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A. Challenge
The collection and management of log data is one of the  
most important tasks that every autonomy program needs 
to master. A test fleet collects on average four terabytes 
(TB) of log data per vehicle every day. A production fleet 
(i.e., vehicles purchased by individual consumers) can 
generate millions of events per day. This firehose of data 
from test and production fleets has enormous potential to 
drive development velocity across an entire organization. 

Due to the costs and risks involved in real-world testing, it 
is crucial that autonomy programs collect and manage their 
log data effectively. For example, the vehicles themselves, 
their sensors, and the team of safety operators all incur 
significant costs to operate and maintain a test fleet. 
Additionally, the safety implications of real-world testing 
are very high: One safety-critical mistake can put human 
lives at risk. Autonomy programs should thus implement 
practices to scale their data collection effectively, build 
efficient log data management pipelines, and create 
scalable workflows to ensure they use all of the collected 
data to its full potential.

B. Goals
This handbook outlines the benefits of an expansive log 
data management process, defines the components 
involved, and provides tactical steps to reduce the cost of 
implementing and executing such a process. It does not 
prescribe a one-size-fits-all solution but rather explores 
common industry practices for autonomy programs to pick 
and choose from. As every autonomy program has different 
needs and challenges, no log management process looks 
the same.

The structure of this handbook follows the journey of 
a log file from inception to long-term storage (Figure 1). 
First, an autonomous system collects the log file (Log 
Collection). Next, the log file is distributed through data 
processing pipelines and data exploration frameworks 
(Log Exploration, Log-Based Workflows, and Creating Test 

Cases From a Log). Finally, it lands in long-term storage 
(Log Storage and Archival).

Applied Intuition has partnered with leading organizations 
to deploy automated ingestion, triage, and re-simulation 
pipelines for their autonomous systems development. 
Through our extensive industry experience, our team 
has helped shape log management practices at some 
of the world’s top autonomy programs. We look forward 
to collaborating on solutions to the topics laid out in this 
handbook and welcome your feedback for future iterations 
of it.

Executive Summary
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Figure 1: Components of a log data workflow.
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A. What is log data?
In autonomous systems development, log data is any real-
world data collected on the system corresponding to the 
autonomous task at hand. For autonomous vehicles, log 
data is collected during a drive and ranges from raw sensor 
inputs to pedal or wheel actuation commands.

B. What does effective log data 
management look like?
Successful autonomy programs typically strive to make 
log data accessible to their engineering team as quickly 
as possible. They are also able to maintain efficient data 
collection while rapidly scaling up real-world testing. 

By contrast, teams who under-invest in their data 
infrastructure might experience the following pain points:
•	 Development teams do not regularly use real-world log 

data, leading to producing modules or algorithms that 
underperform in real-world conditions.

•	 When using log data, teams might spend 30 minutes 
or more to find and visualize a single incident. This is 
especially problematic as less than 10% of collected 
log data is useful for development.

•	 Finding events from previous log data may be difficult 
and result in the expensive collection of new data to 
test new versions of the software.

•	 Known issues remain unresolved and regularly occur 
during testing.

•	 It is difficult or impossible to answer key questions on 
the autonomous system’s progress (e.g., which root 
cause was the largest source of issues in the most 
recent software release).

•	 With increased real-world log collection, an autonomy 
program’s data storage costs increase every single 
day. Teams might find it difficult to decide which log 
files to delete and which ones to store in the long term.

C. Who should read this handbook?
This handbook puts particular emphasis on supporting the 
end users of log data (e.g., algorithm developers, systems 

engineers, machine learning (ML) engineers, and triage 
teams).

The concepts, principles, and approaches laid out in this 
handbook apply to autonomy programs of all sizes and 
across industries. Most of the metrics and examples used 
to illustrate different topics in this handbook relate to 
automotive SAE Level 2 (L2), L3, and L4 systems, but the 
content of this handbook is equally relevant to autonomous 
trucking, construction, mining, and agriculture as well as 
warehouse robots, unmanned aerial systems, and other 
types of autonomous systems.

D. What are the different workflows 
powered by log data?
This handbook will cover the following log-based workflows 
in autonomous systems development:
•	 Data science: Building a platform to mine data, run 

analytics, and extract metrics from fleet data.
•	 Diagnosing issues: Triaging issues from real-world 

testing effectively and assigning problems for 
development teams to solve.

•	 Module development: Scaling the development 
of perception, prediction, motion planning, and 
localization modules in a cost-effective manner.

•	 Curating labeled datasets: Detecting events of 
interest and creating labels for ML training.

•	 Simulation: Creating simulations from log data to 
power development and triage.

•	 Acceptance testing: Verifying if the release of a new 
software version is ready for further use.

•	 Validating supplier solutions: Determining if a system 
provided by a Tier 1 or Tier 2 supplier performs to the 
required specifications.

•	 Regression testing: Ensuring that previously solved 
issues do not reappear.

Implementing these workflows requires the careful 
collection, processing, and storage of log data. This 

Introduction

https://www.sae.org/blog/sae-j3016-update
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handbook explores these challenges and recommends 
practices to implement each workflow effectively.

Log data can also be leveraged for the following use cases, 
which will not be covered in this handbook:
•	 Mapping: Updating a map based on changes in the 

real world.
•	 Cybersecurity: Detecting threats and measuring the 

effectiveness of mitigations.
•	 Regulatory compliance: Reaching and maintaining 

compliance with privacy, safety, and other regulations, 
and providing a mechanism to report incidents to 
regulatory bodies.

•	 Insurance compliance: Providing scheduled reports 
about operational safety to insurance companies.
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I. Log Collection
The scale of log data that autonomy programs collect 
grows rapidly with the number of vehicles in their fleet, the 
number of sensors in their sensor suite, and the types of 
events they aim to track. The infrastructure for collecting, 
uploading, and processing log data needs to enable 
autonomy programs to parallelize and scale all of these 
processes.

Logging and recording autonomous system data presents 
a unique systems engineering challenge, which requires 
solutions different from those applied in other domains of 
software engineering. For example, the best practices for 
logging distributed systems and web applications assume 
a persistent network connection, a small volume of log 
data, and consistent formats. Logging autonomous system 
data implies a variable network connection, a huge volume 
of data, and extremely varied formats being recorded.

This section of the handbook discusses how to choose the 
correct testing methodology, challenges in recording logs, 
and how to scale log collection operationally.

A. Choosing the right log collection 
methods
As part of their log collection efforts, autonomy programs 
need to first choose the collection method (or combination 
of methods) that best accomplishes their goals. The 
following tables lay out different log collection methods for 
test fleets (Figure 2) and production fleets (Figure 3) along 
with their benefits and challenges. For test fleets, the log 
recording method should stay the same no matter which 
log collection methods a team chooses. For production 
fleets, the log recording method is vehicle and program 
specific.

Log collection method Description Benefits Challenges

Structured testing •	 A test run on a test track 
(i.e., a private testing ground) 
associated with a specific 
requirement

•	 Controlled
•	 Repeatable
•	 Safe

•	 Limited variability
•	 Not fully representative of the 
real world

Human driving •	 Human driving in a vehicle 
with the full sensor suite in 
an unstructured environment 
(i.e., on a public road) that 
represents the operational 
design domain (ODD)

•	 Analysis of the collected data 
takes place either offline or 
in real time with a “shadow-
mode” system deployed on 
the vehicle

•	 Safe: A human driver is in 
control of the vehicle the 
entire time

•	 Ability to target specific types 
of drive data (e.g., left turns, 
red flashing traffic lights, high-
speed highway merges)

•	 New insights are limited to 
discovering edge cases

•	 Does not test the vehicle’s 
controls module

Unstructured testing •	 A test run on public roads with 
external traffic in the true ODD

•	 Investigation of operator 
disengagements and system 
escalations

•	 Ability to uncover new 
unknowns and errors

•	 Representative of the real 
world

•	 Dangerous if the system 
has not yet been validated 
in simulation and structured 
testing

•	 Comprehensive training 
required for safety operators

•	 Legal approval required

Figure 2: Different log collection methods for a test fleet along with their benefits and challenges.
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Log collection method Description Benefits Challenges

Static triggering (e.g., 
event data recorder 
(EDR) logs)

•	 A vehicle owner drives their 
vehicle

•	 A predefined set of rules 
governs when to save a log 
file

•	 Rules do not undergo regular 
updates

•	 Relatively cost-effective to 
build

•	 Predictable volume of data

•	 New insights are limited by 
vehicle owner behavior

•	 Updating rules is cumbersome 
and may require software 
changes at a dealership

Dynamic data collection •	 A vehicle owner drives their 
vehicle

•	 A rules-based system 
discovers interesting events 
automatically and saves log 
files to later upload them to a 
collection server

•	 Developers can update rules 
over the air on a regular basis

•	 Scalable
•	 Events are sent as soon as 
possible (based on network 
availability)

•	 Determining when an event 
occurred presents a tough 
engineering challenge

•	 Creating and saving segments 
of a log requires additional 
computing power

•	 Unpredictable volume of 
events, especially when 
adding new rules

•	 Large network bandwidth 
required to transmit recorded 
data (via Wi-Fi or cellular 
network)

Figure 3: Different log collection methods for a production fleet along with their benefits and challenges.

As seen in Figure 2, structured testing helps programs 
test specific requirements of a test fleet in a private, safe 
environment. Teams can also leverage human driving to 
collect and test large amounts of sensor data. Unstructured 
testing provides the largest amount of insights, but it also 
bears the highest cost due to safety, training, and legal 
requirements. Autonomy programs should thus leverage 
unstructured testing only after they have validated a 
release candidate in simulation environments and with a 
large number of structured tests. As an autonomy program 
matures, unstructured testing will make up a growing 
percentage of its testing efforts.

As seen in Figure 3, static triggering is relatively cost-
effective with a predictable volume of data, but new insights 
are limited and rules are difficult to update. Dynamic data 
collection is scalable and fast, but its challenges include 
clock management, computing power, data volume, and 
network bandwidth.

Implementing programmable log collection from a 
production fleet requires a number of different technical 
considerations regarding the hardware and software 

deployed on the vehicle as well as data formats, security, 
transmission methods, and more. A detailed discussion of 
these topics is outside the scope of this handbook.

B. Challenges with recording log 
data
As autonomous system data is inherently multi-dimensional 
and complex, log collection can pose various challenges to 
autonomy programs. Examples of these challenges include:
•	 Recording fidelity: During the collection phase, it is 

unclear how the team will use the collected data. This 
uncertainty makes it difficult to decide at which fidelity 
logs should be recorded.

•	 Clock synchronization: Teams might log each sensor 
with its own clock timestamp, which may disagree with 
other clocks in the system.

•	 Container format: Choosing a correct format to use in 
real-time logging requires teams to balance tradeoffs 
between flexibility, robustness, and compatibility with 
supplier software.

Recording fidelity
Autonomy programs should record logs losslessly 

https://www.nhtsa.gov/research-data/event-data-recorder
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without any downsampling (e.g., compressing images). 
This recommendation stems from downstream log data 
requirements that call for lossless fidelity. For systems 
that are constrained by disk space, such as many 
deployed L2 fleets, downsampling is required. However, 
the downsampling should be limited to sensor data, and 
the remaining signals should be kept as high-fidelity as 
possible.

The two types of log data with distinct usage patterns are 
sensor data and structured data. Sensor data, especially 
camera images, should be labeled and provided to ML 
models for training at the full resolution. Teams should 
execute model training at the full resolution. Otherwise, 
their model will either be too slow in production usage or 
fail to perform its tasks. Structured data, which is made up 
of numerical and string components, represents the state 
of various modules. Teams should store structured data 
without downsampling, as missing individual messages 

from a signal would make it impossible to accurately 
reconstruct an issue and reproduce it for testing. Structured 
data is also very cost-effective to store, especially in a wire 
format optimized for sending data over a network, such as 
Protocol Buffers (Protobuf) or MessagePack.

In addition to the above recommendations, downsampling 
data also incurs central processing unit (CPU) costs, thus 
reducing the CPU budget for core autonomy tasks. When 
writing at full fidelity instead, teams can increase their disk 
utilization. Disk I/O (i.e., the measure of how long read 
and write operations require on a hard disk) is generally 
uncontested, as core robotic tasks are handled in memory 
to reduce latency.

Besides avoiding downsampling, autonomy programs 
should record log data into a log file located on the machine 
or electronic control unit (ECU) that is processing the data 
(Figure 4). For example, the computer that is reading from 

Figure 4: Autonomy programs should record log data into a log file located on the machine that is processing the data.
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a camera and processing an image should be in charge 
of recording that image along with the outputs generated 
during processing. This solves two issues: First, it avoids 
saturating the network with traffic only required for 
logging. Second, it ensures that logging is more accurate, 
as data gets recorded into a log file more quickly than if it 
first needed to traverse across a network.

Clock synchronization
When separating log files across machines or ECUs as 
described in the previous section of this handbook, it 
becomes especially complex to reconstruct an accurate 
view of the order of recorded data. To determine this 
order, autonomy programs need to reliably determine 
the first exact timing of each message in each log. Clock 
synchronization helps solve this challenge.

Clock synchronization is a well-studied topic in software 
and hardware engineering. Clock misalignment occurs 
either due to incorrect syncing at the start of a process or 
due to clock drift from small errors in clock hardware that 
accumulate over time. 

The correct clock synchronization solution differs based 
on the hardware and software that an autonomy program 
uses for its vehicle architecture. At a minimum, programs 
should use a time protocol such as Network Time Protocol 
(NTP) or, if available, Precision Time Protocol (PTP) at 
system startup time. This way, each machine starts up, 
receives a synchronization signal, and then uses that time 
as the clock signal when recording data.

Choosing the correct logging format
Log data has many downstream users and is recorded 
in a constrained environment. Autonomy programs thus 
have many requirements and tradeoffs to consider when 
choosing the correct logging format.

In order of priority, the following requirements are critical 
when choosing a logging format:
1.	 Ability to handle the disk I/O throughput of the sensor 

data and module communication without falling behind
2.	 Low CPU footprint

3.	 Robustness to corrupted inputs and interrupted writes

Generally, autonomy programs should collect logs in a 
format that is optimized for real-time logging. This format 
should be append-only, quick to write, and able to store 
many different data types flexibly. The canonical example 
of an ideal recording format is rosbag. Many autonomy 
programs record logs in this format even if they do not 
use Robot Operating System (ROS) as their middleware. 
Rosbag is not optimized for compatibility with other 
toolchains such as query engines or web frameworks. If an 
autonomy program chooses to record to rosbag, the first 
step in their data processing pipeline is usually to convert 
files from rosbag to a different container format.

The following features help ensure that downstream 
systems are able to effectively use the logged data. These 
features are recommended but not required:
1.	 Inclusion of the message schema
2.	 Support for high frequency with small amounts of data 

as well as low frequency with larger amounts of data
3.	 Readability by standard software

C. Collecting logs from a test fleet
The size of a test fleet is a major factor that influences 
an autonomy program’s log collection process. The optimal 
size of a test fleet usually depends on several different 
factors: The needs of the engineering organization, the 
scope of the required validation work, and the algorithm 
engineering team’s organic demand for hours of testing. 
This section lays out different log collection practices that 
autonomy programs typically adopt depending on the size 
of their test fleet.

Test fleet of 1-10 vehicles: Empowering safety 
operators
In the early development stages, an autonomy program 
might have a fleet size of 1-10 vehicles. At this stage, 
vehicles usually return to a garage daily, where the team 
uploads each vehicle’s entire logs to a blob store such as 
Amazon S3 or Azure blob storage, or to a local machine.

To use all vehicles in their fleet effectively, autonomy 
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programs should form a team that manages the fleet’s daily 
operations. Beyond regular daily operations, this team also 
prioritizes, schedules, and executes requests for specific 
testing or data collection campaigns. Before submitting 
requests for such campaigns, engineering teams should 
first use available offline data and prove that existing data 
is insufficient for their use case.

During testing, two safety operators are typically present 
in the vehicle. One operator is responsible for ensuring 
that the vehicle operates safely. In order to assess safety 
risks during the test drive, they need to understand the 
software changes that the team is testing. The other 
operator triggers data collection and notes down additional 
comments and insights regarding issues that the vehicle is 
encountering during testing.

To support the work of the safety operators, each vehicle 
usually features a rudimentary user interface (UI) that 
shows the vehicle’s status. This UI should also monitor 
the health of the logging system. This helps prevent data 
loss and logging errors, thus saving operators valuable 
time that they might otherwise spend collecting more 
log data or debugging issues. For example, statistics on 
machine usage such as the CPU, random-access memory 
(RAM), and disk space as well as the current processing 
bandwidth can indicate whether the logging system is in a 
non-functional state. In addition to monitoring the logging 
system during testing, operators should always check the 
logging system’s health before each trip as part of their 
pre-test checklist.

The logging system itself should make it easy for safety 
operators to add comments to an event immediately. 
Operators should also be able to edit their actions in case 
they press a button by accident or trigger an event they did 
not mean to trigger.

As they expand their testing and log collection efforts, 
autonomy programs should increase the amount of data 
types available for safety operators to collect and analyze. 
For example, a basic visualization of some sensors and 
their health allows operators to manually bookmark events 

when issues occur (e.g., if the perception stack does not 
correctly detect a pedestrian on the road). Additional 
options for useful visualizations include fused perception 
outputs, map data, and vehicle controller area network 
(CAN) signals. Ideally, operators can also hide or customize 
each sensor visualization based on their test requirements 
and preference.

Finally, autonomy programs should keep the hardware 
resources for their logging system, visualization 
functionality, and stack separate in order to prevent issues 
in one system from blocking or delaying other systems.

Test fleet of 10-100 vehicles: Automating event 
detection
As their fleet reaches more than 10 vehicles, autonomy 
programs may hit scaling limits in processing through all 
logs and finding relevant events. Programs train their safety 
operators to manually trigger data collection events when 
issues occur and archive all other logs that do not contain 
interesting events. However, operator feedback tends 
to vary in quality. It can also be error-prone, especially 
if multiple issues occur at the same time. Additionally, 
programs may spread testing over a wider geographic area 
without a persistent high-bandwidth network connection. 
To solve these issues, programs should develop a method 
of determining when an interesting event has occurred and 
automatically uploading partial log artifacts.

Autonomy programs typically implement automatic rules 
that determine when an interesting event has occurred. 
For example, programs can implement diagnostic checks 
on signals which automatically trigger data collection 
events as soon as the vehicle fails to perform within certain 
thresholds (e.g., if a camera fails to capture a frame for more 
than 100 milliseconds or a planner outputs an empty plan). 
For L4 autonomous systems, operator disengagements 
(i.e., situations where the safety operator intervenes to 
disengage autonomous mode) should automatically trigger 
data collection events. Throughout development, teams 
should be able to create new automatic rules for new 
types of events and implement them across vehicles on 
their fleet.
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Test fleet of 100+ vehicles: Scaling to production 
size
When their fleet reaches over 100 vehicles, autonomy 
programs should focus on minimizing issue resolution 
times and scaling their fleet.

The primary goal of an autonomy program’s fleet of this 
size is to identify and resolve issues and minimize the 
amount of time that passes between issue discovery and 
resolution. To minimize issue resolution time, programs 
need to identify issues automatically, automate issue 
reproduction, and assign bugs accurately to the correct 
engineers.

Another goal at this stage is to efficiently grow the fleet. 
Autonomy programs need to conduct careful supply chain 
management to source vehicles while anticipating long 
lead times and frequent interruptions. The engineering 
team should focus on building the systems required to 
eventually scale the fleet to production size.

A note on log collection from a production fleet
While L2-3 autonomy programs might already deploy 
their software on production vehicles and record certain 
types of log data for further research and development, 
L4 autonomy programs are still preparing to build and 
deploy production fleets with logging systems operating 
in production environments. As vehicles have become 
increasingly network-dependent, the production log 
collection system needs to be robust to network failures. 
Additionally, logging systems must be accessible to the 
engineering team, and protected by a firewall to avoid 
interference with the rest of the vehicle’s system.

The intricacies of production log collection and 
management are deeply tied to the unique characteristics 
of each autonomy program and its vehicle architecture. 
The program’s organizational structure, the architecture 
of its vehicles, and the ODD’s regulatory requirements all 
shape what the program’s ideal back-office systems look 
like. Due to the deeply specific nature of these systems, 
a description of specific requirements for production fleet 
log collection is outside the scope of this handbook.
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Once an autonomy program has collected log data, it 
needs to enable different teams to explore and extract 
value from the recorded log data. In order to achieve this, 
programs need to process the large amounts of collected 
data and build indices to enable faster data retrieval. They 
can then enrich log data with offline algorithms to better 
evaluate the performance of their ML models, surface 
interesting events for additional review, visualize data to 
understand it more easily, and draw conclusions about 
system performance and ODD coverage.

This section of the handbook discusses how autonomy 
programs can build a processing pipeline, add indices to 
enable efficient queries, enrich log data with additional 
metadata, and create a data platform for downstream 
workflows.

A. Goal: Extracting value from logs 
efficiently
The goal of log exploration is to extract high-level insights 
about the autonomous system’s current performance 

and coverage across its ODD. Log exploration also allows 
engineers to quickly find and investigate specific events.

As autonomy programs scale their log collection efforts, 
they also need to efficiently extract value from more and 
more collected logs. If they lack the infrastructure to scale 
their log exploration processes effectively, the time and 
cost programs spend exploring and understanding logs will 
grow linearly relative to the amount of collected data.

B. Processing the firehose of 
incoming data

Data processing
To make log data usable for downstream teams, autonomy 
programs must process the data effectively. Examples of 
different data processing jobs include:
•	 Transforming data into a different format to make it 

more easily accessible and understandable.
•	 Encoding sensor and media data to optimize it for 

II. Log Exploration

Figure 5: Data processing pipelines operate on log data to convert it into formats usable for analysis or exploration. 
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playback (Figure 5). Sensor data artifacts include 
video, compressed or downsampled lidar, and radar. 
The most important sensor data artifact is usually 
video, as triage, operations, and engineering teams 
rely on video streams to quickly understand the 
situation they are investigating.

•	 Cropping the output files to ensure that each file has 
a manageable size or to extract certain events of 
interest.

•	 Optimizing time series metrics for querying.
•	 Removing personal information in compliance with 

regulations such as the General Data Protection 
Regulation (GDPR).

•	 Indexing the data to improve query performance and 
enable filtering for interesting subsets of data (see 
Building indices for fast data retrieval).

Beyond executing individual data processing jobs, 
autonomy programs should implement an entire data 
processing pipeline to inform time-sensitive decision 
making such as the evaluation of safety-critical issues. 
As the data processing pipeline can make or break a 
program’s overall data availability, it needs to efficiently 
scale alongside an increasing amount of data collection.

A data processing pipeline’s effectiveness can be quantified 
with the help of specific target metrics. The following table 
provides examples of such target metrics (Figure 6), but 
programs should define additional metrics based on their 
current priorities.

As seen in Figure 6, the recommended log ingestion 
success rate is 99.9%. In other words, if 10 vehicles each 
collect two logs per day, less than 10 logs should fail to 

ingest over the course of one year. Failures might occur 
due to erroneous data formats or infrastructure issues.

In general, the data processing pipeline’s target metrics 
should incentivize autonomy programs to shorten their 
iteration loop (i.e., the time that passes between the 
introduction of a new change and the availability of new 
logs that the team can access and query). This ensures 
that autonomy programs make decisions based on the 
most recent data possible instead of waiting days or weeks 
before making an informed decision.

C. Building indices for fast data 
retrieval
During data processing, autonomy programs should index 
their ingested log data so that team members can quickly 
find the subsets of logs relevant to them. Programs can 
use several different indices concurrently. The following 
four indices usually provide the most value:

Event index
The outcome of event indexing is a list of events that 
match certain predefined criteria. An event index should 
include the log of the event, the reason why this event is 
of interest, specific sensors related to the event (if any), 
and the time window during which the event occurs in its 
source log. Additionally, autonomy programs can attach 
associated taxonomy information to the event. The Log-
Based Workflows section discusses the types of events 
that teams can index and extract. These types are not 
limited to safety-critical events only but instead range from 
information gathering for training to edge case reporting 
and diagnostics.

Metric Recommended target

Time to ingestion in proportion to the original log duration 0.5-1x the original log duration

Time to query availability (i.e., how much time passes between 

recording a log and being able to query it)
24 hours from the time of recording

Log ingestion success rate 99.9%

Figure 6: Metrics to measure a data processing pipeline’s effectiveness.
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Geospatial index
Geospatial indexing (Figure 7) allows autonomy programs 
to query logs based on geographic filters. More specifically, 
geospatial indexing makes it easier for teams to build com-
plex location-based queries. For example, a team might 
want to evaluate an autonomous system’s performance on 
a certain stretch of road or terrain or, in a more complex 
query, find all left turns that occur on a steep grade. In 
both cases, programs can speed up the query process by 
joining on geospatial indices. 

Metrics index
Metrics indexing uses a columnar data store to enable per-
formant log queries based on the value of any time series 
metric. This allows autonomy programs to quickly find log 
snippets of when the autonomous system was in a spe-
cific state. These metrics can be highly specific to each 
autonomy program’s domain, but they should generally be 
useful to specific teams and easy to compute. Examples of 
metrics include:
1.	 Engagement status
2.	 System’s velocity
3.	 Number of detected pedestrians

4.	 System’s chosen behavior
5.	 CPU usage

Log index
Log indexing enables autonomy programs to query their 
collected log data based on metadata associated with 
each log. This metadata includes the specific test vehicle, 
the safety operator, the route, the date of recording, and 
other mission-level parameters. Programs often use log 
indexing to hone in on an event of interest on a specific 
drive or test. For example, log indexing enables a query 
to find all routes driven during a one-month period on a 
certain vehicle.

D. Enriching log data with offline 
algorithms
Autonomy programs should enrich their ingested log data 
by running additional algorithms offline. This might seem 
like a complex and daunting task, but it is typically worth 
the effort. Offline algorithms can add metrics from external 
sources or run ML models on the recorded log data instead. 
This way, data enrichment allows programs to augment 
logs with data that would be impossible to collect in real 

Figure 7: A geospatial index visualized as a map of a driven route, with events highlighted.
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time. For example, heavy ML models that cannot run on 
an automotive ECU can be run offline and inserted into 
the log. Common data enrichment methods include map-
based annotations, running computer vision algorithms, 
and annotating the behavior of perceived actors. 

Map data
Autonomy programs can enrich the autonomous system’s 
location in the log data with data from high-definition (HD) 
maps or open-source satellite data. For each frame, teams 
should enrich map data with:
•	 Semantic information regarding the entity on which 

the autonomous system is currently located (e.g., the 
type of road, such as a highway, entry ramp, tunnel, or 
surface street)

•	 Metrics associated with the autonomous system’s 
position on the current map element (e.g., the lane 
curvature or the distance from the lane center)

Computer vision models
In addition to ML models that can run online directly on 
the test vehicle, autonomy programs can execute more 
powerful computer vision models offline on the collected 
sensor data. Offline models are less constrained by 
hardware and timing requirements compared to online 
models. The output of an offline computer vision model 
might include:
•	 The raw detection positions in the sensor data (e.g., 

2D and 3D bounding boxes, lane line geometry)
•	 Metrics associated with object detection (e.g., 

obstacle class, count per obstacle)
•	 Discrepancy metrics between offline and online 

perception systems (e.g., intersection over union—i.e., 
the measure of how much the predicted boundary 
overlaps with the ground truth—per frame and per 
object class) (see Automatic error detection for more 
detail)

Using an offline model also allows programs to detect object 
classes that the on-vehicle model has failed to detect. 
For example, an offline model can distinguish between 
“bicyclist walking their bicycle” versus “pedestrian” or 
“bicyclist.”

Behavior annotation
Behavior annotation involves tagging the autonomous 
system’s behavior and the behavior of other actors in 
the scene. To annotate behavior accurately, autonomy 
programs should use a combination of end-to-end learned 
models alongside heuristics based on map information and 
localization. 

Behavior annotation is particularly important for motion 
planning and controls teams, who spend much of their 
time tuning behavior around cut-in maneuvers from other 
vehicles. L2 through L4 systems all struggle to be robust 
to cut-in and merging behaviors. The ability to detect 
cut-ins and benchmark new algorithms against historic 
scenarios helps accelerate motion planning and controls 
development.

E. Surfacing interesting events for 
additional review
Triage operations teams, algorithm engineers, and other 
teams that use an autonomy program’s log data can utilize 
both the original and the enriched data as inputs to surface 
relevant events.

Operator disengagements and system escalations
All interventions that occur while the autonomous system 
is engaged should be surfaced for review. Interventions 
include operator disengagements (i.e., situations where 
the safety operator intervenes to disengage autonomous 
mode in L4 autonomous systems) and system escalations 
(i.e., situations where the safety operator or the vehicle 
owner intervenes to take control of an L2 or L3 autonomous 
system). If available, the surfaced events should include 
relevant safety operator comments. Safety operator 
comments can help teams quickly review and root cause 
events that may have been caused by a system failure. 
Surfaced events might also contain the autonomous 
system’s intended maneuver, the behavior of nearby 
actors, and taxonomy information such as map information. 
Taxonomy information helps teams classify an event as 
occurring inside or outside of the autonomous system’s 
ODD.
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Scenario tags
Scenario tags enable validation teams to find scenarios 
matching a specific situation. Scenario tags often combine 
behavior annotation, map or geographic information, and 
ODD data. For example, teams should surface and tag 
scenarios such as “lane changes on highway” and “actor 
cut-ins during rain.” They can then perform aggregate 
analysis on scenarios with the same tags to understand 
how the autonomous system tends to perform in specific 
situations. 

Autonomy programs can combine tags to create human 
descriptions of especially difficult situations. For example, 
filtering by “vehicle pulling out of parking spot” and “bicyclist 
adjacent” will surface edge cases that are relevant to every 
L4 planning team.

Automatic error detection
Autonomous systems development involves an abundance 
of unlabeled raw data. Unfortunately, high-quality labels are 
often expensive to obtain, and labeling common scenarios 
such as standard highway driving has diminishing returns 
on perception model performance. Perception models 
should be trained on data that previous versions classified 

incorrectly (Figure 8). Autonomy programs should have 
a system that identifies these cases in logged data 
automatically. 

To surface potential errors automatically, teams should 
compare the output of the on-vehicle model to the output 
of their more powerful offline computer vision model 
and find cases where the two models disagree. These 
discrepancies likely indicate errors in the on-vehicle 
perception stack and should be sent to a team member for 
manual review and labeling.

Anomaly detection
Beyond finding specific predefined events, autonomy 
programs typically find it useful to surface unpredicted 
anomalies in their log data for manual review. Anomalies 
can include known scenarios with unexpected metrics for 
pre-chosen dimensions (e.g., the most aggressive cut-
ins) as well as unseen edge cases surfaced through ML. A 
common ML-based anomaly detection technique leverages 
unsupervised learning to detect unexpected data. Teams 
train an ML model on a subset of the most relevant channels 
in their log data to predict the next timestamp based on a 
window of historical data. This model then runs on a log 

Figure 8: An offline perception system can highlight failures in the on-vehicle perception system. A human review of the disagreements provides final 
arbitration over which perception system is correct. Advanced autonomy programs retrain and rerun the offline model on the same data.
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and surfaces events for which it has the largest prediction 
gap. These are the cases where the autonomous system 
behaved in the most unexpected way according to existing 
data, or a sub-system behaved unpredictably.

Automated anomaly detection is an ongoing area of 
research. However, it is increasingly popular among 
autonomy programs that face the limits of automation 
when combing through petabytes of log data.

F. Enabling easy visualization of all 
data
To make manual data reviews more efficient, autonomy 
programs should leverage a web-based visualizer that 
can play back the autonomous system’s captured state 
alongside its sensor data (Figure 9). The visualizer should 
transform and encode sensor data to achieve performant 
playback capabilities.

The visualizer should be web-based, easy to use, and allow 
users to share specific log snippets via links. A simple and 
convenient user experience allows teams to review on-
road events more quickly and facilitate discussions about 

on-road performance across their entire organization. If a 
visualizer is difficult to use or only usable by engineering 
teams, this can severely reduce the value of a program’s 
collected log data.

For example, viewing videos and visualizations for a 
specific timestamp should be possible on a low-powered 
laptop and take 10 seconds or less. This way, all team 
members across an organization can use and discuss 
autonomy data. Senior managers and executives might not 
have access to powerful development desktop machines in 
their day-to-day work, but supporting their ability to view 
collected log data is especially important.

Figure 9: An urban scene with dense traffic, visualized in a web-based tool with easy access to any point of the log.
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G. Understanding current 
performance and coverage
Log data provides autonomy programs with an 
understanding of their autonomous system’s performance 
and coverage across the target ODD. Coverage is the ratio 
between what is known and tested versus the total space of 
possible situations that the system may encounter. Initially, 
early-stage autonomy programs focus on building broad 
coverage across known requirements, limited geographies, 
and common test categories. As the autonomous system 
matures, this focus shifts toward uncovering edge cases, 
finding and filling coverage gaps, and refining the ODD 
definition. 

Visualizations of coverage should allow team members to 
answer the following questions:
•	 How does stack performance vary across different 

dimensions of the ODD?
•	 Which areas of the ODD are underrepresented in the 

collected data?
•	 Do newly uncovered issues stem from regressions or 

new edge cases?

Our verification and validation (V&V) handbook contains 
further details regarding defining and measuring coverage.

Performance and coverage can both serve as inputs for 
systems engineers to refine the ODD definition and work 
toward the autonomous system’s deployment. They also 
permit teams to find specific areas in the ODD where the 
system performs poorly or where there is a lack of data. 
Programs can address these issues by using synthetic 
simulations to fill in coverage gaps and by increasing on-
road data collection for relevant sections of the ODD if 
possible.

Keeping existing log data usable
Whenever autonomy programs make changes to their 
autonomous system, they need to quickly validate these 
changes. If indexed correctly, recorded logs serve as 
a powerful resource to quickly validate stack changes, 
thus sparing teams the need to conduct slower and more 
expensive real-world tests. Teams can leverage log re-

simulation to test their new stack version on millions 
of existing logs. Log re-simulation is a deterministic 
reproduction of how the autonomous system would have 
behaved in a specific situation. In contrast to regular log 
replay, log re-simulation achieves determinism by adding 
a simulator into the loop (see Log re-simulation for more 
detail).

Autonomy programs should thus keep some of their 
existing log data “fresh” so that it is usable in re-simulation. 
Other than re-simulation, there are other use cases, such 
as data visualization and reporting to regulatory bodies, 
which require log data to stay fresh. Log data usually 
belongs to one of the following three categories: 
•	 Unimportant data: This includes recordings of the 

inside of an autonomy program’s garage, many 
uninteresting miles of unstructured testing, and false 
interventions where the safety operator needed a 
break.

•	 Data that is important in the short term: This includes 
non-critical interventions and interventions based on 
discomfort. Once these events go through a triage 
process and are assigned, fixed, and deployed, they 
are not necessarily needed for re-simulation in the 
future.

•	 Data that is important in the long term: This includes 
all critical interventions such as collision-prevention 
interventions. This also includes a few non-critical 
intervention events to track metrics such as comfort 
and efficiency, and a number of events to track ODD 
coverage. Autonomy programs should keep log data 
in this category fresh to leverage it for re-simulation 
when needed. This data should be kept for regulatory 
compliance as well.

There are several strategies to keep log data fresh. Some 
examples include:
•	 Maintaining a careful versioning system for log data. 

For any log, it should be obvious which log schema 
version and stack version were used to record it.

•	 Writing an associated data migration for every change 

https://blog.applied.co/blog-post/verification-and-validation-handbook-part-1
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to the log schema. This data migration should be able 
to update existing data to the latest version. Teams 
should consider including a test in their continuous 
integration (CI) system that prevents merging schema 
changes unless they have a migration associated with 
it. For ROS-based stacks, rosbag migrations are a 
useful framework. 

•	 Ensuring that every data change is backward-
compatible.

•	 Replaying sensor data through newer vehicle code to 
generate the most up-to-date outputs.

This section of the handbook laid out the systems required 
to explore log data, enrich it, and manage the complexity 
of processing tasks. The next section discusses core 
workflows involving logs that power an autonomy program’s 
entire development life cycle.
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Throughout an autonomy program, a variety of different 
teams leverage log data for their work. Each team has 
its unique workflow with specific tooling requirements. 
Triage teams need to investigate each field issue quickly 
as it occurs. Perception engineers need to prepare data 
for ML model development. Motion planning teams need 
to create test cases based on logged data. On the surface, 
all of these workflows vary so profoundly that they seem 
to require their own, separate application built on custom 
infrastructure. Efficient data platforms offer log-based 
workflows to solve this challenge.

On the data layer of log-based workflows, “events” are 
the flexible building blocks that support all of the required 
workflows. Events are easy to represent—all that is needed 
is a log identifier, a start timestamp, an end timestamp, and 
any needed metadata. A “log-based” data platform uses 
a relatively small common set of processing primitives to 
construct all of the custom workflows that different teams 
require. This section of the handbook discusses how 
triage, perception, prediction, and motion planning teams 
can leverage log-based workflows to make the most of 
their collected log data.

A. Triaging issues from the field
One of the most important log-based workflows is triage 
(i.e., the investigation of safety or operational issues from 
testing). In this workflow, a team triages incoming issues 
by assigning them to responsible teams or engineers.

III. Log-Based 
Workflows

Mature autonomy programs should monitor how fast they 
can go from issue identification to issue resolution (i.e., 
issue resolution time). To support a large production fleet, 
issue reporting from the vehicle should be a seamless 
process—from triggering an event all the way to resolving 
the issue. It should be quick and easy for safety operators 
to log comments or tag events during their drives. It should 
also be easy for software modules to escalate events 
for investigation at a later point (e.g., a planning module 
flagging that it is in an unsolvable state).

To support triage teams, autonomy programs should 
develop an automated triage pipeline that processes an 
entire log, determines events of interest, and then takes 
automated action based on the event type (Figure 10).

Once the triage team has identified a problematic event, 
another set of rules should determine which automated 
actions will occur. These automated actions augment the 
event data and inform the triage team’s decision regarding 
the manual steps they should carry out next. For example, 
an operator disengagement that matches certain criteria 
can automatically be scheduled for re-simulation. The 
triage team can then look at the event and the re-simulation 
results together to determine the severity of the event.

The table below shows a set of rules that help triage teams 
filter and populate a queue of events to process (Figure 
11). Triage teams should have enough information so that 
they can inspect and accurately confirm the severity of 

Figure 10: A triage pipeline has four key steps: Event classification, triage, issue assignment, and regression testing.
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the issue. They can then assign the issue to the correct 
engineering team to root cause and fix.

Throughout their work, successful triage teams are able 
to use their engineering time effectively. Due to the nature 
of real-world testing, the vast majority of collected log 
data is uneventful, and triage teams must filter out these 
uneventful portions. With a log-based workflow, triage 
teams can click directly into a problematic event, visualize 
the relevant signals, and scrub around timestamps in the 
event.

Efficient triage teams are able to triage an entire day’s 
worth of testing within a few hours. This speed allows the 
team to focus its next day of testing on certain parts of the 
ODD, or provide emergency guidance to safety operators 
to avoid certain situations. For example, a triage team may 
uncover a severe fault in driving near bicyclists. The triage 
team can provide quick guidance to halt the fleet or avoid 
testing when cyclists are nearby.

B. Curating datasets to train ML 
models
Perception teams require access to large sets of labeled 
data to train their ML algorithms, raw sensor data to develop 
their modules, and additional edge cases or examples 
of their algorithms misbehaving to continually improve 
these algorithms. This section discusses how autonomy 
programs can curate datasets to use for ML model training, 
with particular focus on the perception use case.

Labeling all logs is prohibitively expensive. To control costs, 
autonomy programs should develop a workflow that:
1.	 Finds logs with a specific characteristic.
2.	 Crops those logs to only the relevant portions.
3.	 Creates ground-truth labels via an in-house or external 

labeling team.

Labeling workflows should support a variety of labeling 
providers and transform incoming labels into a consistent 
format that the entire organization can use. This flexibility

Event Query Action Manual review

Operator disengagement •	 State of the stack changes 
from “engaged” to 
“disengaged”

•	 Re-simulate motion planning 
and controls modules

•	 Inspect failures in re-
simulation: Collisions, 
ride-safety violations 
(i.e., metrics governing 
the subjective safety 
experience, including 
hard braking, tailgating, 
and coming too close to a 
pedestrian), software faults

Unprotected left turn •	 Autonomous system is in 
intersection

•	 Intersection has green light
•	 Intersection has no green 
arrow

•	 Velocity > 0 m/s
•	 Vehicle leaves intersection

•	 Send to dataset
•	 Re-simulate motion planning 
and controls modules with 
fuzzed actor positions

•	 Inspect failures in re-
simulation: Collisions, ride-
safety violations, software 
faults

Cyclist cuts into the 
autonomous system’s lane

•	 Cyclist is detected
•	 Cyclist is in bike lane
•	 Cyclist’s path moves into 
autonomous system’s path

•	 Send to dataset for cyclist 
detection

•	 Send to dataset for motion 
planning around cyclists

•	 No manual review needed

Figure 11: A set of rules that help triage teams filter and populate a queue of events to process.
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avoids supplier lock-in and provides a layer of protection 
against sudden changes in labeling quality from one 
supplier. Ideally, labeling is targeted toward cases where 
the perception system misbehaves.

As ground-truth data is required to evaluate perception 
outputs from a test drive, it can seem challenging to 
identify perception issues automatically. Offline computer 
vision models can solve this challenge. As discussed in the 
automatic error detection section, a more accurate offline 
computer vision model can provide pseudo ground truth 
to compare against the output of the online computer 
vision model. This is possible as the compute available in 
a cloud or data center is much larger and more modern 
than the compute available on a vehicle. For later-stage 
autonomy programs, this automated method is the most 
cost-effective in scaling perception improvements. For 
early-stage autonomy programs, it may be sufficient for 
humans to provide ground-truth data by viewing videos 
and other sensor data and then determining if a perception 
system has failed.

Once perception teams have identified a failure, they 
should create ground-truth labels on raw sensor data and 
build a set of tests containing these ground-truth labels. 
Teams can then run these tests to evaluate their perception 
stack’s overall performance compared to the ground-truth 
labels. Ground-truth labels then feed into the improved 
algorithm and enable regression tests.

C. Using ground-truth labels to 
analyze perception performance
Ground-truth labels are required to train ML models, but 
they are also important in grading the performance of a 
perception task. To grade the performance of a perception 
output, each individual detection is associated with the 
closest ground-truth label. From these associations, 
autonomy programs can compute metrics about the 
accuracy, precision, and aggregate tracking performance. 
These methods apply to both perception systems 
developed in-house and third-party perception or 
computer vision systems.

Throughout testing, teams should choose specific metrics 
to evaluate the performance of their perception stack 
in a quantifiable way over time. These metrics usually 
depend on the specifics of the autonomy program and its 
goals. The table below contains some examples of such 
metrics (Figure 12). The metrics “true positive” (TP), “false 
negative” (FN), and “false positive” (FP) refer to the result 
of comparing an associated detection with a ground-truth 
detection. 

Perception teams should be able to filter these metrics 
by zones of interest relative to the autonomous system. 
Region-based metrics give a sense of how perception 
performance changes from the left to the front of the 
vehicle, or from a close range to a medium range in front of 
the vehicle. This enables perception teams to understand 
underperforming areas that need the most improvement. 
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D. Improving prediction 
performance
The prediction of vehicle, bicyclist, or pedestrian motions 
is a crucial capability required for safe driving. Prediction 
modules output an estimated trajectory of an actor, typically 
powered by an ML model. The development of prediction 
systems requires different processes and infrastructure 
compared to the development of perception systems.

Prediction teams require large amounts of labeled 
trajectory data for a variety of actors to train prediction 
models effectively. Contrary to the perception workflows 

described above, it is possible to auto-label prediction 
data without human involvement. The auto-labeling 
process uses a robust perception system to observe future 
positions of an actor and then assign a specific label to the 
actor’s present position.

A log-based workflow can facilitate the identification of 
relevant training data and the development of prediction 
systems as a whole. The building blocks of this workflow 
are similar to the triage and perception workflows: A system 

Metric name Metric meaning

Ground truth (GT) Total count of ground-truth labels available

ID switches (IS) Number of times a tracked object switches assigned IDs during a time frame. This 
captures the failure to recall and stably track an object over a period of time.

Multiple object tracking accuracy (MOTA) A widely used metric to evaluate a tracker’s performance (see this paper for more 
detail)

Multiple object tracking precision (MOTP) The average dissimilarity between all true positives and their corresponding ground-
truth targets (see this paper for more detail)

Precision How likely it is that any particular ground-truth object is detected correctly. High 
precision means that the perception stack is correctly detecting the objects.

Recall How likely it is that any particular ground-truth object is perceived. High recall means 
that the perception stack is detecting most of the existing ground-truth objects.

Mean average precision (mAP) An aggregate metric measuring the overall performance of the detections. Combines 
precision and recall together across all classes to create a single numerical grade of 
the performance of the tracking task.

Figure 12: Examples of metrics that help evaluate a perception stack’s performance.

https://arxiv.org/pdf/1603.00831.pdf
https://arxiv.org/pdf/1603.00831.pdf
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Figure 13: The iterative workflow for prediction development helps detect failed predictions, create a new dataset, and then train a new prediction model 
to create a positive feedback loop.

identifies and collects events and then takes automated 
actions on them.

The workflow for prediction development follows six steps 
that should be repeated to create a positive feedback loop 
(Figure 13). Each iteration helps the prediction module 
improve and learn from new situations.
1.	 Test drive: Drive a test vehicle with a prediction 

system running. Record a log.
2.	 Log processing: Process the log to be queryable by 

downstream systems.
3.	 Event detection: Search the log to find events where 

an actor’s predicted trajectory does not match its 
actual trajectory.

4.	 Dataset creation: For each event, package the actor 
state with the future trajectory to create a label.

5.	 Model training: Retrain the prediction model with the 
new dataset. Test the model for regressions. If the 
model passes regression testing, deploy it to a vehicle 
as part of a new software version.

6.	 Repeat: Collect new logs and start the process again.

A helpful example of prediction systems development 
is provided in the article Cruise’s Continuous Learning 
Machine Predicts the Unpredictable on San Francisco 
Roads.

E. Validating a supplier module
Purchasing an autonomy module from a supplier can help 
autonomy programs reduce risk, speed up development, 
and keep costs predictable. However, programs might find 
it challenging to validate a supplier module due to a lack 
of control over the module, a lack of visibility into module 
internals, and long iteration cycles. This section describes a 
log-based workflow that helps autonomy programs detect 
errors in a supplier module, convert them into regression 
tests, and curate datasets of failures to send back to their 
supplier. To illustrate this workflow, this section explores 
the example of validating an object detection system.

To validate a supplier module, autonomy programs need 
to grade the module’s output by comparing it against 
ground-truth data. Programs can obtain ground-truth data 
either from a “twin” module developed in-house, from 
an additional sensor, or through human labeling. Teams 
should choose a different method depending on the type 
of module they seek to validate.

For example, to validate a software-only module, autonomy 
programs should compare the module to a twin module 
with a similar output. Developing this twin module is a much 
lower expense than developing the entire supplier solution, 
as the in-house module has much less strict requirements. 

https://medium.com/cruise/cruise-continuous-learning-machine-30d60f4c691b
https://medium.com/cruise/cruise-continuous-learning-machine-30d60f4c691b
https://medium.com/cruise/cruise-continuous-learning-machine-30d60f4c691b
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Figure 14: Finding failures in a supplier module using an additional sensor and a twin module.

The in-house module must have a reasonably correct 
output, but it does not need to obtain safety certifications 
or run on an embedded system. Teams can run the module 
offline only. A small team of algorithm engineers can 
typically build the in-house module using open-source 
solutions.

Validating a supplier solution that combines hardware and 
software typically requires a twin module and an additional 
sensor for validation. It is often impossible to access the 
input sensor data used in the module. This is very common 
for a combination of camera and object detection software. 
During testing, programs should record the additional 
sensor data alongside the supplier module’s output. For 
example, a radar-based detection module from a supplier 
can be graded against an additional lidar sensor. The lidar 
sensor can provide significantly higher-quality detections 
than a radar sensor and helps highlight areas where the 
supplier solution fails.

After implementing a twin module (and optionally adding 
an additional sensor), the next step is to collect, analyze, 
and process log data. The twin module runs offline and 
creates an output similar to the supplier module’s output. 
Then, teams compare the outputs of the supplier module 
and the offline module and flag disagreements for manual 
review.

Figure 14 shows how to implement this workflow for 
object detection systems. In this example, the supplier 
solution provides a camera and software, but accessing 
the input images is impossible. To validate this supplier 
module, teams should add an extra camera in the same 

relative position as in the supplier solution. They should 
then compare the output of the supplier’s module to the 
output of the internally-built object detection module. The 
internally-built module should run offline. It does not need 
to achieve real-time performance and can be compute-
intensive.

To compare the two detections, autonomy programs should 
use an approach similar to Using ground-truth labels to 
analyze perception performance. They should associate 
each detection with the most similar detection in the other 
output and compare detected attributes or classes.

This workflow for validating a camera and object detection 
solution is conceptually similar to the Enriching log data 
with offline algorithms section. Autonomy programs should 
weigh the cost of retraining the offline algorithm to improve 
its performance against the cost of human labeling.

Finally, teams collect the supplier module’s failures and 
send a dataset to the supplier for review. They should 
also create test cases from the detected failures and add 
them to a testing suite to ensure that the supplier’s next 
software version resolves each failure. The Creating Test 
Cases From a Log section of this handbook discusses how 
autonomy programs can create test cases from logs.

F. Improving motion planning 
performance
Autonomy programs in the early development stages 
typically use synthetic simulation and real-world testing 
exclusively to make their autonomous system operational 
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in ideal conditions. Programs in later development stages, 
however, spend the majority of their effort solving issues 
in the long tail of possible events. A long-tail issue is a 
combination of many different variables coming together 
to create adverse conditions for an autonomous system. 
Safety-critical issues and stack failures are two common 
examples of long-tail issues. 

As long-tail issues are circumstantial and difficult to 
anticipate, synthetic simulation and real-world testing alone 
do not suffice to efficiently solve those issues. Instead, 
motion planning teams should use a log-based workflow 
to create test cases from logs, solve long-tail issues, and 
ensure that those issues do not resurface. The log-based 
test case creation workflow contains the following steps 
(Figure 15):
1.	 Create a test case to reproduce the issue.
2.	 Resolve the issue.
3.	 Add the test case to a regression suite to ensure the 

issue does not reappear.

Figure 15: A log-based workflow enables motion planning teams to create test cases from logs, fix long-tail issues, and ensure these issues do not 
reappear.

The log-based test case creation workflow is not only 
beneficial for motion planning teams. It also allows 
autonomy programs to improve perception and localization 
modules. The following section lays out the steps required 
to create test cases from logs and the benefits that 
these test cases provide to autonomous system module 
development.
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The previous section of this handbook discussed a 
number of workflows involving logs, including diagnosing 
issues from testing, curating datasets to train ML models, 
improving perception and prediction performance, and 
validating a supplier module. This section dives deeper into 
the log-based test case creation workflow, which helps 
autonomy programs improve perception, localization, and 
motion planning modules.

The log-based test case creation workflow helps solve 
long-tail issues found during real-world testing. This 
workflow involves the following steps: 
1.	 Create a test case to reproduce the issue.
2.	 Resolve the issue.
3.	 Add the test case to a regression suite to ensure the 

issue does not reappear.

Optionally, autonomy programs can fuzz the created 
test case to stress test their autonomy software and find 
adjacent scenarios that may cause failures.

A. Reproducing an issue: Test case 
creation
Creating a test case from a log should be quick—ideally one 
or two clicks. Alongside the test case, teams should also 
generate pass/fail rules that determine the test’s outcome. 
Once they have created a test case, teams should run it 
on their current autonomy stack to reproduce the long-tail 
issue.

There are two ways to create test cases from a log: 
Scenario extraction and log re-simulation. Scenario 
extraction creates a synthetic test with actor behaviors 
sampled from the perception outputs in the log. Log re-
simulation replays the original logged data to the autonomy 
stack without any synthetic signals. Both these types 
of test case creation have strengths and weaknesses. 
Behavior extraction is typically portable between vehicle 
programs (e.g., an L2 and an L4 autonomy program within 

IV. Creating Test 
Cases From a Log

the same organization) and is robust to stack changes. Log 
re-simulation has higher fidelity and is able to losslessly 
recreate the exact timing and content of signals sent to the 
autonomy stack. The following sections describe scenario 
extraction and log re-simulation in more detail.

Scenario extraction
When extracting a scenario from a log, autonomy programs 
create a synthetic test case with actor behaviors sampled 
from the existing log’s perception outputs. To generate 
the actor behavior, teams sample actor detections from 
the perception system and apply a realistic behavior to 
achieve the desired motion. They then run the resulting 
synthetic test case in a target simulator to reproduce the 
long-tail issue. Scenario extraction usually takes place in 
the form of a script or tool that selects a portion of the log 
for extraction and then outputs a file that describes the 
test case.

Test cases that are created using scenario extraction 
can contain anything from actor poses and behaviors to 
traffic control device states and even the entire synthetic 
environment including the base map and buildings. 
Autonomy programs usually leverage scenario extraction at 
the object level: They extract actor poses, actor behavior, 
and traffic control devices from the log but generate the 
underlying map and environment separately.

The strengths of scenario creation include portability and 
robustness to stack changes. The created test cases 
can also be stack-agnostic. Thanks to these strengths, 
autonomy programs can create test cases from logs that 
are many years old and run them on their current autonomy 
stack. Scenario extraction also makes it easy to share 
interesting situations among different vehicle programs.

The weaknesses of scenario extraction include fidelity 
and perception dependence. When extracting a synthetic 
scenario from a real-world log, the log’s message 
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content, timing, and latency information are lost. Many 
safety-critical issues arise from complex, time-sensitive 
interactions between different modules in the autonomy 
stack. These issues are often impossible to reproduce 
using scenario extraction. Scenario extraction is unable to 
preserve noise in logged signals. For example, if a camera 
sensor and an object detection module provide data on a 
delay, the downstream fusion system may be late to detect 
an obstacle. This exact timing would be lost in scenario 
extraction but reproduced correctly in log re-simulation.

To successfully extract synthetic actors or object 
behaviors, the perception stack needs to output high-
quality detections. If the logged perception stack fails to 
populate object classifications (e.g., pedestrian, car, truck, 
bicyclist) or the shape of the detections is incorrect, then 
the created test case will have all of these deficiencies as 
well.

Log re-simulation
The conceptually simplest way to reproduce an issue from 
a log is to run the autonomy stack against the previously 
recorded log. This method is called log replay. Log replay and 
log re-simulation both run the original messages or sensor 
data from the log against the current autonomy stack. 
However, log re-simulation adds a simulator into the loop 
(Figure 16). This simulator controls timing and dynamics. 

The addition of the simulator thus achieves lossless fidelity 
and determinism (i.e., the guarantee that, given the same 
inputs, a simulation will always produce the same result, 
no matter how often teams run it). This provides autonomy 
programs a greater chance to successfully resolve the 
long-tail issue. Because log re-simulation provides a higher 
degree of determinism than log replay, it is well suited for 
test case creation.

Autonomy programs can execute log re-simulation in two 
specific modes: Closed-loop re-simulation and open-loop 
re-simulation. Closed-loop re-simulation is most useful for 
disengagement analysis and motion planning development 
(Figure 17). It helps answer the question “What would have 
happened if the system continued without intervention”? 
Closed loop re-simulation involves a vehicle dynamics 
model interacting with the controller, and it can become 
inaccurate if the behavior of the re-simulated autonomous 
system diverges too much from the behavior in the original 
log. Teams should be careful to keep a re-simulation test 
accurate when the loop is closed.
 
Open-loop re-simulation does not involve a vehicle 
dynamics model, so the position of the autonomous system 
in the re-simulation is identical to the position in the original 
log. Instead of testing the motion planning module, open-
loop re-simulation helps test perception and localization 

Figure 16: Perception stack detections with pinned front camera detections.
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modules (Figure 18). For example, testing the perception 
system in open-loop re-simulation involves playing sensor 
data from a log into the perception software, and then 
grading the output via a scoring mechanism.

Systems engineers, triage teams, and motion planning 
engineers typically rely on closed-loop re-simulations, 

as they must assess the safety of the vehicle’s motion. 
Perception, prediction, and localization teams typically rely 
on open-loop re-simulation, as those module outputs can 
be graded without observing a change in vehicle position. 
For example, a localization system can be graded based on 
observing the outputs of the localization module, without 
involving a downstream system such as the planning 

Figure 18: Open-loop re-simulation helps test perception and localization modules.

Figure 17: Closed-loop re-simulation helps test the motion planning stack. A coordinate transformation ensures the motion planning stack receives actor 
positions that accurately relate to the autonomous system’s position in the closed loop re-simulation.
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module. Teams should choose the type of re-simulation 
that is right for them depending on the type of test case 
they want to create from a log.

The strengths of log re-simulation lie in its determinism and 
fidelity. However, it is less flexible than scenario extraction. 
Log re-simulation is inherently tied to the original log. If a 
new version of the autonomy program’s software renders 
data in the log invalid, then the re-simulation can become 
invalid as well. There are a few techniques to keep older log 
data relevant. The Keeping existing log data usable section 
discusses these techniques in more detail. However, 
every log eventually becomes too old to be useful in re-
simulation. Once this happens, autonomy programs should 
either use scenario extraction or deprecate the test case 
entirely.

Choosing between scenario extraction and log 
re-simulation
Log re-simulation is an extremely powerful asset to the 
autonomy programs that decide to invest in this method. 
Later-stage autonomy programs typically create the 
majority of their simulated miles from logs using re-
simulation, thanks to the advantages that log re-simulation 
brings compared to scenario extraction.

That being said, the correct tool to create test cases 

from scenarios is whatever helps an autonomy program 
reproduce a long-tail issue fastest. Scenario extraction 
usually suffices for simple test cases. Log re-simulation 
may be more affordable than scenario extraction for 
perception or object detection issues. When reproducing 
long-tail issues caused by noise, latency, or hardware, re-
simulation is the only available choice.

B. Resolving the issue
Once autonomy programs have reproduced a long-tail issue 
by creating a test case and receiving a failing result, they 
can now resolve the issue locally by using real data from 
the log to improve their autonomy stack. The log-based 
test case creation workflow makes this possible (Figure 
19). The team should iteratively modify the autonomy 
stack and re-run the created test case. This iteration loop 
should be as quick as possible. Once the test passes, the 
stack changes are considered a true fix. It is important to 
note that a passing result for the created test case does 
not reduce the need for other software testing such as 
integration and unit tests.

C. Ensuring the issue does 
not reappear: Regression and 
progression tests
Successful autonomy programs ensure that their 
autonomous system does not fail twice in the same way. 

Figure 19: Log-based test case creation lets teams use real data to improve their autonomy stack.
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After reproducing and resolving a long-tail issue locally, 
teams should add the created test case to a regression 
test suite that regularly executes comprehensive tests in 
CI. If a long-tail issue appears unsolvable due to sensor or 
compute deficiencies, programs can add it to a progression 
test suite that evaluates the stack’s progress toward 
aspirational goals. Programs should also create dashboards 
that monitor the overall health of their autonomy stack 
and give all team members a high-level overview of stack 
performance over time.

D. Advanced re-simulation: Fuzzing
In addition to effectively reproducing issues encountered 
during tests, re-simulation enables teams to create 
variations of the same test case to stress-test the 
autonomous system in simulation. Autonomy programs 
can use a technique called fuzzing to achieve this. For 
example, fuzzing allows teams to make a cut-in scenario 
more aggressive by changing the distance between the 
autonomous system and the vehicle that is cutting in front 
of it. It also allows programs to make an unprotected left-
turn scenario more difficult by adding more traffic to it. 
Autonomy programs in the later stages of development 
typically set up rules to automatically fuzz re-simulation 
test cases with the goal of exposing situations that cause 
the stack to fail.

Resolving and uncovering issues
Re-simulation fuzzing solves two problems. First, when 
resolving a long-tail issue, it gives individual engineers 

the confidence that they have not accidentally overfit a 
stack change to an individual test case. Second, it helps 
validation teams expose unknown issues that the team 
could otherwise only catch with more unstructured testing.

With the help of fuzzing, every mile of real-world testing 
thus turns into tens or hundreds of miles of valuable re-
simulation tests. Slight changes in multiple variables such 
as actor behavior, traffic signal timing, or object detection 
accuracy can create large variations in a scenario (Figure 
20), which may cause failures that are important for 
validation teams to learn from.

In a 2017 article entitled How simulation turns one flashing 
yellow light into thousands of hours of experience, Waymo 
explains how it fuzzed a re-simulation to teach its vehicles 
how to behave with respect to flashing yellow traffic 
signals.

Object-level and sensor-level fuzzing
Autonomy programs that do not yet use fuzzing on their 
existing re-simulation tests should build object-level 
fuzzing capabilities to implement fuzzing efficiently. 
Object-level fuzzing capabilities allow teams to manipulate 
traffic signals, actor classifications, actor behavior, and 
road geometry. These capabilities typically provide the 
most immediate value to autonomy programs that are just 
starting to use this technique. 

Figure 20: Slight changes in multiple variables can create large variations in a scenario.

https://blog.waymo.com/2019/08/how-simulation-turns-one-flashing.html
https://blog.waymo.com/2019/08/how-simulation-turns-one-flashing.html
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In contrast to object-level fuzzing, some autonomy 
programs prefer using sensor-level fuzzing. Sensor-level 
fuzzing includes repainting camera images, injecting 
new object detection or removing original detections in 
point clouds, or otherwise synthetically modifying sensor 
data. This method is significantly more difficult to carry 
out compared to object-level fuzzing. It also widens 
the simulation-to-real gap (i.e., a degradation in object 
detection performance due to a difference between 
synthetic data and the target domain in the real world) 
more dramatically than object-level fuzzing does. For 
these two reasons, autonomy programs should usually opt 
for object-level fuzzing.

This section discussed a workflow for creating test cases 
from logs, choosing the right type of test case, picking the 
correct re-simulation setup, and fuzzing test cases to find 
new failure modes. The following section discusses how to 
store log data, generate artifacts, and control costs for an 
autonomy program’s log storage life cycle.



34Applied Intuition — Powering Autonomy With Log Data | V. Log Storage and Archival


Once autonomy programs have collected, processed, and 
explored a log file, they should store it in a data center 
long-term. As their data pipeline processes logs, teams 
end up duplicating the data and transforming log files into 
different formats. Autonomy programs should generally 
save all of these formats for as long as possible. However, 
as their fleet grows in size, the amount of data that teams 
collect increases, and long-term log storage costs tend to 
rise as a result.

Different teams consume log data in different ways. While 
one team may require raw time-series data, another one 
may watch video recordings. A third team may need 
access to raw sensor data such as camera images or lidar 
point clouds. In order to efficiently support a diverse set of 
use cases, an autonomy program should store its log data 
in specialized formats.

To reduce costs, autonomy programs should carefully 
choose the architecture of their storage system. They 
should apply different storage policies to different classes 
of log data and measure log storage costs directly against 
the cost of collecting new data.

The following sections discuss common storage formats 
and cost-effective storage architectures in more detail.

A. Storage types and container 
formats
During real-world testing, vehicles collect two high-level 
classes of data: Raw sensor data and derived structured 
data. Autonomy programs should separate these two 
types of data to make processing, storage, and querying 
more cost-effective. Raw sensor data should be stored in 
visualization formats that browsers or visualization tools 
can read. Structured data should be stored in formats that 
are queryable by large query engines. 

V. Log Storage and 
Archival

Visualization formats
Engineering and operations teams who investigate issues 
from real-world testing and explore events of interest 
need to visualize raw sensor data. For example, the 
most common visualization is a view of the autonomous 
system’s camera data alongside its position and state. 
Autonomy programs should transform raw sensor data into 
a visualization format for storage because it provides the 
following benefits:
•	 Reduces storage costs
•	 Lowers latency to visualize data
•	 Increases playback performance

Examples of common transformations include:
•	 Transforming raw camera data from images into a 

video format; this can reduce size on disk by 90%
•	 Transforming raw lidar data from a byte-packed form 

into a general lidar point cloud format
•	 Transforming raw radar data into a visualization 

message such as radar_msgs

To decide on the correct visualization format, autonomy 
programs should primarily consider their disk size and the 
readability by other tools in their stack.

Video conversion
The conversion of raw camera frames into a video format is 
one of the most common transformations in a data pipeline. 
However, it can introduce timing artifacts, which, in turn, can 
cause data integrity problems. Real cameras occasionally 
drop or fail to record frames.  When converting raw 
camera frames into a video format, teams should carefully 
synchronize the individual frames with the remainder of 
the messages in their system. Otherwise, missed frames 
will cause the video to be displayed alongside incorrectly 
synchronized graphs or time series data.

https://github.com/ros-perception/radar_msgs
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Query formats
Structured data originates from the communication 
between an autonomous system’s individual software 
modules. Structured data usually consists of groups of 
primitive types that are sent across a robotics middleware 
or CAN system. These primitive types include booleans, 
integers, floats, enums, and strings, grouped into lists or 
sub-structures. 

Structured data is essential to scenario search, V&V, 
measurement of key performance indicators (KPIs), 
and algorithm development. Teams often need to query 
structured data (Figure 21) across long periods of time 
(e.g., weeks, months, or years) and across entire fleets 
of vehicles. They also need to be able to access specific 
subsets of structured data. For example, a query might 
state: “Find all instances where the autonomous system 
was at a red light, turning left, and had zero velocity for over 
one minute.” To service this query, an autonomy program 
needs to have readily available structured data about 
the system’s velocity, the state of traffic control devices, 
and the system’s intention to turn left. For efficient query 
performance on petabytes of log data, the query engine 
should scan only the data required to filter.

Ideally, a structured data query format should support 
a flexible schema, accept nested data, be optimized 
for reading, and support popular query engines and file 
formats such as Parquet, ORC, or Avro. File formats like 
these allow teams to read only the data that is relevant to 
the query at hand.

Autonomy programs should transform a log file into a query 
data format as soon as the original log arrives in a production 
log management system. After the log is transformed, 
teams can schedule various downstream tasks based on 
it. For example, teams might want to schedule a task to 
create snippets of original log files that include sensor data 
around certain events of interest.

B. Data retention and archival

Length of storage
Autonomy programs should retain original log files for 
many years. This is a high-cost requirement, but teams can 
offset these costs by leveraging strategies to reduce data 
storage costs. 

The general advantage of keeping original log files for 
as long as possible is the positive effect this has on the 

Figure 21: A web-based frontend showing structured log data.

https://parquet.apache.org/
https://orc.apache.org/
https://avro.apache.org/docs/1.2.0/
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velocity of engineering and operations teams. Those 
teams benefit greatly if they are able to access the largest 
possible unique set of events their fleet has experienced 
so far.

Of course, there is a financial tradeoff between keeping 
original log files stored for longer periods of time and 
collecting new logs instead. To decide when to archive a 
log file, autonomy programs should thus consider the cost 
of storage, how often they tend to re-access the log, and 
how much it would cost to collect a new log instead. The 
cost of storing a 1-TB log for one year is around $50 at the 
time of writing. Reproducing the exact scenario of interest 
in real-world testing, however, is much more expensive 
in terms of labor cost and operational overhead. It is also 
often technically infeasible in urban environments, where 
the general public interacts with the autonomous system. 
Additionally, teams might find it difficult to know a priori 
whether they will need a specific segment of a log file in 
the future. 

Given the difficulty of reproduction, the low cost of 
storage relative to the cost of collecting new data, and 
the uncertainty of needing to access the file again, long-
term retention is the correct choice for most autonomy 
programs. Luckily, storage costs have been decreasing 
continuously over time as hard drive storage has become 
cheaper and more powerful. Additionally, autonomy 
programs with fleets of 10-100 test vehicles typically start 
automating and minimizing their data collection efforts to 
only collect relevant logs. This practice further increases 
the chances that long-term storage is the right approach 
for every collected log.

Data retention policies
Once autonomy programs have decided for how long they 
wish to keep each log, they should leverage data retention 
policies to manage storage costs. By aggressively moving 
data into cheaper storage tiers, teams can reduce storage 
costs by about 40% compared to an unconfigured public 
cloud storage solution (Figure 22).

When storing data in a public cloud, autonomy programs 
should store original log files in a “cold” storage tier. Cold 
storage tiers provide a cheaper per-month cost, but teams 
pay an additional fee if they wish to access the data. 
Alternatively to an additional fee, data access might be 
slower (up to 12 hours, depending on the type of storage 
medium). In a cold storage tier, one TB of data costs 
between $50-$100 per month at the time of writing. Teams 
should place original log files into this tier as soon as the 
files have finished processing.

Data that the team queries or visualizes should be kept in 
“hot” storage tiers. Hot storage tiers provide cheap and 
fast access to the stored data at the cost of higher per-
month storage bills. For example, teams often retrieve and 
view GPS data, perception outputs, and converted video 
files live on a visualizer. Since a human makes the request 
to visualize this data, waiting multiple minutes for the data 
to be returned would be untenable. A hot storage tier 
satisfies these requirements.

The table below contains a sample data retention policy 
with costs that are typical for public cloud storage at 
the time of writing in the United States1 (Figure 22). The 
outlined pricing assumes 500 TB of original logs with 25% 
camera images, 25% lidar points, and 50% structured data. 
The “Monthly tiered cost” column shows potential prices 
from different storage types or “tiers.”

 1 Based on pricing from AWS and Azure as of October 2022

https://aws.amazon.com/s3/pricing/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
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Figure 22: Typical costs of cloud storage in the United States.

Data format Size (in TB) Monthly unconfigured cost Monthly tiered cost

Original logs 500 $10,500 $9,000 $2,000

$0.004 per gigabyte 
(GB) via Glacier tier

$495

$0.00099 per GB via 
Archive tier

Queryable format 250 $5,250 $4,500 $3,125 

$0.0125 per GB via 
Infrequent Access 
(IA) tier

$4,500

$0.018 per GB via 
Hot tier

Visualization 
formats

100 $2,100 $1,800 $1,250

$0.0125 per GB via 
IA tier

$1,800

$0.018 per GB via 
Hot tier

Total 850 $17,850 $15,300 $6,375 $6,795
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We hope that this handbook provides autonomy programs 
with useful concepts, benefits, and industry practices of 
an expansive log data management process. From log 
collection and exploration to triage and improvements 
to various modules in an autonomy stack, log data is 
an essential building block for successful autonomy 
development. This handbook also aims to provide 
guidance on how autonomy programs can execute log data 
management effectively, utilize their resources efficiently, 
and reduce costs.

While this handbook lays out many important concepts 
and tactical steps, it may not address all of our readers’ 
questions. The Applied team is happy to discuss these 
questions and support autonomy programs of all sizes 
and industries with their growing data collection and 
management needs. Learn more on our website and 
contact us to speak with our team.

Conclusion

https://www.appliedintuition.com/use-cases/log-visualization-and-triage
https://www.appliedintuition.com/contact
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Glossary
CAN: Controller area network
CD: Continuous deployment
CI: Continuous integration
CPU: Central processing unit
ECU: Electronic control unit
EDR: Event data recorder
ETL: Extract, transform, load
FN: False negative
FP: False positive
GB: Gigabyte
GDPR: General Data Protection Regulation
GPS: Global Positioning System
GT: Ground truth
HD: High-definition
IA: Infrequent Access
IMU: Inertial measurement unit
IS: ID switches
KPI: Key performance indicator
L2: SAE Level 2
L3: SAE Level 3
L4: SAE Level 4
mAP: Mean average precision
ML: Machine learning
MOTA: Multiple object tracking accuracy
MOTP: Multiple object tracking precision
NTP: Network Time Protocol 
ODD: Operational design domain
Protobuf: Protocol Buffers
PTP: Precision Time Protocol
RAM: Random-access memory
ROS: Robot Operating System
SAE: Society of Automotive Engineers
TB: Terabyte
TP: True positive
UI: User interface
V&V: Verification and validation
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