edexcel 쁓

Mark Scheme (Results)
July 2014

Pearson Edexcel Functional Skills Mathematics Level 2 (FSM02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

July 2014
Publications Code FC039477
All the material in this publication is copyright
© Pearson Education Ltd 2014

Guidance for Marking Functional Mathematics Papers

General

- All candidates must receive the same treatment. You must mark the first candidate in exactly the same way as you mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- All the marks on the mark scheme are designed to be awarded. You should always award full marks if deserved, i.e. if the answer matches the mark scheme. You should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

Applying the Mark Scheme

- The mark scheme has a column for Process and a column for Evidence. In most questions the majority of marks are awarded for the process the candidate uses to reach an answer. The evidence column shows the most likely examples you will see:
if the candidate gives different evidence for the process, you should award the mark(s).
- Finding 'the answer': in written papers, the demand (question) box should always be checked as candidates often write their 'final' answer or decision there. Some questions require the candidate to give a clear statement of the answer or make a decision, in addition to working. These are always clear in the mark scheme.
- If working is crossed out and still legible, then it should be marked, as long as it has not been replaced by alternative work.
- If there is a choice of methods shown, then marks should be awarded for the 'best' answer.
- A suspected misread may still gain process marks.
- It may be appropriate to ignore subsequent work (isw) when the candidate's additional work does not change the meaning of their answer. You are less likely to see instances of this in functional mathematics.
- You will often see correct working followed by an incorrect decision, showing that the candidate can calculate but does not understand the demand of the functional question. The mark scheme will make clear how to mark these questions.
- Transcription errors occur when the candidate presents a correct answer in working, and writes it incorrectly on the answer line; mark the better answer.
- Follow through marks must only be awarded when explicitly allowed in the mark scheme. Where the process uses the candidate's answer from a previous step, this is clearly shown. Speech marks are used to show that previously incorrect numerical work is being followed through, for example '240' means their $\mathbf{2 4 0}$.
- Marks can usually be awarded where units are not shown. Where units, including money, are required this will be stated explicitly. For example, $5(\mathrm{~m})$ or ($£$) 256.4 indicate that the units do not have to be stated for the mark to be awarded.
- Correct money notation indicates that the answer, in money, must have correct notation to gain the mark. This means that money should be shown as $£$ or p, with the decimal point correct and 2 decimal places if appropriate.
e.g. if the question working led to $£ 12 \div 5$,

$$
\begin{array}{llllll}
\text { Mark as correct: } \begin{array}{llll}
£ 2.40 & 240 p & £ 2.40 p \\
\text { Mark as incorrect: } & £ 2.4 & 2.40 \text { p } & £ 240 \text { p } 2.4 \\
2.40 & 240
\end{array} l
\end{array}
$$

- Candidates may present their answers or working in many equivalent ways. This is denoted o.e. in the mark scheme. Repeated addition for multiplication and repeated subtraction for division are common alternative approaches. The mark scheme will specify the minimum required to award these marks.
- A range of answers is often allowed:
- $[12.5,105]$ is the inclusive closed interval
- $(12.5,105)$ is the exclusive open interval
- Parts of questions: because most FS questions are unstructured and open, you should be prepared to award marks for answers seen in later parts of a question, even if not explicit in the expected part.
- Discuss any queries with your Team Leader

Graphs

The mark schemes for most graph questions have this structure:

Process Appropriate graph or chart - (e.g. bar, stick, line graph, $)$	$\mathbf{1}$	or
1 of		
linear scale(s), labels, plotting (2 mm		
tolerance)		

The mark scheme will explain what is appropriate for the data being plotted.
A linear scale must be linear in the range where data is plotted, whether or not it is broken, whether or not 0 is shown, whether or not the scale is shown as broken. Thus a graph that is 'fit for purpose' in that the data is displayed clearly and values can be read, will gain credit.

The minimum requirements for labels will be given, but you should give credit if a title is given which makes the label obvious.

Plotting must be correct for the candidate's scale. Award the mark for plotting if you can read the values clearly, even if the scale itself is not linear.

The mark schemes for Data Collection Sheets refer to input opportunities and to efficient input opportunities.
When a candidate gives an input opportunity, it is likely to be an empty cell in a table, it may be an instruction to 'circle your choice', or it may require writing in the data in words. These become efficient, for example, if there is a well-structured 2way table, or the input is a tick or a tally rather than a written list.

Section A: America

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q1a	R1	Works out difference	1or	A	$\begin{aligned} & 49.95-33.56(=16.39) \text { OR } \\ & 2 \times 49.95-2 \times 33.56(=32.78) \text { OR } \\ & 49.95 \div 3 \text { or } 0.33 \ldots \times 49.95(=16.65) \end{aligned}$
	A4	Works with fraction	2 or	AB	$\begin{aligned} & 49.95 \div 3(=16.65)) \text { and } 49.95-33.56(=16.39) \text { OR } \\ & ' 16.39 ' \div 49.95(=0.32(8 \ldots)) \text { OR } \\ & ' 32.78 \prime \div(2 \times 49.95)(=0.32(8 \ldots)) \text { OR } \\ & 2 \times 49.95 \div 3(=33.3) \text { OR } \\ & 49.95-' 16.65 \prime(=33.3) \text { OR } \\ & 33.56+' 16.65 \prime(=50.21) \text { OR } \\ & \prime 16.39 ' \times 3(=49.17) \end{aligned}$
	I7	Decision from correct figures	3	ABC	No and $0.32(8 \ldots)$ oe and $0.33(3 \ldots)$ oe $\mathbf{O R}$ No and (\$)16.39 and (\$)16.65 OR No and (\$)32.78 and (\$)33.3(0) OR No and (\$)50.21 OR No and (\$)49.17

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q1b	A4	Begins to substitute into formula	1 or	D	$\begin{aligned} & 65-32(=33) \text { OR } \\ & 16 \times 9(=144) \text { OR } \\ & 16 \div 5(=3.2) \mathbf{O R} \\ & 16 \times \frac{9}{5} \text { oe }(=28.8) \end{aligned}$
	R1	Full process for substitution	2 or	DE	$\begin{aligned} & \text { ' } 33 \prime \times \frac{5}{9}(=18.3) \text { OR } \\ & \text { '33' } \times 0.5(5 \ldots) \text { OR } \\ & \text { ' } 28.8^{\prime}+32(=60.8) \end{aligned}$
	17	Decision from correct figures	3	DEF	Williamsburg AND $[18,18.48]\left({ }^{\circ} \mathrm{C}\right)$ OR $60.8\left({ }^{\circ} \mathrm{F}\right)$
Total marks for question			6		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q2	R3	Process to convert currency or convert between litres and gallons	1 or	G	Eg. $3.15 \div 1.6(=1.96875)$ OR $1.37 \times 1.6(=2.192)$ OR $3.15 \div 3.875$ (=0.8129..) OR 1.37×3.875 ($=5.3 \ldots \ldots$...) NB. Allow use of 4 for 3.875
	A4	Process to convert currency and convert between litres and gallons	2 or	GH	$\begin{aligned} & \text { Eg. ' } 1.96875 \text { ' } \div 3.875(=(£) 0.508 \ldots) \text { OR } \\ & \text { ' } 2.192 \text { ' } \times 3.875(=(\$) 8.494) \text { OR } \\ & \text { '0.8129' } \div 1.6(=(£) 0.508 \ldots) \text { OR } \\ & \text { ' } 5.30 . . \text {. } \times 1.6(=(\$) 8.494) \text { OR } \\ & 1.37 \times 3.875(=5.3 \ldots \ldots) \text { and } 3.15 \div 1.6(=1.96875) \text { OR } \\ & 1.37 \times 1.6(=2.192) \text { and } 3.15 \div 3.875(=0.8129 . .) \\ & \text { NB. Allow use of } 4 \text { for } 3.875 \\ & \hline \end{aligned}$
	I6	Finds correct figure to compare	3	GHJ	(\$)[8.49, 8.50] (£) $[0.5,0.51]$ OR $(£)[5.3,5.31]$ and $(£)[1.96,1.97] \mathbf{O R}$ (\$)[2.1, 2.2] and (\$)[0.81, 0.82]
	R2	Process to use given scale factor	1 or	K	'(£)0.508’ $\times 2(=(£) 1.016 .$.$) OR (£) 1.37 \div 2(=(£) 0.68 .$.$) OR$ '(\$)8.494' $\div 2(=(\$) 4.24 .$.$) OR (\$) 3.15 \times 2(=(\$) 6.3)$ OR ' 8.494 ' $\div 3.15(=2.6965 .$.$) OR$ '(£) $1.96 \ldots$... 2 (=3.9...) OR '5.3...' $\div 1.96 \ldots$... $(=2.6965 .$.$) OR '2.1...' \div ‘ 0.81 \ldots$...' $(=2.6965 .$.
	A4	Correct figures	2	KL	(£) $[1.01,1.02]$ OR $(£)[0.68,0.69]$ and $(£)[0.5,0.51]$ OR (\$)[4.24, 4.25] OR (\$)6.3 and (\$)[8.48, 8.50] OR [2.6, 2.7] (times more) OR $(£)[3.92,3.94]$ and $(£)[5.3,5.31]$ NB. Working could be in pence or pounds / cents or dollars
	I7	Correct decision from their figures provided marks H and K awarded	1	M	Yes ft . their figures provided marks H and K awarded $\mathbf{O R}$ Yes with (\$)[8.49, 8.50] and eg 'more than double'
Total marks for question			6		

\begin{tabular}{|c|c|c|c|c|c|}
\hline Q3 \& R1
A4
A4
I6 \& \begin{tabular}{l}
Process to find time for drive to museum \\
Converts between hours and minutes \\
Process to find total time or starts to find leaving time \\
Correct leaving time
\end{tabular} \& 1 or
\[
2
\] \& N
P
Q

QR \& | $140 \div 60(=2.333 \ldots)$ accept 2 h 33 mins OR 140 mins |
| :--- |
| E.g. 2 hr 20 mins |
| May be seen in subsequent working or correct final answer |
| subtracts at least two times from 15:30 OR |
| adds two times to a start time OR |
| $' 2: 20$ ' $+3+0: 45(=6 \mathrm{~h} 5 \mathrm{~min})$ (award N and P if 6 h 5 min seen) |
| 09:25(am) oe |
| Award full marks for correct answer |

\hline \multicolumn{6}{|c|}{Total marks for question}

\hline
\end{tabular}

Q4	R1	Begins to make scale drawing	1 or	A	Two of : Right-angled triangle Isosceles triangle One side adjacent to right angle 5 cm
	I7	Correct scale drawing	2	AB	Right-angled triangle with two 5 cm sides adjacent to right angle
	A4	Finds length of longest side	1	C	[6.9, 7.3] (cm) (can be implied by [138, 146]) OR ft . from their diagram
	R3	Starts process to find figures to compare	1 or	D	$\begin{aligned} & 20 \times{ }^{\prime} 7.1 \text { ' }(=142) \text { OR } \\ & 60 \times 2(=120) \mathbf{O R} \\ & 60 \div 20(=3) \mathbf{O R} \end{aligned}$ Correct Pythagoras statement (with $[6.9,7.3]$ or $[138,146]$) as far as square and add
	A4	Complete process	2 or	DE	$\begin{aligned} & ‘ 142^{\prime} \div 2(=71) \text { OR } \\ & 20 \times ' 7.1 ’(=142) \text { and } 60 \times 2(=120) \mathbf{O R} \\ & ' 120^{\prime} \div 20(=6) \mathbf{O R} \\ & { }^{\prime} \times 2(=6) \mathbf{O R} \end{aligned}$ Correct Pythagoras statement (with $[6.9,7.3]$ or $[138,146]$) as far as square, add and square root
	I6	Decision with correct figures	3	DEF	Yes and $[69,71]$ (cm) (per chair) OR Yes and $[138,146](\mathrm{cm})$ and $120(\mathrm{~cm})$ Yes and $[6.9,7.3](\mathrm{cm})$ and $6(\mathrm{~cm})$
Total marks for question			6		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q5a	R2 A4 I6 A5	Process to find number of tickets for sale Completes process to find amount to be charged Correct figure with correct money notation Shows a check	1 1 or 2 1	G H HJ K	$450-4 \times 20(=370)$ $(725+260) \div ‘ 370 ’(=2.6621 .$. $£[2.67,2.70]$ with correct money notation Any reverse calculation OR Estimation OR Shows a profit
Q5b	A4 R1	Uses consistent units Process to work with total amount of orange	1 1 or	L M	E.g. 1500 ml or 0.2 litres May be seen in subsequent working or correct final answer $200 \times 450(=90000)$ OR $50 \times$ ' 1500 ' ($=75000$) OR ' 1500 ' $\div 200(=7.5$)
	A4	Full process to find figures to compare	2 or	MN	$\begin{aligned} & ' 90000 ' \div 1500 '(=60) \text { OR } \\ & 50 \times ‘ 1500 ’(=75000) \text { and } 200 \times 450(=90000) \text { OR } \\ & ‘ 75000 ' \div 200(=375) \text { OR } \\ & ‘ 75000 ' \div 450(=166 \ldots) \text { OR } \\ & ‘ 7.5 \times 50(=375) \end{aligned}$
	I6	Correct decision with correct figures	3	MNP	No and 60 (bottles needed) OR No and 75000 and $90000(\mathrm{ml})$ OR No and 75 and 90 (litres) OR No and 375 (glasses) OR No and $[166,167] \mathrm{ml}) \mathbf{O R}$ 15 litres more needed OR 10 more bottles needed
Total marks for question					

\begin{tabular}{|c|c|c|c|c|c|}
\hline Q6 \& R3

I7 \& \begin{tabular}{l}
Work with probability or chance

Compares probabilities or number of people

 \&

1 or

2

 \&

Q

QR

 \&

$$
\begin{aligned}
& \frac{6}{450} \text { OR } \frac{7}{450} \text { OR } 450 \div 60(=7.5) \text { OR } \\
& 6 \times 60(=360) \text { OR } \\
& 450 \div 6(=75) \text { OR } \\
& 6 \text { in } 450 \text { or } 6 \text { out of } 450 \text { or } 6: 450 \text { or } 6: 444 \\
& \text { or } 7 \text { in } 450 \text { or } 7 \text { out of } 450 \text { oe }
\end{aligned}
$$

No and $\frac{1}{75}$ or $0.0166 \ldots$ or 1 in 75 OR

No and 7.5 (people) or 8 (people) OR No and $\frac{7}{450}$ or $0.0133 \ldots$ OR No and 360 (people)
\end{tabular}

\hline \& \& Total marks for question \& \multicolumn{3}{|c|}{2}

\hline
\end{tabular}

Section C: Home Maintenance

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q7a	R1	Works with percentage	1 or	A	0.2×525 oe (=105)
	A4	Find percentage increase	2 or	AB	$\begin{aligned} & ' 105 \prime+525 \text { OR } \\ & 1.2 \times 525 \mathrm{oe} \end{aligned}$
	I6	Correct figure	3	ABC	(£)630
Q7b	R1	Uses flow chart	1 or	D	$\begin{aligned} & 1270 \times 3(=3810) \mathbf{O R} \\ & 6104 \div 3(=2034.6) \mathbf{O R} \\ & 3502 \div 3(=1167.3) \end{aligned}$
	A4	Correct figure	2	DE	$\begin{aligned} & 3810 \text { (BTUs) OR } \\ & {[2034,2035] \text { (cubic feet) }} \end{aligned}$
	I7	Decision from correct figures	1	F	Yes and 3810 OR Yes and [2034,2035]
Total marks for question			6		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q9	A4	Process to find a missing length	1	L	$\begin{aligned} & 2.1+1.9(=4) \mathbf{O R} \\ & 3.5-1.7(=1.8) \end{aligned}$
	R2	Process to start to find area	1 or	M	$\begin{aligned} & 2.1 \times 3.5(=7.35) \text { OR } 1.9 \times ‘ 1.8{ }^{\prime}(=3.42) \text { OR } \\ & '^{\prime} \times{ }^{\prime} 1.8{ }^{\prime}(=7.2) \text { OR } 2.1 \times 1.7(=3.57) \text { OR } \\ & 3.5 \times{ }^{\prime} 4^{\prime}(=14) \text { OR } 1.7 \times 1.9(=3.23) \end{aligned}$
	A4	Complete process to find area	2 or	MN	$\begin{aligned} & ‘ 7.35 '+‘ 3.42^{\prime}(=10.77) \text { OR } \\ & ‘ 7.2^{\prime}+‘ 3.57 \prime(=10.77) \text { OR } \\ & ‘ 14 \prime-‘ 3.23 '(=10.77) \end{aligned}$
	I6	Correct area	3	MNP	$\begin{aligned} & 10.77\left(\mathrm{~m}^{2}\right) \mathrm{OR} \\ & 7.35 \text { and } 3.42 \text { OR } \\ & 7.2 \text { and } 3.57 \mathrm{OR} \\ & 14 \text { and } 3.23 \end{aligned}$
	R3	Uses coverage for any relevant area	1 or	Q	E.g. ' $10.77^{\prime} \div 0.88(=12.2 \ldots)$ must come from an area method OR $15 \times 0.88(=13.2)$
	I6	Decision and correct figure	2	QR	Yes and [12.2, 13] (packs) OR Yes and $13.2\left(\mathrm{~m}^{2}\right)$ and $10.77\left(\mathrm{~m}^{2}\right)$
		Total marks for question	6		

