edexcel

Mark Scheme (Results)

November 2014

Pearson Edexcel Functional Skills Mathematics Level 2 (FSM02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2014
Publications Code FC040328
All the material in this publication is copyright
© Pearson Education Ltd 2014

Guidance for Marking Functional Mathematics Papers

General

- All candidates must receive the same treatment. You must mark the first candidate in exactly the same way as you mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- All the marks on the mark scheme are designed to be awarded. You should always award full marks if deserved, i.e. if the answer matches the mark scheme. You should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

Applying the Mark Scheme

- The mark scheme has a column for Process and a column for Evidence. In most questions the majority of marks are awarded for the process the candidate uses to reach an answer. The evidence column shows the most likely examples you will see: if the candidate gives different evidence for the process, you should award the mark(s)
- Finding 'the answer': in written papers, the demand (question) box should always be checked as candidates often write their 'final' answer or decision there. Some questions require the candidate to give a clear statement of the answer or make a decision, in addition to working. These are always clear in the mark scheme.
- If working is crossed out and still legible, then it should be marked, as long as it has not been replaced by alternative work
- If there is a choice of methods shown, then marks should be awarded for the 'best' answer.
- A suspected misread may still gain process marks.
- It may be appropriate to ignore subsequent work (isw) when the candidate's additional work does not change the meaning of their answer. You are less likely to see instances of this in functional mathematics.
- You will often see correct working followed by an incorrect decision, showing that the candidate can calculate but does not understand the demand of the functional question. The mark scheme will make clear how to mark these questions.
- Transcription errors occur when the candidate presents a correct answer in working, and writes it incorrectly on the answer line; mark the better answer.
- Follow through marks must only be awarded when explicitly allowed in the mark scheme. Where the process uses the candidate's answer from a previous step, this is clearly shown. Speech marks are used to show that previously incorrect numerical work is being followed through, for example '240' means their 240.
- Marks can usually be awarded where units are not shown. Where units, including money, are required this will be stated explicitly. For example, $5(\mathrm{~m})$ or $(£) 256.4$ indicate that the units do not have to be stated for the mark to be awarded.
- Correct money notation indicates that the answer, in money, must have correct notation to gain the mark. This means that money should be shown as $£$ or p, with the decimal point correct and 2 decimal places if appropriate.
e.g. if the question working led to $£ 12 \div 5$,

```
Mark as correct: £2.40 240p £2.40p
Mark as incorrect: £2.4 2.40p £240p 2.4 2.40 240
```

- Candidates may present their answers or working in many equivalent ways. This is denoted o.e. in the mark scheme. Repeated addition for multiplication and repeated subtraction for division are common alternative approaches. The mark scheme will specify the minimum required to award these marks.
- A range of answers is often allowed
- $[12.5,105]$ is the inclusive closed interval
- $(12.5,105)$ is the exclusive open interval
- Parts of questions: because most FS questions are unstructured and open, you should be prepared to award marks for answers seen in later parts of a question, even if not explicit in the expected part.
- Discuss any queries with your Team Leader.
- Graphs

The mark schemes for most graph questions have this structure:

| Process
 Appropriate graph or chart
 (e.g. bar, stick, line graph) | 1 or | Evidence
 1 of |
| :--- | :---: | :--- | :--- |
| linear scale(s), labels, plotting (2 mm tolerance) | | |
| 2 or | | |
| linear scale(s), labels, plotting (2 mm tolerance) | | |

The mark scheme will explain what is appropriate for the data being plotted.
A linear scale must be linear in the range where data is plotted, whether or not it is broken, whether or not 0 is shown, whether or not the scale is shown as broken. Thus a graph that is 'fit for purpose' in that the data is displayed clearly and values can be read, will gain credit.
The minimum requirements for labels will be given, but you should give credit if a title is given which makes the label obvious.
Plotting must be correct for the candidate's scale. Award the mark for plotting if you can read the values clearly, even if the scale itself is not linear.

The mark schemes for Data Collection Sheets refer to input opportunities and to efficient input opportunities. When a candidate gives an input opportunity, it is likely to be an empty cell in a table, it may be an instruction to 'circle your choice', or it may require writing in the data in words. These become efficient, for example, if there is a well-structured 2-way table, or the input is a tick or a tally rather than a written list.

Section A: General maintenance

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q1	R1	Begin to work with paint or coverage	1or	A	$\begin{aligned} & 450 \div 15(=30) \text { (litres) OR } \\ & 7 \times 5(=35) \text { (litres) OR } \\ & 450 \div 7(=64.2 \ldots) \mathbf{O R} \\ & 5 \times 15(=75) \end{aligned}$
	A4	Full process to find figures to compare	2	AB	$\begin{aligned} & \prime 35 \prime \times 15(=525)\left(\mathrm{m}^{2}\right) \mathbf{O R} \\ & 75 \times 7(=525)\left(\mathrm{m}^{2}\right) \mathbf{O R} \\ & 450 \div 15(=30)(\text { litres }) \text { and } 7 \times 5(=35) \text { (litres) } \mathbf{O R} \\ & \prime 30^{\prime} \div 5(=6)(\text { tins }) \mathbf{O R} \\ & 450 \div 7(=64.2)\left(\mathrm{m}^{2}\right) \text { and } 5 \times 15(=75)\left(\mathrm{m}^{2}\right) \end{aligned}$
	16	Correct conclusion with accurate figures	1	C	YES and 525(m^{2}) OR YES and 30 and 35(litres) OR YES and 6 (tins) or 1 left over oe OR YES and $64.2\left(\mathrm{~m}^{2}\right)$ and $75\left(\mathrm{~m}^{2}\right)$
Total marks for question			3		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q2a	R2	Process that starts to substitute at least one term into the equation	1or	D	$\begin{aligned} & 3.14 \times 2.5(=7.85) \text { OR } \\ & 2.5^{2}(=6.25) \text { OR } \\ & 3.14 \times 1.2(=3.768) \text { OR } \\ & 2.5 \times 1.2(=3) \end{aligned}$
	A4	Complete substitution process	2 or	DE	$3.14 \times 2.5^{2} \times 1.2(=23.55)$
	I6	Correct answer from correct working. Correct units	3	DEF	$\begin{aligned} & 23.55 \mathrm{~m}^{3} \\ & \text { Correct units } \end{aligned}$
Q2b	A4	Begins to process perimeter by finding an unspecified length or Uses a suitable conversion	1 or	G	$4+6(=10)$ or $8-5(=3)$ or 1800 mm converted to 1.8 m May be seen in subsequent working
	R2	Finds correct perimeter	2	GH	$8+4+3+6+5+10=36$
	I6	Starts process to find number of edgings or process to compare prices	1 or	J	e.g. ' $36^{\prime} \div{ }^{\prime} 1.8^{\prime}(=20)$ OR ${ }^{\prime} 36^{\prime} \div 2(=18) \mathbf{O R}$ Complete process to find number of edgings from counting OR $6.99 \div{ }^{\prime} 1.8^{\prime}(=3.88 \ldots)$ OR $9.99 \div \div^{\prime} 2^{\prime}(=4.995)$ oe Their 36 must come from an addition of lengths, not from a multiplication of lengths (an area process).
	R3	Complete process to find number of edgings or process to compare prices	2	JK	e.g. ' $36^{\prime} \div{ }^{\prime} 1.8^{\prime}(=20)$ and ' $36^{\prime} \div 2(=18)$ OR Complete process to find number of edgings from counting OR $6.99 \div{ }^{\prime} 1.8^{\prime}(=3.88 \ldots)$ and $9.99 \div^{\prime} 2^{\prime}(=4.995)$ oe Allow addition of at least 4 appropriate lengths for ' 36 ' for marks J and K only
	A4	Complete process to find cost of edgings	1 or	JKL	$\begin{aligned} & { }^{2} 20^{\prime} \times 6.99(=139.8(0)) \text { and }{ }^{\prime} 18^{\prime} \times 9.99(=179.82) \text { OR } \\ & ` 36^{\prime} \times{ }^{\prime} 3.88^{\prime}(=[139.6(0), 140.4(0)]) \end{aligned}$
I7	Correct costs and correct decision	2	JKLM	Hardings AND ($£$)[139.6(0), 140.4(0)] and ($£$)[179.82, $180]$ OR Hardings AND $(£)[139.6(0), 140.4(0)]$ and ($£) 4.99$ or $(£) 5$	
:---	:---	:---	:---	:---	:---

Section B: Holiday to Trinidad

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q4	R3	Process to use months or process to use percentage	1 or	A	e.g. $9 \times 1431(=12879)$ OR $0.23 \times 1431(=329.13)$ OR $2500 \div 9(=[277.77,277.78])$ Any build up process must be complete and correct
	A4	Process to use months and process to use percentage	2 or	AB	e.g. $9 \times 1431 \times 0.23(=2962.17)$ OR $2500 \div 9(=[277.77,277.78])$ and $1431 \times 0.23(=329.13)$
	I6	Correct decision with correct figures	3	ABC	Yes and ($£) 2962.17$ OR Yes and ($£) 277.78$ or ($£) 329.13$
	A5	Shows a suitable check	1	D	Check using reverse calculation, alternate method or estimation

\begin{tabular}{|c|c|c|c|c|c|}
\hline Question \& Skills Standard \& Process \& Mark \& Mark Grid \& Evidence

\hline \multirow[t]{4}{*}{Q5a} \& R3 \& Process to find discounted price or convert TT\$ to $£$ \& 1 or \& E \& $$
\begin{aligned}
& 1200 \times 0.8(=960) \text { or } 1200 \div 5(=240) \text { OR } \\
& 1200 \div 9.3(=129.03 \ldots)
\end{aligned}
$$

\hline \& 16 \& Finds discounted price or process to find discount \& 2 or \& EF \& $$
\begin{aligned}
& \text { 960(TT\$) OR } \\
& \text { ‘129.03...' } \times 0.8(=103.225 \ldots) \text { or } ‘ 129.03 \ldots{ }^{\prime} \div 5(=25.8 \ldots)
\end{aligned}
$$

\hline \& A4 \& Process to find suitable figures to compare \& 3 or \& EFG \& $$
\begin{aligned}
& 89.99 \times 9.3(=[836,837]) \quad \text { OR } \\
& ` 960 \div 9.3([103,104])
\end{aligned}
$$

\hline \& 16 \& Correct decision from accurate figures \& 4 \& EFGH \& | (TT\$)[836,837] and 960 and e.g. buy (the perfume) in UK OR |
| :--- |
| (£) $[103,104]$ and e.g. buy (the perfume) in UK oe |

\hline \multirow[t]{3}{*}{Q5b} \& R1 \& Process of summation for at least 4 visit times or travel times, or counts back at least 4 times \& 1 or \& J \& | > e.g. $30(\mathrm{~m})+15(\mathrm{~m})+60(\mathrm{~m})+45(\mathrm{~m})+2(\mathrm{~h})+1(\mathrm{~h})+4(\mathrm{~h})(=$ |
| :--- |
| OR $1800,1730,1715,1615 \ldots \text { oe }$ |

\hline \& A4 \& Complete process to find departure time \& 2 or \& JK \& ```
e.g.
6 pm - '9h 30 m' (= 0830) oe OR
9.5(h)

``` \\
\hline & 16 & Finds correct time & 3 & JKL & 0830 oe \\
\hline & & Total marks for question & \multicolumn{3}{|l|}{7} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Question & Skills Standard & Process & Mark & Mark Grid & Evidence \\
\hline \multirow[t]{5}{*}{Q6} & R1 & Process for dilution or process for papaya & 1 or & M & \begin{tabular}{l}
\(200 \times 2(=400)\) OR \\
1 papaya makes \(800(\mathrm{ml})\) (juice) OR \(8 \div 1 / 4(=32)\) (batches can be made)
\end{tabular} \\
\hline & A4 & Process for dilution and process for papaya & 2 & MN & \(200 \times 2(=400)\) and 1 papaya makes \(1600(\mathrm{ml})\) (punch) OR
\[
200 \times 2(=400) \text { and } 8 \div 1 / 4(=32)
\] \\
\hline & R2 & Process to find quantity of diluted juice required or available & 1 & P & \[
\begin{aligned}
& 40 \times 500(=20000)(\mathrm{ml}) \mathbf{O R} \\
& \\
& \\
& 32^{\prime} \times 200 \times 2(=12800)
\end{aligned}
\] \\
\hline & R1 & Process to find number of papayas required or available diluted juice per person. & 1 & Q & \[
\begin{aligned}
& \text { ' } 200000^{\prime} \div 1600^{\prime}(=12.5) \mathbf{O R} \\
& 12800 \div 40(=320) \mathbf{O R} \\
& { }^{\prime} 200000^{\prime} \div 400^{\prime}(=50) \text { (batches) needed OR } \\
& 12800 \div 500(=25.6) \text { (people) } \\
& \hline
\end{aligned}
\] \\
\hline & I6 & Makes correct decision & 2 & R & \begin{tabular}{l}
No and 12.5 or 13(papaya) OR \\
No and 12800 and 20000 (ml) OR \\
No and \(12800 \div 40(=320)\) OR \\
No and 32 (batches) and 50 (batches) OR No and 25.6 or 25 or 26 (people)
\end{tabular} \\
\hline \multicolumn{3}{|r|}{Total marks for question} & \multicolumn{3}{|l|}{5} \\
\hline
\end{tabular}

\section*{Section C: Farming}

\begin{tabular}{|l|l|l|l|l|l|} 
& I7 & \begin{tabular}{l} 
with 3 dimensions or \\
process to find number of \\
boxes by considering \\
volumes \\
Correct figure
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|c|c|l|}
\hline Question & \begin{tabular}{c} 
Skills \\
Standard
\end{tabular} & Process & Mark & \begin{tabular}{c} 
Mark \\
Grid
\end{tabular} & \multicolumn{1}{c|}{ Evidence } \\
\hline Q7c & A5 & Starts to plan route & 1 or & H & \begin{tabular}{l} 
Shows a route or a correct distance: \\
E.g. BHLNJ or reverse OR 59 (miles) OR \\
JNLHB or reverse OR 59( miles) OR
\end{tabular} \\
& & & & & \begin{tabular}{l} 
BJNLH or reverse OR 61 (miles) OR \\
HBJNL or reverse OR 63 (miles) OR \\
HBLNJ or reverse OR 63 (miles) OR
\end{tabular} \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|c|c|l|}
\hline Question & \begin{tabular}{c} 
Skills \\
Standard
\end{tabular} & \multicolumn{1}{|c|}{ Process } & Mark & \begin{tabular}{c} 
Mark \\
Grid
\end{tabular} & \multicolumn{1}{c|}{ Evidence } \\
\hline Q8a & R3 & \begin{tabular}{l} 
Complete process for \\
median
\end{tabular} & 1 & K & \begin{tabular}{l}
\(8,9,9.5,15,16,17,17.5,18\) and \((15+16) \div\) \\
\(2(=15.5)\)
\end{tabular} \\
& R2 & Complete process for mean & 1 & L & \begin{tabular}{l}
\(8+9.5+16+17.5+18+17+15+9(=110)\) and \\
\(110 \div 8(=13.75)\)
\end{tabular} \\
& A4 & \begin{tabular}{l} 
Correct figure for one \\
average \\
Decision and correct figures \\
for both averages
\end{tabular} & 2 & MN & M \\
& I7 & 13.75 OR 15.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|c|c|l|}
\hline Q8b & R1 & \begin{tabular}{l} 
Begins to design record \\
sheet
\end{tabular} & 1 or & P & \begin{tabular}{l} 
Headings for at least 2 of: 4 cows, two milking per day, \\
5 days, with input opportunities or record sheet for 1 \\
cow
\end{tabular} \\
I6 & \begin{tabular}{l} 
Improves record sheet
\end{tabular} & 2 or & PQ & \begin{tabular}{l} 
Headings for all of: 4 cows, two milking per day, 5 days, \\
with input opportunities OR complete record sheet for 1 \\
cow OR \\
complete record sheet for 1 day \\
Efficient input opportunities across the three features.
\end{tabular} \\
\hline
\end{tabular}

\section*{Ofqual}


Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL```

