edexcel

Mark Scheme (Results)

February 2014

Pearson Edexcel Functional Skills
Mathematics Level 2 (FSM02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

February 2014
Publications Code FC037812
All the material in this publication is copyright
© Pearson Education Ltd 2014

Guidance for Marking Functional Mathematics Papers

General

- All candidates must receive the same treatment. You must mark the first candidate in exactly the same way as you mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- All the marks on the mark scheme are designed to be awarded. You should always award full marks if deserved, i.e. if the answer matches the mark scheme. You should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

Applying the Mark Scheme

- The mark scheme has a column for Process and a column for Evidence. In most questions the majority of marks are awarded for the process the candidate uses to reach an answer. The evidence column shows the most likely examples you will see:
if the candidate gives different evidence for the process, you should award the mark(s)
- Finding 'the answer': in written papers, the demand (question) box should always be checked as candidates often write their 'final' answer or decision there. Some questions require the candidate to give a clear statement of the answer or make a decision, in addition to working. These are always clear in the mark scheme.
- If working is crossed out and still legible, then it should be marked, as long as it has not been replaced by alternative work.
- If there is a choice of methods shown, then marks should be awarded for the 'best' answer.
- A suspected misread may still gain process marks.
- It may be appropriate to ignore subsequent work (isw) when the candidate's additional work does not change the meaning of their answer. You are less likely to see instances of this in functional mathematics.
- You will often see correct working followed by an incorrect decision, showing that the candidate can calculate but does not understand the demand of the functional question. The mark scheme will make clear how to mark these questions.
- Transcription errors occur when the candidate presents a correct answer in working, and writes it incorrectly on the answer line; mark the better answer.
- Follow through marks must only be awarded when explicitly allowed in the mark scheme. Where the process uses the candidate's answer from a previous step, this is clearly shown. Speech marks are used to show that previously incorrect numerical work is being followed through, for example '240' means their 240.
- Marks can usually be awarded where units are not shown. Where units, including money, are required this will be stated explicitly. For example, $5(\mathrm{~m})$ or $(£) 256.4$ indicate that the units do not have to be stated for the mark to be awarded.
- Correct money notation indicates that the answer, in money, must have correct notation to gain the mark. This means that money should be shown as $£$ or p, with the decimal point correct and 2 decimal places if appropriate.
e.g. if the question working led to $£ 12 \div 5$,

$$
\begin{array}{llllll}
\text { Mark as correct: } £ 2.40 & 240 p & £ 2.40 p \\
\text { Mark as incorrect: } £ 2.4 & 2.40 p & £ 240 p & 2.4 & 2.40 & 240
\end{array}
$$

- Candidates may present their answers or working in many equivalent ways. This is denoted o.e. in the mark scheme. Repeated addition for multiplication and repeated subtraction for division are common alternative approaches. The mark scheme will specify the minimum required to award these marks.
- A range of answers is often allowed:
- [12.5,105] is the inclusive closed interval
- $(12.5,105)$ is the exclusive open interval
- Parts of questions: because most FS questions are unstructured and open, you should be prepared to award marks for answers seen in later parts of a question, even if not explicit in the expected part.
- Discuss any queries with your Team Leader

Graphs

The mark schemes for most graph questions have this structure:

| Process | | Evidence |
| :--- | :--- | :--- | :--- |
| Appropriate graph or chart - | | |
| (e.g. bar, stick, line graph,) | $\mathbf{1}$ | 1 of |
| | or | linear scale(s), labels, plotting (2 mm
 tolerance) |
| | $\mathbf{2}$ | or
 of
 linear scale(s), labels, plotting (2 mm
 tolerance)
 all of
 linear scale(s), labels, plotting (2 mm
 tolerance) |

The mark scheme will explain what is appropriate for the data being plotted.
A linear scale must be linear in the range where data is plotted, whether or not it is broken, whether or not 0 is shown, whether or not the scale is shown as broken. Thus a graph that is 'fit for purpose' in that the data is displayed clearly and values can be read, will gain credit.

The minimum requirements for labels will be given, but you should give credit if a title is given which makes the label obvious.

Plotting must be correct for the candidate's scale. Award the mark for plotting if you can read the values clearly, even if the scale itself is not linear.

The mark schemes for Data Collection Sheets refer to input opportunities and to efficient input opportunities. When a candidate gives an input opportunity, it is likely to be an empty cell in a table, it may be an instruction to 'circle your choice', or it may require writing in the data in words. These become efficient, for example, if there is a well-structured 2way table, or the input is a tick or a tally rather than a written list.

Section A: Student assignment

Question	$\begin{array}{c}\text { Skills } \\ \text { Standard }\end{array}$	Process	Mark	$\begin{array}{c}\text { Mark } \\ \text { Grid }\end{array}$	Evidence
Q1a	R1	$\begin{array}{l}\text { Begins to process suitable graph } \\ \text { or chart } \\ \text { A4 }\end{array}$	1 or	A	One of: linear scale, plotting, labelling
Improves solution					
Fully correct graph or chart	3	ABC	AB	Two of: linear scale, plotting, labelling	
All of: linear scale, plotting, labelling					
(± 2 mm tolerance on plotting)					
Minimum acceptable labelling one axis or key reference to					
Jan to Mar, Apr to Jun, Jul to Sep, Oct to Dec and 2012, 2013					
Other axis or title reference to crime (levels)					

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q1c	R1	Full process for mean	1 or	E	$(514+563+494+505) \div 12(=173)$ OR $514+563+494+505(=2076)$ and $173 \times 12(=2076)$ OR $(514 \div 3(=171.33 .)+.563 \div 3(=187.66 .)+.494 \div 3(=164.66 .)+$. $505 \div 3(=168.33 .)$.$) and ‘[690,694] ’ \div 4(=[172.5,173.5])$ Allow $(514+563+494+505) \div 4(=519)$ for this mark only
	A4	Correct decision with correct figure	2	EF	Yes and 173 calculated OR [172.5, 173.5] and a suitable statement OR Yes and 2076 calculated both ways
	A5	Shows a check of their calculation or part of it	1	G	Eg reverse calculation or alternate method e.g. $173 \times 12=2076$ or allow $519 \times 4=2076$ or uses an estimation method e.g. $3 \times 500+550=2050$
Total marks for question			7		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q2	R2	Process to work with proportion	1 or	H	$105000 \div 1000(=105)$ OR $0.2153 \times 105000(=22606.5)$ OR Digits 226065 seen Accept $0.578 \times 105000(=60690)$ for this mark only
	A4	Process to find number of car crimes	2 or	HJ	'105’ $\times 0.2153(=22.6065)$ OR '22606.5' $\div 1000(=22.6065)$
	I7	Accurate figure	3	HJK	$[22,23]$ (car crimes) and 22.6... seen
Total marks for question					

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q3a	R2	Begins to process percentage or proportion	1 or	L	E.g. $100-80(=20) \mathbf{O R}$ $(2$ in 5$) \times 100(=40$ in 100) $\mathbf{O R}$ $1-2 / 5(=3 / 5) \mathbf{O R}$ 3 in $5 \mathbf{O R}$ 4 in 5 OR $80 \div 100(=0.8)$ Accept calculating for a number of people E.g $0.8 \times 300(=240)$ or $(2$ in 5$) \times 300(=120)$
	A4	Process for figures to compare or writes a correct statement	2 or	LM	E.g. $20 \div 100(=1 / 5)$ OR $100-80(=20)$ and $2 \div 5 \times 100(=40)$ OR (3 in 5$) \times 100(=60$ in 100) OR $80 \div 100(=0.8)$ and $3 \div 5(=0.6)$ OR $40 \%+80 \%=120 \%$ OR Accept comparisons from calculating for a number of people E.g $0.8 \times 300(=240)$ and $(2$ in 5$) \times 300(=120)$ E.g. 4 in 5 think there is at least as much crime as last year
	I6	Finds accurate figures in the same format	3	LMN	1 in 5 OR 20% and 40% oe OR 60\% OR 4 in 5 and 3 in 5 oe $\mathbf{O R}$ $40 \%+80 \%=120 \%$ when it should be 100% Accept comparisons from calculating for a number of people E.g 240 people and 120 people (for population of 300) Note comparisons must be made in the same format

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q3b	R1	Begins to produce data collection sheet	1 or	P	Input opportunities AND headings for at least 2 of : male/female, age under 30 and 30 - 50 and over 50, feel safe/ feel unsafe OR a questionnaire with a missing category
	R2	Improves data collection sheet that is not yet efficient	2 or	PQ	Input opportunities, not all efficient, covering all of male/female, age under 30 and 30 - 50 and over 50, feel safe/feel unsafe One category could be covered by a key OR A questionnaire, or a sheet suitable for only 1 person's input, covering all categories

Section B: Building a games room

Question	Skills Standard	Process	Mark	$\begin{gathered} \text { Mark } \\ \text { Grid } \end{gathered}$	Evidence
Q4	R1	Starts to process costs	1 or	A	$\begin{array}{\|l\|} \hline 12 \times 197(=2364) \text { OR } \\ 12 \times 84.49(=1013.88) \text { OR } \\ 2 \times 12 \times 197(=4728) \text { OR } \\ 5 \times 12 \times 84.49(=5069.4) \text { OR } \\ 2 \times 12 \times(197-84.49)(=2700.24) \text { OR } \\ 3 \times 12 \times 84.49(=3041.64) \end{array}$
	A4	Process for difference in total cost	2 or	AB	$\begin{aligned} & \text { ‘5069.4’ - '4728’ (=341.4) OR } \\ & \text { '3041.64' - '2700.24’ (=341.4) } \end{aligned}$
	I6	Finds difference in cost and uses correct money notation Total marks for question	$\begin{array}{r} 3 \\ 3 \\ \hline \end{array}$	ABC	$£ 341.40$ correct money notation Ignore negative signs

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q5	R1	Considers space for snooker table	1 or	D	Rectangle with 2 of: Length 11 squares Width 8 squares At least 2 squares from media centre OR Rectangle 5.5 squares by 4 squares and at least 1 square from the media centre
	A4	Fully correct snooker table solution	2	DE	Rectangle with all of: Length 11 squares Width 8 squares At least 2 squares from media centre
	R1	Considers area for seating space	1 or	F	Rectangle with area 8, 16, 32 or 64 squares $\mathbf{O R}$ Rectangle with one side 4 or 8 or 16 squares and two squares from the snooker table
	16	Fully correct checked seating space solution	2	FG	Rectangle 2 squares by 16 squares or 4 squares by 8 squares and 2 squares from snooker table
Total marks for question			4		

Question	Skills Standard	Process	Mark	$\begin{gathered} \text { Mark } \\ \text { Grid } \end{gathered}$	Evidence
Q6	R1	Uses \% at John \& Son	1 or	H	$0.2 \times 17.4(=3.48)$ or $1.2 \times 17.4(=20.88)$ oe
	A4	Finds cost at John \& Son	2	HJ	(£)20.88
	R2	Uses fraction at King \& Lye	1 or	K	$\begin{aligned} & 29.94 \div 3(=9.98) \text { or } 29.94 \div 3 \times 2(=19.96) \text { OR } \\ & 30 \div 3 \times 2(=20) \text { and } 20.88 \text { OR } \\ & \text { Allow } 0.33 \ldots . \ldots 29.94(=[9.88,9.98]) \\ & \text { Allow }[0.66,0.67] \times 29.94(=[19.76,20.06] \end{aligned}$
	A4	Finds cost at King \& Lye	2	KL	(£)19.96 OR Cost $<(£) 20$ and (£)20.88
	I7	Makes correct ft decision provided marks H and K are awarded	1	M	Makes correct ft decision provided marks H and K are awarded for the full processes at both suppliers e.g. King \& Lye
		Total marks for question	5		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q7	R2	Process to find area of wall(s) or blocks per wall or blocks in 8 packs	1 or	N	$\begin{aligned} & 9 \times 2.2(=19.8) \text { or } 3 \times 9 \times 2.2(=59.4) \text { or } 10 \times 9 \times 2.2(=198) \mathbf{O R} \\ & 72 \times 8(=576) \end{aligned}$
	A4	Process to find area covered by 8 packs or number of blocks needed or works with both area one wall and blocks in 8 packs	2 or	NP	$\begin{aligned} & ‘ 576 ' \div 10(=57.6) \text { OR } \\ & ‘ 59.4 ’ \times 10(=594) \text { OR } \\ & \text { '198' } \times 3(=594) \text { OR } \\ & 10 \times 9 \times 2.2(=198) \text { and } 72 \times 8(=576) \text { OR } \\ & ' 198 ' \div 72(=2.75) \text { OR } \\ & ' 198 \div 8(=24.75) \end{aligned}$
	A4	Full process to find figures to compare	3 or	NPQ	$\begin{aligned} & ‘ 594 ’ \div 72(=8.25) \text { OR } \\ & ‘ 59.4 \times 10(=594) \text { and } 72 \times 8(=576) \text { OR } \\ & ‘ 198^{\prime} \times 3(=594) \text { and } 72 \times 8(=576) \text { OR } \\ & 3 \times 9 \times 2.2(=59.4) \text { and }{ }^{‘} 576 \prime \div 10(=57.6) \text { OR } \\ & 9 \times 2.2(=19.8) \text { and } ‘ 57.6 \div 3(=19.2) \text { OR } \\ & \left(‘ 57.6^{\prime} \div 3\right) \div 9(=2.13 . .) \text { OR } \\ & \left(‘ 57.6^{\prime} \div 3\right) \div 2.2(=8.7 . .) \end{aligned}$
	I7	Valid conclusion and accurate figures	4	NPQR	E.g. No and 8.2(5) (packs) OR He needs 9 packs and 8.2(5) OR No and 594 (blocks) and 576 (blocks) OR No and $59.4\left(\mathrm{~m}^{2}\right)$ and $57.6\left(\mathrm{~m}^{2}\right)$ OR No and $19.8\left(\mathrm{~m}^{2}\right)$ and $19.2\left(\mathrm{~m}^{2}\right)$ OR No and 2.13... and explicit comparison with 2.2 OR No and 8.7.. and explicit comparison with 9
		Total marks for question	4		

Section C: Dog walking

Question	Skills Standard	Process	Mark	$\begin{gathered} \hline \text { Mark } \\ \text { Grid } \end{gathered}$	Evidence
Q8a	R1	Process to calculate cost per week before discount or amount per day available	1	A	$\begin{aligned} & 5 \times(10+6)(=80) \text { OR } \\ & 70 \div 5(=14) \\ & \text { Allow } 7 \times(10+6) \quad(=112) \end{aligned}$
	R2	Process to find percentage	1 or	B	E.g. $0.15 \times{ }^{\prime} 80^{\prime}(=12) \mathbf{O R}$ $0.15 \times$ ' 16 ' ($=2.4$) OR $0.15 \times$ any relevant figure OR $0.85 \times$ any relevant figure $\mathbf{O R}$ $70 \div 0.85(=82.35 .$.
	A4	Process for figures to compare	2 or	BC	
	17	Valid decision from accurate figures	3	BCD	Yes and (£)68 OR Yes and (£)16 and(£)16.47 OR Yes and (£)13.6 and (£)14 OR Yes and (£)82.35.. and (£)80
Total marks for question			4		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q8b	R1	Begins to substitute or to reverse process	1 or	E	$\begin{aligned} & 28(10-7)+144 \text { OR } \\ & 28 \times 3(=84) \text { OR } \\ & 250-144(=106) \end{aligned}$
	A4	Completes process	2 or	EF	$\begin{aligned} & ‘ 84 '+144(=228) \text { OR } \\ & \left({ }^{\prime} 1066^{\prime} \div 28\right)+7(=10.7 \ldots .) \text { OR } \\ & 28 \times 3(=84) \text { and } 250-144(=106) \text { OR } \\ & \prime 106 ’ \div 28(=3.7 \ldots .) \end{aligned}$
	17	Valid decision and accurate figures	3	EFG	Yes and (£)228 OR Yes and [10.7, 10.8] OR Allow, with full calculation: Yes and (£) 84 and ($£$) 106 OR Yes and [3.7, 3.8] and 3
Total marks for question			3		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q9	R2	Begins to consider constraints	1 or	H	NB Correct booking is correct location and correct days and correct number of days and no double booking
	I6	Develops solution	Correctly books any 2 dogs		
A5	Checks \& improves solution	3 or	HJK	Correctly books 2 dogs, at least one of which is Meg or Toby or Sadie or Chip OR Correctly books 3 of Sam, Rex, Winston, Molly	
Correctly books 4 dogs, at least two of which are Meg or Toby or Sadie or Chip I6	Fully correct optimal solution considering all criteria	4	HJKL	Fully correct optimal solution (19 dog walks correctly booked) and no additional incorrect bookings Allow dogs to move across rows in correct location. See solutions at end of mark scheme	

Question	Skills Standard	Process	Mark	$\begin{gathered} \text { Mark } \\ \text { Grid } \end{gathered}$	Evidence
Q10	R2	Begins to process time in locations	1 or	M	Shows start and finish time for at least 2 of: Home, Burton coffee, Burton dog walk, Ashby dog walk, Edale dog walk (elapsed time correct) OR Consistently combines time in locations and travel time and shows start and finish time (elapsed time correct) for at least 2 of these
	I6	Correct time in all locations	2	MN	Shows start and finish time for all of: Home, Burton coffee, Burton dog walk, Ashby dog walk, Edale dog walk (elapsed time correct) and starts no earlier than 8.30 am and at Burton coffee by 11.15 OR Consistently combines time in locations and travel time and shows start and finish time (elapsed time correct) for all of these and starts no earlier than 8.30 am and at Burton coffee by 11:15
	A4	Begins to process travelling time	1 or	P	Correct travel time allowed for at least one journey
	A5	Correct travelling time	2	PQ	Correct travel time allowed for all journeys
	I6	Clearly presented schedule	1	R	Sequentially ordered schedule showing at least start time in all locations for 5 activities, finished and home by 4:30 pm
Total marks for question			5		

Rewarding Learning

