to require their own, separate application built on custom
infrastructure. Efficient data platforms offer log-based
workflows to solve this challenge.

On the data layer of log-based workflows, “events” are
the flexible building blocks that support all of the required
workflows. Events are easy to represent—all that is needed
is a log identifier, a start timestamp, an end timestamp, and
any needed metadata. A “log-based” data platform uses
a relatively small common set of processing primitives to
construct all of the custom workflows that different teams
require. This section of the handbook discusses how
triage, perception, prediction, and motion planning teams
can leverage log-based workflows to make the most of
their collected log data.

A. Triaging issues from the field
One of the most important log-based workflows is triage
(i.e., the investigation of safety or operational issues from
testing). In this workflow, a team triages incoming issues
by assigning them to responsible teams or engineers.

III. Log-Based
Workflows

Mature autonomy programs should monitor how fast they
can go from issue identification to issue resolution (i.e.,
issue resolution time). To support a large production fleet,
issue reporting from the vehicle should be a seamless
process—from triggering an event all the way to resolving
the issue. It should be quick and easy for safety operators
to log comments or tag events during their drives. It should
also be easy for software modules to escalate events
for investigation at a later point (e.g., a planning module
flagging that it is in an unsolvable state).

To support triage teams, autonomy programs should
develop an automated triage pipeline that processes an
entire log, determines events of interest, and then takes
automated action based on the event type (Figure 10).

Once the triage team has identified a problematic event,
another set of rules should determine which automated
actions will occur. These automated actions augment the
event data and inform the triage team’s decision regarding
the manual steps they should carry out next. For example,
an operator disengagement that matches certain criteria
can automatically be scheduled for re-simulation. The
triage team can then look at the event and the re-simulation
results together to determine the severity of the event.

The table below shows a set of rules that help triage teams
filter and populate a queue of events to process (Figure
11). Triage teams should have enough information so that
they can inspect and accurately confirm the severity of

Figure 10: A triage pipeline has four key steps: Event classification, triage, issue assignment, and regression testing.

22Applied Intuition — Powering Autonomy With Log Data | III. Log-Based Workflows

the issue. They can then assign the issue to the correct
engineering team to root cause and fix.

Throughout their work, successful triage teams are able
to use their engineering time effectively. Due to the nature
of real-world testing, the vast majority of collected log
data is uneventful, and triage teams must filter out these
uneventful portions. With a log-based workflow, triage
teams can click directly into a problematic event, visualize
the relevant signals, and scrub around timestamps in the
event.

Efficient triage teams are able to triage an entire day’s
worth of testing within a few hours. This speed allows the
team to focus its next day of testing on certain parts of the
ODD, or provide emergency guidance to safety operators
to avoid certain situations. For example, a triage team may
uncover a severe fault in driving near bicyclists. The triage
team can provide quick guidance to halt the fleet or avoid
testing when cyclists are nearby.

B. Curating datasets to train ML
models
Perception teams require access to large sets of labeled
data to train their ML algorithms, raw sensor data to develop
their modules, and additional edge cases or examples
of their algorithms misbehaving to continually improve
these algorithms. This section discusses how autonomy
programs can curate datasets to use for ML model training,
with particular focus on the perception use case.

Labeling all logs is prohibitively expensive. To control costs,
autonomy programs should develop a workflow that:
1.	 Finds logs with a specific characteristic.
2.	 Crops those logs to only the relevant portions.
3.	 Creates ground-truth labels via an in-house or external

labeling team.

Labeling workflows should support a variety of labeling
providers and transform incoming labels into a consistent
format that the entire organization can use. This flexibility

Event Query Action Manual review

Operator disengagement •	 State of the stack changes
from “engaged” to
“disengaged”

•	 Re-simulate motion planning
and controls modules

•	 Inspect failures in re-
simulation: Collisions,
ride-safety violations
(i.e., metrics governing
the subjective safety
experience, including
hard braking, tailgating,
and coming too close to a
pedestrian), software faults

Unprotected left turn •	 Autonomous system is in
intersection

•	 Intersection has green light
•	 Intersection has no green
arrow

•	 Velocity > 0 m/s
•	 Vehicle leaves intersection

•	 Send to dataset
•	 Re-simulate motion planning
and controls modules with
fuzzed actor positions

•	 Inspect failures in re-
simulation: Collisions, ride-
safety violations, software
faults

Cyclist cuts into the
autonomous system’s lane

•	 Cyclist is detected
•	 Cyclist is in bike lane
•	 Cyclist’s path moves into
autonomous system’s path

•	 Send to dataset for cyclist
detection

•	 Send to dataset for motion
planning around cyclists

•	 No manual review needed

Figure 11: A set of rules that help triage teams filter and populate a queue of events to process.

23Applied Intuition — Powering Autonomy With Log Data | III. Log-Based Workflows

avoids supplier lock-in and provides a layer of protection
against sudden changes in labeling quality from one
supplier. Ideally, labeling is targeted toward cases where
the perception system misbehaves.

As ground-truth data is required to evaluate perception
outputs from a test drive, it can seem challenging to
identify perception issues automatically. Offline computer
vision models can solve this challenge. As discussed in the
automatic error detection section, a more accurate offline
computer vision model can provide pseudo ground truth
to compare against the output of the online computer
vision model. This is possible as the compute available in
a cloud or data center is much larger and more modern
than the compute available on a vehicle. For later-stage
autonomy programs, this automated method is the most
cost-effective in scaling perception improvements. For
early-stage autonomy programs, it may be sufficient for
humans to provide ground-truth data by viewing videos
and other sensor data and then determining if a perception
system has failed.

Once perception teams have identified a failure, they
should create ground-truth labels on raw sensor data and
build a set of tests containing these ground-truth labels.
Teams can then run these tests to evaluate their perception
stack’s overall performance compared to the ground-truth
labels. Ground-truth labels then feed into the improved
algorithm and enable regression tests.

C. Using ground-truth labels to
analyze perception performance
Ground-truth labels are required to train ML models, but
they are also important in grading the performance of a
perception task. To grade the performance of a perception
output, each individual detection is associated with the
closest ground-truth label. From these associations,
autonomy programs can compute metrics about the
accuracy, precision, and aggregate tracking performance.
These methods apply to both perception systems
developed in-house and third-party perception or
computer vision systems.

Throughout testing, teams should choose specific metrics
to evaluate the performance of their perception stack
in a quantifiable way over time. These metrics usually
depend on the specifics of the autonomy program and its
goals. The table below contains some examples of such
metrics (Figure 12). The metrics “true positive” (TP), “false
negative” (FN), and “false positive” (FP) refer to the result
of comparing an associated detection with a ground-truth
detection.

Perception teams should be able to filter these metrics
by zones of interest relative to the autonomous system.
Region-based metrics give a sense of how perception
performance changes from the left to the front of the
vehicle, or from a close range to a medium range in front of
the vehicle. This enables perception teams to understand
underperforming areas that need the most improvement.

24Applied Intuition — Powering Autonomy With Log Data | III. Log-Based Workflows

D. Improving prediction
performance
The prediction of vehicle, bicyclist, or pedestrian motions
is a crucial capability required for safe driving. Prediction
modules output an estimated trajectory of an actor, typically
powered by an ML model. The development of prediction
systems requires different processes and infrastructure
compared to the development of perception systems.

Prediction teams require large amounts of labeled
trajectory data for a variety of actors to train prediction
models effectively. Contrary to the perception workflows

described above, it is possible to auto-label prediction
data without human involvement. The auto-labeling
process uses a robust perception system to observe future
positions of an actor and then assign a specific label to the
actor’s present position.

A log-based workflow can facilitate the identification of
relevant training data and the development of prediction
systems as a whole. The building blocks of this workflow
are similar to the triage and perception workflows: A system

Metric name Metric meaning

Ground truth (GT) Total count of ground-truth labels available

ID switches (IS) Number of times a tracked object switches assigned IDs during a time frame. This
captures the failure to recall and stably track an object over a period of time.

Multiple object tracking accuracy (MOTA) A widely used metric to evaluate a tracker’s performance (see this paper for more
detail)

Multiple object tracking precision (MOTP) The average dissimilarity between all true positives and their corresponding ground-
truth targets (see this paper for more detail)

Precision How likely it is that any particular ground-truth object is detected correctly. High
precision means that the perception stack is correctly detecting the objects.

Recall How likely it is that any particular ground-truth object is perceived. High recall means
that the perception stack is detecting most of the existing ground-truth objects.

Mean average precision (mAP) An aggregate metric measuring the overall performance of the detections. Combines
precision and recall together across all classes to create a single numerical grade of
the performance of the tracking task.

Figure 12: Examples of metrics that help evaluate a perception stack’s performance.

https://arxiv.org/pdf/1603.00831.pdf
https://arxiv.org/pdf/1603.00831.pdf

25Applied Intuition — Powering Autonomy With Log Data | III. Log-Based Workflows

Figure 13: The iterative workflow for prediction development helps detect failed predictions, create a new dataset, and then train a new prediction model
to create a positive feedback loop.

identifies and collects events and then takes automated
actions on them.

The workflow for prediction development follows six steps
that should be repeated to create a positive feedback loop
(Figure 13). Each iteration helps the prediction module
improve and learn from new situations.
1.	 Test drive: Drive a test vehicle with a prediction

system running. Record a log.
2.	 Log processing: Process the log to be queryable by

downstream systems.
3.	 Event detection: Search the log to find events where

an actor’s predicted trajectory does not match its
actual trajectory.

4.	 Dataset creation: For each event, package the actor
state with the future trajectory to create a label.

5.	 Model training: Retrain the prediction model with the
new dataset. Test the model for regressions. If the
model passes regression testing, deploy it to a vehicle
as part of a new software version.

6.	 Repeat: Collect new logs and start the process again.

A helpful example of prediction systems development
is provided in the article Cruise’s Continuous Learning
Machine Predicts the Unpredictable on San Francisco
Roads.

E. Validating a supplier module
Purchasing an autonomy module from a supplier can help
autonomy programs reduce risk, speed up development,
and keep costs predictable. However, programs might find
it challenging to validate a supplier module due to a lack
of control over the module, a lack of visibility into module
internals, and long iteration cycles. This section describes a
log-based workflow that helps autonomy programs detect
errors in a supplier module, convert them into regression
tests, and curate datasets of failures to send back to their
supplier. To illustrate this workflow, this section explores
the example of validating an object detection system.

To validate a supplier module, autonomy programs need
to grade the module’s output by comparing it against
ground-truth data. Programs can obtain ground-truth data
either from a “twin” module developed in-house, from
an additional sensor, or through human labeling. Teams
should choose a different method depending on the type
of module they seek to validate.

For example, to validate a software-only module, autonomy
programs should compare the module to a twin module
with a similar output. Developing this twin module is a much
lower expense than developing the entire supplier solution,
as the in-house module has much less strict requirements.

https://medium.com/cruise/cruise-continuous-learning-machine-30d60f4c691b
https://medium.com/cruise/cruise-continuous-learning-machine-30d60f4c691b
https://medium.com/cruise/cruise-continuous-learning-machine-30d60f4c691b

26Applied Intuition — Powering Autonomy With Log Data | III. Log-Based Workflows

Figure 14: Finding failures in a supplier module using an additional sensor and a twin module.

The in-house module must have a reasonably correct
output, but it does not need to obtain safety certifications
or run on an embedded system. Teams can run the module
offline only. A small team of algorithm engineers can
typically build the in-house module using open-source
solutions.

Validating a supplier solution that combines hardware and
software typically requires a twin module and an additional
sensor for validation. It is often impossible to access the
input sensor data used in the module. This is very common
for a combination of camera and object detection software.
During testing, programs should record the additional
sensor data alongside the supplier module’s output. For
example, a radar-based detection module from a supplier
can be graded against an additional lidar sensor. The lidar
sensor can provide significantly higher-quality detections
than a radar sensor and helps highlight areas where the
supplier solution fails.

After implementing a twin module (and optionally adding
an additional sensor), the next step is to collect, analyze,
and process log data. The twin module runs offline and
creates an output similar to the supplier module’s output.
Then, teams compare the outputs of the supplier module
and the offline module and flag disagreements for manual
review.

Figure 14 shows how to implement this workflow for
object detection systems. In this example, the supplier
solution provides a camera and software, but accessing
the input images is impossible. To validate this supplier
module, teams should add an extra camera in the same

relative position as in the supplier solution. They should
then compare the output of the supplier’s module to the
output of the internally-built object detection module. The
internally-built module should run offline. It does not need
to achieve real-time performance and can be compute-
intensive.

To compare the two detections, autonomy programs should
use an approach similar to Using ground-truth labels to
analyze perception performance. They should associate
each detection with the most similar detection in the other
output and compare detected attributes or classes.

This workflow for validating a camera and object detection
solution is conceptually similar to the Enriching log data
with offline algorithms section. Autonomy programs should
weigh the cost of retraining the offline algorithm to improve
its performance against the cost of human labeling.

Finally, teams collect the supplier module’s failures and
send a dataset to the supplier for review. They should
also create test cases from the detected failures and add
them to a testing suite to ensure that the supplier’s next
software version resolves each failure. The Creating Test
Cases From a Log section of this handbook discusses how
autonomy programs can create test cases from logs.

F. Improving motion planning
performance
Autonomy programs in the early development stages
typically use synthetic simulation and real-world testing
exclusively to make their autonomous system operational

27Applied Intuition — Powering Autonomy With Log Data | III. Log-Based Workflows

in ideal conditions. Programs in later development stages,
however, spend the majority of their effort solving issues
in the long tail of possible events. A long-tail issue is a
combination of many different variables coming together
to create adverse conditions for an autonomous system.
Safety-critical issues and stack failures are two common
examples of long-tail issues.

As long-tail issues are circumstantial and difficult to
anticipate, synthetic simulation and real-world testing alone
do not suffice to efficiently solve those issues. Instead,
motion planning teams should use a log-based workflow
to create test cases from logs, solve long-tail issues, and
ensure that those issues do not resurface. The log-based
test case creation workflow contains the following steps
(Figure 15):
1.	 Create a test case to reproduce the issue.
2.	 Resolve the issue.
3.	 Add the test case to a regression suite to ensure the

issue does not reappear.

Figure 15: A log-based workflow enables motion planning teams to create test cases from logs, fix long-tail issues, and ensure these issues do not
reappear.

The log-based test case creation workflow is not only
beneficial for motion planning teams. It also allows
autonomy programs to improve perception and localization
modules. The following section lays out the steps required
to create test cases from logs and the benefits that
these test cases provide to autonomous system module
development.

28Applied Intuition — Powering Autonomy With Log Data | IV. Creating Test Cases From a Log

The previous section of this handbook discussed a
number of workflows involving logs, including diagnosing
issues from testing, curating datasets to train ML models,
improving perception and prediction performance, and
validating a supplier module. This section dives deeper into
the log-based test case creation workflow, which helps
autonomy programs improve perception, localization, and
motion planning modules.

The log-based test case creation workflow helps solve
long-tail issues found during real-world testing. This
workflow involves the following steps:
1.	 Create a test case to reproduce the issue.
2.	 Resolve the issue.
3.	 Add the test case to a regression suite to ensure the

issue does not reappear.

Optionally, autonomy programs can fuzz the created
test case to stress test their autonomy software and find
adjacent scenarios that may cause failures.

A. Reproducing an issue: Test case
creation
Creating a test case from a log should be quick—ideally one
or two clicks. Alongside the test case, teams should also
generate pass/fail rules that determine the test’s outcome.
Once they have created a test case, teams should run it
on their current autonomy stack to reproduce the long-tail
issue.

There are two ways to create test cases from a log:
Scenario extraction and log re-simulation. Scenario
extraction creates a synthetic test with actor behaviors
sampled from the perception outputs in the log. Log re-
simulation replays the original logged data to the autonomy
stack without any synthetic signals. Both these types
of test case creation have strengths and weaknesses.
Behavior extraction is typically portable between vehicle
programs (e.g., an L2 and an L4 autonomy program within

IV. Creating Test
Cases From a Log

the same organization) and is robust to stack changes. Log
re-simulation has higher fidelity and is able to losslessly
recreate the exact timing and content of signals sent to the
autonomy stack. The following sections describe scenario
extraction and log re-simulation in more detail.

Scenario extraction
When extracting a scenario from a log, autonomy programs
create a synthetic test case with actor behaviors sampled
from the existing log’s perception outputs. To generate
the actor behavior, teams sample actor detections from
the perception system and apply a realistic behavior to
achieve the desired motion. They then run the resulting
synthetic test case in a target simulator to reproduce the
long-tail issue. Scenario extraction usually takes place in
the form of a script or tool that selects a portion of the log
for extraction and then outputs a file that describes the
test case.

Test cases that are created using scenario extraction
can contain anything from actor poses and behaviors to
traffic control device states and even the entire synthetic
environment including the base map and buildings.
Autonomy programs usually leverage scenario extraction at
the object level: They extract actor poses, actor behavior,
and traffic control devices from the log but generate the
underlying map and environment separately.

The strengths of scenario creation include portability and
robustness to stack changes. The created test cases
can also be stack-agnostic. Thanks to these strengths,
autonomy programs can create test cases from logs that
are many years old and run them on their current autonomy
stack. Scenario extraction also makes it easy to share
interesting situations among different vehicle programs.

The weaknesses of scenario extraction include fidelity
and perception dependence. When extracting a synthetic
scenario from a real-world log, the log’s message

29Applied Intuition — Powering Autonomy With Log Data | IV. Creating Test Cases From a Log

content, timing, and latency information are lost. Many
safety-critical issues arise from complex, time-sensitive
interactions between different modules in the autonomy
stack. These issues are often impossible to reproduce
using scenario extraction. Scenario extraction is unable to
preserve noise in logged signals. For example, if a camera
sensor and an object detection module provide data on a
delay, the downstream fusion system may be late to detect
an obstacle. This exact timing would be lost in scenario
extraction but reproduced correctly in log re-simulation.

To successfully extract synthetic actors or object
behaviors, the perception stack needs to output high-
quality detections. If the logged perception stack fails to
populate object classifications (e.g., pedestrian, car, truck,
bicyclist) or the shape of the detections is incorrect, then
the created test case will have all of these deficiencies as
well.

Log re-simulation
The conceptually simplest way to reproduce an issue from
a log is to run the autonomy stack against the previously
recorded log. This method is called log replay. Log replay and
log re-simulation both run the original messages or sensor
data from the log against the current autonomy stack.
However, log re-simulation adds a simulator into the loop
(Figure 16). This simulator controls timing and dynamics.

The addition of the simulator thus achieves lossless fidelity
and determinism (i.e., the guarantee that, given the same
inputs, a simulation will always produce the same result,
no matter how often teams run it). This provides autonomy
programs a greater chance to successfully resolve the
long-tail issue. Because log re-simulation provides a higher
degree of determinism than log replay, it is well suited for
test case creation.

Autonomy programs can execute log re-simulation in two
specific modes: Closed-loop re-simulation and open-loop
re-simulation. Closed-loop re-simulation is most useful for
disengagement analysis and motion planning development
(Figure 17). It helps answer the question “What would have
happened if the system continued without intervention”?
Closed loop re-simulation involves a vehicle dynamics
model interacting with the controller, and it can become
inaccurate if the behavior of the re-simulated autonomous
system diverges too much from the behavior in the original
log. Teams should be careful to keep a re-simulation test
accurate when the loop is closed.

Open-loop re-simulation does not involve a vehicle
dynamics model, so the position of the autonomous system
in the re-simulation is identical to the position in the original
log. Instead of testing the motion planning module, open-
loop re-simulation helps test perception and localization

Figure 16: Perception stack detections with pinned front camera detections.

30Applied Intuition — Powering Autonomy With Log Data | IV. Creating Test Cases From a Log

modules (Figure 18). For example, testing the perception
system in open-loop re-simulation involves playing sensor
data from a log into the perception software, and then
grading the output via a scoring mechanism.

Systems engineers, triage teams, and motion planning
engineers typically rely on closed-loop re-simulations,

as they must assess the safety of the vehicle’s motion.
Perception, prediction, and localization teams typically rely
on open-loop re-simulation, as those module outputs can
be graded without observing a change in vehicle position.
For example, a localization system can be graded based on
observing the outputs of the localization module, without
involving a downstream system such as the planning

Figure 18: Open-loop re-simulation helps test perception and localization modules.

Figure 17: Closed-loop re-simulation helps test the motion planning stack. A coordinate transformation ensures the motion planning stack receives actor
positions that accurately relate to the autonomous system’s position in the closed loop re-simulation.

31Applied Intuition — Powering Autonomy With Log Data | IV. Creating Test Cases From a Log

module. Teams should choose the type of re-simulation
that is right for them depending on the type of test case
they want to create from a log.

The strengths of log re-simulation lie in its determinism and
fidelity. However, it is less flexible than scenario extraction.
Log re-simulation is inherently tied to the original log. If a
new version of the autonomy program’s software renders
data in the log invalid, then the re-simulation can become
invalid as well. There are a few techniques to keep older log
data relevant. The Keeping existing log data usable section
discusses these techniques in more detail. However,
every log eventually becomes too old to be useful in re-
simulation. Once this happens, autonomy programs should
either use scenario extraction or deprecate the test case
entirely.

Choosing between scenario extraction and log
re-simulation
Log re-simulation is an extremely powerful asset to the
autonomy programs that decide to invest in this method.
Later-stage autonomy programs typically create the
majority of their simulated miles from logs using re-
simulation, thanks to the advantages that log re-simulation
brings compared to scenario extraction.

That being said, the correct tool to create test cases

from scenarios is whatever helps an autonomy program
reproduce a long-tail issue fastest. Scenario extraction
usually suffices for simple test cases. Log re-simulation
may be more affordable than scenario extraction for
perception or object detection issues. When reproducing
long-tail issues caused by noise, latency, or hardware, re-
simulation is the only available choice.

B. Resolving the issue
Once autonomy programs have reproduced a long-tail issue
by creating a test case and receiving a failing result, they
can now resolve the issue locally by using real data from
the log to improve their autonomy stack. The log-based
test case creation workflow makes this possible (Figure
19). The team should iteratively modify the autonomy
stack and re-run the created test case. This iteration loop
should be as quick as possible. Once the test passes, the
stack changes are considered a true fix. It is important to
note that a passing result for the created test case does
not reduce the need for other software testing such as
integration and unit tests.

C. Ensuring the issue does
not reappear: Regression and
progression tests
Successful autonomy programs ensure that their
autonomous system does not fail twice in the same way.

Figure 19: Log-based test case creation lets teams use real data to improve their autonomy stack.

32Applied Intuition — Powering Autonomy With Log Data | IV. Creating Test Cases From a Log

After reproducing and resolving a long-tail issue locally,
teams should add the created test case to a regression
test suite that regularly executes comprehensive tests in
CI. If a long-tail issue appears unsolvable due to sensor or
compute deficiencies, programs can add it to a progression
test suite that evaluates the stack’s progress toward
aspirational goals. Programs should also create dashboards
that monitor the overall health of their autonomy stack
and give all team members a high-level overview of stack
performance over time.

D. Advanced re-simulation: Fuzzing
In addition to effectively reproducing issues encountered
during tests, re-simulation enables teams to create
variations of the same test case to stress-test the
autonomous system in simulation. Autonomy programs
can use a technique called fuzzing to achieve this. For
example, fuzzing allows teams to make a cut-in scenario
more aggressive by changing the distance between the
autonomous system and the vehicle that is cutting in front
of it. It also allows programs to make an unprotected left-
turn scenario more difficult by adding more traffic to it.
Autonomy programs in the later stages of development
typically set up rules to automatically fuzz re-simulation
test cases with the goal of exposing situations that cause
the stack to fail.

Resolving and uncovering issues
Re-simulation fuzzing solves two problems. First, when
resolving a long-tail issue, it gives individual engineers

the confidence that they have not accidentally overfit a
stack change to an individual test case. Second, it helps
validation teams expose unknown issues that the team
could otherwise only catch with more unstructured testing.

With the help of fuzzing, every mile of real-world testing
thus turns into tens or hundreds of miles of valuable re-
simulation tests. Slight changes in multiple variables such
as actor behavior, traffic signal timing, or object detection
accuracy can create large variations in a scenario (Figure
20), which may cause failures that are important for
validation teams to learn from.

In a 2017 article entitled How simulation turns one flashing
yellow light into thousands of hours of experience, Waymo
explains how it fuzzed a re-simulation to teach its vehicles
how to behave with respect to flashing yellow traffic
signals.

Object-level and sensor-level fuzzing
Autonomy programs that do not yet use fuzzing on their
existing re-simulation tests should build object-level
fuzzing capabilities to implement fuzzing efficiently.
Object-level fuzzing capabilities allow teams to manipulate
traffic signals, actor classifications, actor behavior, and
road geometry. These capabilities typically provide the
most immediate value to autonomy programs that are just
starting to use this technique.

Figure 20: Slight changes in multiple variables can create large variations in a scenario.

https://blog.waymo.com/2019/08/how-simulation-turns-one-flashing.html
https://blog.waymo.com/2019/08/how-simulation-turns-one-flashing.html

33Applied Intuition — Powering Autonomy With Log Data | IV. Creating Test Cases From a Log

In contrast to object-level fuzzing, some autonomy
programs prefer using sensor-level fuzzing. Sensor-level
fuzzing includes repainting camera images, injecting
new object detection or removing original detections in
point clouds, or otherwise synthetically modifying sensor
data. This method is significantly more difficult to carry
out compared to object-level fuzzing. It also widens
the simulation-to-real gap (i.e., a degradation in object
detection performance due to a difference between
synthetic data and the target domain in the real world)
more dramatically than object-level fuzzing does. For
these two reasons, autonomy programs should usually opt
for object-level fuzzing.

This section discussed a workflow for creating test cases
from logs, choosing the right type of test case, picking the
correct re-simulation setup, and fuzzing test cases to find
new failure modes. The following section discusses how to
store log data, generate artifacts, and control costs for an
autonomy program’s log storage life cycle.

34Applied Intuition — Powering Autonomy With Log Data | V. Log Storage and Archival

Once autonomy programs have collected, processed, and
explored a log file, they should store it in a data center
long-term. As their data pipeline processes logs, teams
end up duplicating the data and transforming log files into
different formats. Autonomy programs should generally
save all of these formats for as long as possible. However,
as their fleet grows in size, the amount of data that teams
collect increases, and long-term log storage costs tend to
rise as a result.

Different teams consume log data in different ways. While
one team may require raw time-series data, another one
may watch video recordings. A third team may need
access to raw sensor data such as camera images or lidar
point clouds. In order to efficiently support a diverse set of
use cases, an autonomy program should store its log data
in specialized formats.

To reduce costs, autonomy programs should carefully
choose the architecture of their storage system. They
should apply different storage policies to different classes
of log data and measure log storage costs directly against
the cost of collecting new data.

The following sections discuss common storage formats
and cost-effective storage architectures in more detail.

A. Storage types and container
formats
During real-world testing, vehicles collect two high-level
classes of data: Raw sensor data and derived structured
data. Autonomy programs should separate these two
types of data to make processing, storage, and querying
more cost-effective. Raw sensor data should be stored in
visualization formats that browsers or visualization tools
can read. Structured data should be stored in formats that
are queryable by large query engines.

V. Log Storage and
Archival

Visualization formats
Engineering and operations teams who investigate issues
from real-world testing and explore events of interest
need to visualize raw sensor data. For example, the
most common visualization is a view of the autonomous
system’s camera data alongside its position and state.
Autonomy programs should transform raw sensor data into
a visualization format for storage because it provides the
following benefits:
•	 Reduces storage costs
•	 Lowers latency to visualize data
•	 Increases playback performance

Examples of common transformations include:
•	 Transforming raw camera data from images into a

video format; this can reduce size on disk by 90%
•	 Transforming raw lidar data from a byte-packed form

into a general lidar point cloud format
•	 Transforming raw radar data into a visualization

message such as radar_msgs

To decide on the correct visualization format, autonomy
programs should primarily consider their disk size and the
readability by other tools in their stack.

Video conversion
The conversion of raw camera frames into a video format is
one of the most common transformations in a data pipeline.
However, it can introduce timing artifacts, which, in turn, can
cause data integrity problems. Real cameras occasionally
drop or fail to record frames. When converting raw
camera frames into a video format, teams should carefully
synchronize the individual frames with the remainder of
the messages in their system. Otherwise, missed frames
will cause the video to be displayed alongside incorrectly
synchronized graphs or time series data.

https://github.com/ros-perception/radar_msgs

35Applied Intuition — Powering Autonomy With Log Data | V. Log Storage and Archival

Query formats
Structured data originates from the communication
between an autonomous system’s individual software
modules. Structured data usually consists of groups of
primitive types that are sent across a robotics middleware
or CAN system. These primitive types include booleans,
integers, floats, enums, and strings, grouped into lists or
sub-structures.

Structured data is essential to scenario search, V&V,
measurement of key performance indicators (KPIs),
and algorithm development. Teams often need to query
structured data (Figure 21) across long periods of time
(e.g., weeks, months, or years) and across entire fleets
of vehicles. They also need to be able to access specific
subsets of structured data. For example, a query might
state: “Find all instances where the autonomous system
was at a red light, turning left, and had zero velocity for over
one minute.” To service this query, an autonomy program
needs to have readily available structured data about
the system’s velocity, the state of traffic control devices,
and the system’s intention to turn left. For efficient query
performance on petabytes of log data, the query engine
should scan only the data required to filter.

Ideally, a structured data query format should support
a flexible schema, accept nested data, be optimized
for reading, and support popular query engines and file
formats such as Parquet, ORC, or Avro. File formats like
these allow teams to read only the data that is relevant to
the query at hand.

Autonomy programs should transform a log file into a query
data format as soon as the original log arrives in a production
log management system. After the log is transformed,
teams can schedule various downstream tasks based on
it. For example, teams might want to schedule a task to
create snippets of original log files that include sensor data
around certain events of interest.

B. Data retention and archival

Length of storage
Autonomy programs should retain original log files for
many years. This is a high-cost requirement, but teams can
offset these costs by leveraging strategies to reduce data
storage costs.

The general advantage of keeping original log files for
as long as possible is the positive effect this has on the

Figure 21: A web-based frontend showing structured log data.

https://parquet.apache.org/
https://orc.apache.org/
https://avro.apache.org/docs/1.2.0/

36Applied Intuition — Powering Autonomy With Log Data | V. Log Storage and Archival

velocity of engineering and operations teams. Those
teams benefit greatly if they are able to access the largest
possible unique set of events their fleet has experienced
so far.

Of course, there is a financial tradeoff between keeping
original log files stored for longer periods of time and
collecting new logs instead. To decide when to archive a
log file, autonomy programs should thus consider the cost
of storage, how often they tend to re-access the log, and
how much it would cost to collect a new log instead. The
cost of storing a 1-TB log for one year is around $50 at the
time of writing. Reproducing the exact scenario of interest
in real-world testing, however, is much more expensive
in terms of labor cost and operational overhead. It is also
often technically infeasible in urban environments, where
the general public interacts with the autonomous system.
Additionally, teams might find it difficult to know a priori
whether they will need a specific segment of a log file in
the future.

Given the difficulty of reproduction, the low cost of
storage relative to the cost of collecting new data, and
the uncertainty of needing to access the file again, long-
term retention is the correct choice for most autonomy
programs. Luckily, storage costs have been decreasing
continuously over time as hard drive storage has become
cheaper and more powerful. Additionally, autonomy
programs with fleets of 10-100 test vehicles typically start
automating and minimizing their data collection efforts to
only collect relevant logs. This practice further increases
the chances that long-term storage is the right approach
for every collected log.

Data retention policies
Once autonomy programs have decided for how long they
wish to keep each log, they should leverage data retention
policies to manage storage costs. By aggressively moving
data into cheaper storage tiers, teams can reduce storage
costs by about 40% compared to an unconfigured public
cloud storage solution (Figure 22).

When storing data in a public cloud, autonomy programs
should store original log files in a “cold” storage tier. Cold
storage tiers provide a cheaper per-month cost, but teams
pay an additional fee if they wish to access the data.
Alternatively to an additional fee, data access might be
slower (up to 12 hours, depending on the type of storage
medium). In a cold storage tier, one TB of data costs
between $50-$100 per month at the time of writing. Teams
should place original log files into this tier as soon as the
files have finished processing.

Data that the team queries or visualizes should be kept in
“hot” storage tiers. Hot storage tiers provide cheap and
fast access to the stored data at the cost of higher per-
month storage bills. For example, teams often retrieve and
view GPS data, perception outputs, and converted video
files live on a visualizer. Since a human makes the request
to visualize this data, waiting multiple minutes for the data
to be returned would be untenable. A hot storage tier
satisfies these requirements.

The table below contains a sample data retention policy
with costs that are typical for public cloud storage at
the time of writing in the United States1 (Figure 22). The
outlined pricing assumes 500 TB of original logs with 25%
camera images, 25% lidar points, and 50% structured data.
The “Monthly tiered cost” column shows potential prices
from different storage types or “tiers.”

 1 Based on pricing from AWS and Azure as of October 2022

https://aws.amazon.com/s3/pricing/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/

37Applied Intuition — Powering Autonomy With Log Data | V. Log Storage and Archival

Figure 22: Typical costs of cloud storage in the United States.

Data format Size (in TB) Monthly unconfigured cost Monthly tiered cost

Original logs 500 $10,500 $9,000 $2,000

$0.004 per gigabyte
(GB) via Glacier tier

$495

$0.00099 per GB via
Archive tier

Queryable format 250 $5,250 $4,500 $3,125

$0.0125 per GB via
Infrequent Access
(IA) tier

$4,500

$0.018 per GB via
Hot tier

Visualization
formats

100 $2,100 $1,800 $1,250

$0.0125 per GB via
IA tier

$1,800

$0.018 per GB via
Hot tier

Total 850 $17,850 $15,300 $6,375 $6,795

38Applied Intuition — Powering Autonomy With Log Data | Conclusion

We hope that this handbook provides autonomy programs
with useful concepts, benefits, and industry practices of
an expansive log data management process. From log
collection and exploration to triage and improvements
to various modules in an autonomy stack, log data is
an essential building block for successful autonomy
development. This handbook also aims to provide
guidance on how autonomy programs can execute log data
management effectively, utilize their resources efficiently,
and reduce costs.

While this handbook lays out many important concepts
and tactical steps, it may not address all of our readers’
questions. The Applied team is happy to discuss these
questions and support autonomy programs of all sizes
and industries with their growing data collection and
management needs. Learn more on our website and
contact us to speak with our team.

Conclusion

https://www.appliedintuition.com/use-cases/log-visualization-and-triage
https://www.appliedintuition.com/contact

39Applied Intuition — Powering Autonomy With Log Data | Glossary

Glossary
CAN: Controller area network
CD: Continuous deployment
CI: Continuous integration
CPU: Central processing unit
ECU: Electronic control unit
EDR: Event data recorder
ETL: Extract, transform, load
FN: False negative
FP: False positive
GB: Gigabyte
GDPR: General Data Protection Regulation
GPS: Global Positioning System
GT: Ground truth
HD: High-definition
IA: Infrequent Access
IMU: Inertial measurement unit
IS: ID switches
KPI: Key performance indicator
L2: SAE Level 2
L3: SAE Level 3
L4: SAE Level 4
mAP: Mean average precision
ML: Machine learning
MOTA: Multiple object tracking accuracy
MOTP: Multiple object tracking precision
NTP: Network Time Protocol
ODD: Operational design domain
Protobuf: Protocol Buffers
PTP: Precision Time Protocol
RAM: Random-access memory
ROS: Robot Operating System
SAE: Society of Automotive Engineers
TB: Terabyte
TP: True positive
UI: User interface
V&V: Verification and validation

40Applied Intuition — Powering Autonomy With Log Data | Glossary

applied.co/contact

https://www.appliedintuition.com/contact

