edexcel ะ\#

Mark Scheme (Results)
May 2011

Functional Skills Mathematics
Level 2 (FSM02)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Examiners' Report that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

May 2011
Publications Code FC028938

All the material in this publication is copyright
© Edexcel Ltd 2011

Guidance for Marking Functional Mathematics Papers

General

- All candidates must receive the same treatment. You must mark the first candidate in exactly the same way as you mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- All the marks on the mark scheme are designed to be awarded. You should always award full marks if deserved, i.e. if the answer matches the mark scheme. You should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

Applying the Mark Scheme

- The mark scheme has a column for Process and a column for Evidence. In most questions the majority of marks are awarded for the process the candidate uses to reach an answer. The evidence column shows the most likely examples you will see:
if the candidate gives different evidence for the process, you should award the mark(s)
- Finding 'the answer': in written papers, the demand (question) box should always be checked as candidates often write their 'final' answer or decision there. Some questions require the candidate to give a clear statement of the answer or make a decision, in addition to working. These are always clear in the mark scheme.
- If working is crossed out and still legible, then it should be marked, as long as it has not been replaced by alternative work.
- If there is a choice of methods shown, then marks should be awarded for the 'best' answer.
- A suspected misread may still gain process marks.
- It may be appropriate to ignore subsequent work (isw) when the candidate's additional work does not change the meaning of their answer. You are less likely to see instances of this in functional mathematics.
- You will often see correct working followed by an incorrect decision, showing that the candidate can calculate but does not understand the demand of the functional question. The mark scheme will make clear how to mark these questions.
- Transcription errors occur when the candidate presents a correct answer in working, and writes it incorrectly on the answer line; mark the better answer.
- Follow through marks must only be awarded when explicitly allowed in the mark scheme. Where the process uses the candidate's answer from a previous step, this is clearly shown. Speech marks are used to show that previously incorrect numerical work is being followed through, for example '240' means their 240.
- Marks can usually be awarded where units are not shown. Where units, including money, are required this will be stated explicitly. For example, $5(\mathrm{~m})$ or $(£) 256.4$ indicate that the units do not have to be stated for the mark to be awarded.
- Correct money notation indicates that the answer, in money, must have correct notation to gain the mark. This means that money should be shown as $£$ or p, with the decimal point correct and 2 decimal places if appropriate.
e.g. if the question working led to $£ 12 \div 5$,

$$
\begin{array}{llllll}
\text { Mark as correct: } £ 2.40 & 240 \mathrm{p} & £ 2.40 \mathrm{p} \\
\text { Mark as incorrect: } & £ 2.4 & 2.40 \mathrm{p} & £ 240 \mathrm{p} & 2.4 & 2.40 \\
240
\end{array}
$$

- Candidates may present their answers or working in many equivalent ways. This is denoted o.e. in the mark scheme. Repeated addition for multiplication and repeated subtraction for division are common alternative approaches. The mark scheme will specify the minimum required to award these marks.
- A range of answers is often allowed:
- $[12.5,105]$ is the inclusive closed interval
- $(12.5,105)$ is the exclusive open interval
- Parts of questions: because most FS questions are unstructured and open, you should be prepared to award marks for answers seen in later parts of a question, even if not explicit in the expected part.
- Discuss any queries with your Team Leader.
- Graphs

The mark schemes for most graph questions have this structure:

Process Appropriate graph or chart (e.g. bar, stick, line graph,)	1 or	Evidence l of linear scale(s), labels, plotting (2 mm tolerance)
2	2 of linear scale(s), labels, plotting (2 mm or	
3	tolerance) all of linear scale(s), labels, plotting (2 mm tolerance)	

The mark scheme will explain what is appropriate for the data being plotted.
A linear scale must be linear in the range where data is plotted, whether or not it is broken, whether or not 0 is shown, whether or not the scale is shown as broken. Thus a graph that is 'fit for purpose' in that the data is displayed clearly and values can be read, will gain credit.
The minimum requirements for labels will be given, but you should give credit if a title is given which makes the label obvious.
Plotting must be correct for the candidate's scale. Award the mark for plotting if you can read the values clearly, even if the scale itself is not linear.

The mark schemes for Data Collection Sheets refer to input opportunities and to efficient input opportunities.
When a candidate gives an input opportunity, it is likely to be an empty cell in a table, it may be an instruction to 'circle your choice', or it may require writing in the data in words. These become efficient, for example, if there is a well-structured 2-way table, or the input is a tick or a tally rather than a written list.

Section A: Sports Centre

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q1(a)	R1	Process to calculate total wages	1 or	A	'16.5' $\times 7.08$ ($=116.82$) OR $[16,17] \times 7(=\{112,119])$ OR at least 2 of $28.32,21.24,17.7$
	A1		2	AB	£116. 82 correct money notation
Q1(b)	A2	Shows any suitable check using a different method	1	C	e.g. ‘116.82’ $\div 7.08(=16.5)$ OR ‘ 116.82 ’ $\div 16.5(=7.08)$ OR uses estimation $120 \div 7(=17.14$..) OR uses approximation ' 16 ' $\times 7(=112$) or ' 17 ' $\times 7(=119)$ OR 28.32 $\div 4(=7.08)$ or $21.24 \div 3(=7.08)$ or $17.7 \div 2.5(=7.08)$ OR $17 \div 7(=2.42 .$.$) , or$ $16 \div 7(=2.28$. .) repeated subtraction from ' 116.82 '
Q1(c)	I	Considers features for at least 1 person	1 or	D	3 of: worker named, pool named, time slot specified, suitable number of hours worked
	I	Considers presentation, coordinates time slot and person	2 or	DE	Slots given for at least 3 people, condone use of early, evening, late rather than times for at least 3 workers
	I	Co-ordinates all features in a fully correct solution	3	DEF	All slots covered, all staff work correct hours, must be fully correct for 3 marks e.g. Time 6-8.30 17. 30-19 19-22 Main pool Mary, Andy Mary, Andy Pat, Jo Learner pool 17.30-20
Total marks for question			6		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q2(a)	R2	Draws side view of ramp	1 or	G	2 of: right angled triangle, correct length, correct height
	R2		2	GH	All of: right angled triangle, correct length, correct height and no additional lines drawn
Q2(b)	R1	Considers criteria	1 or	J	3 of: day or date, time, adults, children, input opportunities as data collection sheet or a questionnaire
	R2	Improves consideration	2 or	J K	4 of: day or date, time, adults, children, input opportunities as a data collection sheet or a questionnaire
	A2		3	J KL	all of: day or date, time, adults, children, efficient input opportunities do not accept a questionnaire for 3 marks
		Total marks for question	5		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q3	A1	Deals with total number of courts or 2:1 ratio	1	M	15 or 10 or 5 seen OR 2hours are members bookings or 1 hour are non - members bookings seen OR $2 \times 9.8+12.4(=32) \text { OR }$ $\underline{2} \times 5(=3.33 .$.$) OR1 \times 5(=1.66 .$.$) OR$ $3 \quad 3$ $\frac{2}{3} \times 9.8(=6.53 .$.$) ORI \times 12.4(=4.13 ..) \mathbf{O R}$ 3 3 '3.33'... $\times 9.8(=32.66 .$.$) OR '1.6..' \times 12.4(=20.66 .$.
	R2	cal culates revenue from courts allocated to members or nonmembers or revenue for 1 court for 3 hours	1	N	$\begin{aligned} & 10 \times 9.8(=98) \text { OR } 5 \times 12.4(=62) \text { OR } \\ & ‘ 32.66 \ldots \times 3(=98) \text { OR } ‘ 20.66 \ldots \prime \times 3(=62) \text { OR } \\ & 32 \text { OR } 160 \end{aligned}$
	A1	works with 25% or finds correct total before 25\%increase or equivalent process	1 or	P	1.25 or $0.25 \times{ }^{\prime} 98$ ($=122.50$ or 24.50) OR 1.25 or $0.25 \times{ }^{\prime} 62 \prime(=77.50$ or 15.50$)$ OR 1.25 or $0.25 \times 32(=40$ or 8$)$ 1.25 or $0.25 \times{ }^{\prime} 160$ ($=200$ or 40) OR 1.25 or $0.25 \times 9.8(=12.25$ or 2.45$) \mathbf{O R}$ 1.25 or $0.25 \times 12.4(=15.5$ or 3.1$) \mathbf{O R}$ 1.25 or $0.25 \times(9.8+12.4)(=27.75$ or 5.55$) \mathbf{O R}$ 1.25 or 0.25 of any money calculated from 9.8 or 12.4 OR 160 seen
		Finds correct answer for 'money' increased by 25\%	2	PQ	12.25 , or $15.5,27.75$ or 40 , or 77.5 , or 122.5 , or 200 or correct answer for ' money' increased by 25%
	I1	Correct total found	1	R	(£)200 cao Note: for finds 232.5 from $15 \times 1.25 \times 12.4$ (non member) OR finds 183.75 from $15 \times 1.25 \times 9.8$ (member) award 1,1,1,1,0
Total marks for question			5		

Section B: Holiday

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q4(a)	R2	Convert between units	1 or	A	$48.2 \div 2.2[=21,22]$ OR $23 \times 2.2[=50,51]$ OR uses a build up method OR uses an estimate for conversion factor $48.2 \div 2(=24.1)$ AND no OR 23×2 ($=46$) AND no
	I2	Decision from valid comparison	2	AB	yes [21,22] seen OR yes [50,51] seen
Q4(b)	R2	Considers number of $£ 5$ needed	1 or	C	$\begin{aligned} & \frac{(199+85+97)}{5}\left(=\frac{381)}{5}(=76.2) \text { OR } \underline{750}(=75)\right. \text { OR } \\ & 10 \\ & 199 \div 5(=39 \text { or } 39.8) \text { or } 85 \div 5(=17) \text { or } 97 \div 5(=19 \text { or } 19.4) \end{aligned}$
	A1	Considers airmiles acquired OR expenditure needed	2 or	CD	$\begin{aligned} & ‘ 76 ’ \times 10(=760) \text { OR } 75 \times 5(=375) \text { OR } \\ & 199 \div 5(=39 \text { or } 39.8)+85 \div 5(=17)+97 \div 5(=19 \text { or } 19.4) \quad(=75 \text { or } 76.2) \end{aligned}$
	I2	Makes a correct decision from correct comparable evidence seen	3	CDE	e.g. yes 760 or 762 seen OR yes 381 and 375 seen OR yes 76.2 and 75 seen OR yes and ' 750 ' from individual calculations rounded down
Q4(c)	R2	Converts pounds to dollars OR converts dollars to pounds	1 or	F	$199 \times 1.62[=322,323] \text { OR } \frac{335[}{1.62}$
	A1		2	FG	[$=322,323]$ OR [$=206,207]$ seen
	I2	Makes correct (ft) decision from their working seen provided at least process (F) mark is scored	1	H	e.g. yes or flight cheaper $[322,323]<335$ OR $[206,207>199$ OR £7 or 8 higher / less or \$12 / 13 higher/ less
		Total marks for question	8		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q5	R1	Considers criteria	1 or	J	lists at least 3 activities at appropriate times of day OR lists at least 3 activities with their correct total cost or amount left
	A2	Improves solution	2 or	J K	lists at least 4 activities at appropriate times of day OR lists at least 4 activities with their correct total cost or amount left inside constraints OR lists 5 activities and their correct total cost but the cost is outside the constraints
	I1	Fully correct solution	3	J KL	Lists 5 activities at appropriate times of day and gives total cost or amount left correctly inside constraint. Note throughout this question accept 1 morning, 2 afternoon and 2 evening activities without reference to the day, or day 1 with 2 activities that could be lafternoon and 1 evening and day 2 with 3 activities that could be 1 of each
Total marks for question			3		
Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q6	A1	Uses map	1	M	[7.5, 8. 5] seen or attempt to mark off sections on map OR [150, 170] seen
	R2	Uses scale	1	N	' 8 ' $\times 20(=160$ ') or $50 \div 20(=2.5)$ or attempt to mark off 2.5 cm sections on map
	A1	Calculates fuel in tank or km for full tank	1 or	P	$\frac{1}{2} \times 10(=5) \quad \text { OR } 10 \times 50(=500)$
	A1	Calculates km she should get or rate of consumption or fuel needed	2	PQ	$5 \times 50(=250)$ OR $0.5 \times 500(=250)$ OR ‘160’ $\div 5(=32) \mathbf{O R}$ ' 160 ’ $\div 50(=3.2)$ OR 160 and 4 gallons is enough
	I1	Communicates solution to multistage problem must score N and Q	1	R	e.g. yes she has enough fuel
Total marks for question			5		

Section C: Rented houses

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q9(a)	I2	Makes one valid simple statement	1 or	J	Simple statements include Total fees for 2010 greater than 2009 Average fees for 2010 greater than 2009 Range for 2009 greater than range for 2010 In J an - Mar, or J ul - Sept or Oct to Dec the fees increased in 2010 over 2009 In both years the highest fees were in Apr-J un In both years the lowest fees were in J an - Mar Developed statements include In 2009 fees increased then decreased then increased again whereas in 2010 they increased then decreased then decreased further In Apr - J un the 2009 figures were better than 2010 although overall the 2010 figures were higher
	I2	Makes two valid simple statements or one valid developed statement	2	J K	See above
Q9(b)	R1	Chooses an appropriate graph type bar chart(s), line graph(s), frequency polygon(s)	1 or	L	one of: linear scale, clear labels, accurate plotting of points or bars
	R2	Completes graph	2 or	LM	two of: linear scale, clear labels, accurate plotting of points or bars
	R3		3	LMN	all of: linear scale, clear labels, accurate plotting of points or bars Tolerance $\pm 2 \mathrm{~mm}$ square

Q9(c)	A2	Totals either year OR finds differences for at least 2 quarters	1 or	P	$14500+16200+15600+14900(=61200)$ OR $14100+16500+14600+14800(=60000)$ OR at least 2 of 400, 300, 1000, 100 condone without minus sign Note: totals may be shown in Q9a, or Q9b or tables
	A2	Begins to calculates 2\%of 2009 total OR difference as \%of 2009	2	PQ	$\begin{aligned} & 0.02 \times ‘ 60000 \prime(=1200) \text { OR ‘1200’}(=0.02) \text { OR } \frac{61200(=1.02)}{6000} 6000 \\ & \text { OR } 1.02 \times ‘ 60000^{\prime}(=61200) \text { o.e. OR } 2 \% \text { of } 60000=1200 \end{aligned}$
	I1	Makes a valid decision based on correct evidence	1	R	Yes with correct figures
Total marks for question			8		

Question 5 Solutions include
Day 1 Day 2 total cost(\$)128 or(\$)2 left Ellis Island Morning zoo Museum Afternoon food tour river cruise Evening Day 1 Day 2 total cost(\$)130 or(\$)0 left Broadway Morning museum Ellis Island Afternoon river cruise food tour Evening Day 1 Day 2 total cost(\$)126 or(\$)4 left Ellis Island Morning zoo Broadway Afternoon food tour river cruise Evening

Day 1	Day 2	
total cost(\$)130 or nothing left	Ellis Island	Morning
zoo	Broadway	Afternoon
jazz	river cruise	Evening

Day 1	Day 2	
total cost(\$)128 or (\$)2 left	Museum	Morning
zoo	Broadway	Afternoon
jazz	river cruise	Evening

Day 1	Day 2	
total cost (\$)130 or nothing left	Museum	Morning
zoo	Broadway	Afternoon
food tour	J azz	Evening

Day 1	Day 2	
total cost (\$)124 or (\$)6 left	Broadway	Morning
zoo	Museum	Afternoon
food tour	River cruise	Evening

Q7 Solution 1

9 am	Arrives at Cove	Officework 1hr 30 mins
10.30 am	Leaves Cove	Travels to Frimley 30 mins
11 am	Arrives Frimley	Maintenance check 1 hr
12 noon	Leaves Frimley	Travels to Ash 15 mins
12.15 pm	Arrives Ash	Lunch Break 45 mins
1 pm	Meets Client Ash	Two house visits total 1 hr
2 pm	Leaves Ash	Travels to Hook 30 mins
2.30 pm	Arrives Hook	Inventory 2 hr 30 mins
5 pm	Leaves Hook	Travels to Cove 30 mins
5.30 pm	Arrives at Cove	Workday finished.

Notes for Solution 1 Variation
They could take 30-45 mins lunch before leaving Frimley - then travel to Ash for 1 pm meeting.

Q7 Solution 2

Q7 Solution 2

9 am	Arrives at Cove	Leaves for Hook 30 mins
9.30 am	Arrives Hook	Inventory 2 hr 30 mins
12 noon	Leaves Hook	Travels to Ash 30 mins
12.30 pm	Arrives Ash	Lunch break 30 mins
1 pm	Meets client Ash	Two house visits total 1 hr
2 pm	Leaves Ash	Travels to Frimley 15 mins
2.15 pm	Arrives Frimley	Maintenance check 1 hr
3.15 pm	Leaves Frimley	Travels to Cove 30 mins
3.45 pm	Arrives Cove	Office work 1 hr 30 mins
5.15 pm	Workday finished.	

Notes for Solution 2 Variation
They could take 30 mins for lunch in Hook before travelling to Ash for 1 pm meeting.
PLEASE NOTE THESE ARE EXAMPLES OF OPTIMUM SOLUTIONS NOT THE ONLY ACCEPTABLE ‘CORRECT’ SOLUTIONS.

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code FC028938 May 2011

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

