edexcel 쁓

Mark Scheme (Results)
November 2013

Pearson Edexcel Functional Skills Mathematics Level 2 (FSM02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2013
Publications Code FC037510
All the material in this publication is copyright
© Pearson Education Ltd 2013

Guidance for Marking Functional Mathematics Papers

General

- All candidates must receive the same treatment. You must mark the first candidate in exactly the same way as you mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- All the marks on the mark scheme are designed to be awarded. You should always award full marks if deserved, i.e. if the answer matches the mark scheme. You should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

Applying the Mark Scheme

- The mark scheme has a column for Process and a column for Evidence. In most questions the majority of marks are awarded for the process the candidate uses to reach an answer. The evidence column shows the most likely examples you will see:
if the candidate gives different evidence for the process, you should award the mark(s).
- Finding 'the answer': in written papers, the demand (question) box should always be checked as candidates often write their 'final' answer or decision there. Some questions require the candidate to give a clear statement of the answer or make a decision, in addition to working. These are always clear in the mark scheme.
- If working is crossed out and still legible, then it should be marked, as long as it has not been replaced by alternative work.
- If there is a choice of methods shown, then marks should be awarded for the 'best' answer.
- A suspected misread may still gain process marks.
- It may be appropriate to ignore subsequent work (isw) when the candidate's additional work does not change the meaning of their answer. You are less likely to see instances of this in functional mathematics.
- You will often see correct working followed by an incorrect decision, showing that the candidate can calculate but does not understand the demand of the functional question. The mark scheme will make clear how to mark these questions.
- Transcription errors occur when the candidate presents a correct answer in working, and writes it incorrectly on the answer line; mark the better answer.
- Follow through marks must only be awarded when explicitly allowed in the mark scheme. Where the process uses the candidate's answer from a previous step, this is clearly shown. Speech marks are used to show that previously incorrect numerical work is being followed through, for example '240' means their $\mathbf{2 4 0}$.
- Marks can usually be awarded where units are not shown. Where units, including money, are required this will be stated explicitly. For example, $5(\mathrm{~m})$ or ($£$) 256.4 indicate that the units do not have to be stated for the mark to be awarded.
- Correct money notation indicates that the answer, in money, must have correct notation to gain the mark. This means that money should be shown as $£$ or p, with the decimal point correct and 2 decimal places if appropriate.
e.g. if the question working led to $£ 12 \div 5$,

$$
\begin{array}{llllll}
\text { Mark as correct: } \begin{array}{llll}
£ 2.40 & 240 p & £ 2.40 \text { p } & \\
\text { Mark as incorrect: } & £ 2.4 & 2.40 \text { p } & £ 240 \text { p } 2.4 \\
2.40 & 240
\end{array} l
\end{array}
$$

- Candidates may present their answers or working in many equivalent ways. This is denoted o.e. in the mark scheme. Repeated addition for multiplication and repeated subtraction for division are common alternative approaches. The mark scheme will specify the minimum required to award these marks.
- A range of answers is often allowed:
- $[12.5,105]$ is the inclusive closed interval
- $(12.5,105)$ is the exclusive open interval
- Parts of questions: because most FS questions are unstructured and open, you should be prepared to award marks for answers seen in later parts of a question, even if not explicit in the expected part.
- Discuss any queries with your Team Leader

Graphs

The mark schemes for most graph questions have this structure:

| Process
 Appropriate graph or chart -
 (e.g. bar, stick, line graph,) | $\mathbf{1}$ | or |
| :--- | :--- | :--- | | 1 of |
| :--- |
| linear scale(s), labels, plotting (2 mm |
| tolerance) |

The mark scheme will explain what is appropriate for the data being plotted.
A linear scale must be linear in the range where data is plotted, whether or not it is broken, whether or not 0 is shown, whether or not the scale is shown as broken. Thus a graph that is 'fit for purpose' in that the data is displayed clearly and values can be read, will gain credit.

The minimum requirements for labels will be given, but you should give credit if a title is given which makes the label obvious.

Plotting must be correct for the candidate's scale. Award the mark for plotting if you can read the values clearly, even if the scale itself is not linear.

The mark schemes for Data Collection Sheets refer to input opportunities and to efficient input opportunities.
When a candidate gives an input opportunity, it is likely to be an empty cell in a table, it may be an instruction to 'circle your choice', or it may require writing in the data in words. These become efficient, for example, if there is a well-structured 2way table, or the input is a tick or a tally rather than a written list.

Section A: The Applegate farm centre

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q1	R1	Begins to produce data collection sheet	1 or	A	Input opportunities AND headings for at least 2 of : areas visitors use (or shop, restaurant, zoo), male/female
	I6	Improves data collection sheet Fully correct efficient data collection sheet.	3 or	AB	Input opportunities AND headings for all of shop, restaurant, zoo (may not be efficient- could be a questionnaire or suitable for 1 persons input), male/female.
ABC					
Data collection sheet showing all categories in a two way table with					
efficient input opportunities.					
See possible solutions at the end.					

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q2a	R1	Process for amount of decrease or Begins to use percentage	1 or	D	$\begin{aligned} & \hline 3.4-2.95(=0.45) \text { oe } \mathbf{O R} \\ & 0.15 \times 3.4(=0.51) \text { oe } \end{aligned}$
	A4	Full process for figures to compare	2 or	DE	$\begin{aligned} & 3.4-2.95(=0.45) \text { and } 0.15 \times 3.4(=0.51) \text { oe } \mathbf{O R} \\ & 0.85 \times 3.4(=2.89) \text { oe } \mathbf{O R} \\ & (3.4-2.95) \div 3.4(=0.13 \ldots) \end{aligned}$
	I7	Valid conclusion and accurate figures	3	DEF	No and 45(p) and 51(p) oe OR No and (£)2.89 OR No and $[13,14]$ (\%) Candidate may work in pounds or pence throughout. Answer must be in consistent units.
Q2b	I6	Makes one comparative statement	1 or	G	Acceptable statements include Plum jam sales are least in both years Bramble jam sales go up from 2011 to 2012 Total sales go down from 2011 to 2012
	I6	Makes two comparative statements	2	GH	See list above
		Total marks for question	5		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q3	R1	Begins to use formula by substitution or reverse processing	1 or	J	Substitutes at least 2 of $0.785,40^{2}, 125$ correctly OR Begins to reverse process e.g. $\begin{aligned} & 950000 \div 0.785(=1210191.083) \text { OR } \\ & 950000 \div 40^{2}(=593.75) \mathbf{O R} \\ & 950000 \div 125(=7600) \end{aligned}$
	A4	Full substitution or full reverse processing to enable comparison	2 or	JK	$\begin{aligned} & 0.785 \times 1600 \times 125(=157000) \text { OR } \\ & 950000 \div\left(0.785 \times 40^{2} \times 125\right)(=6.05 . .) \text { OR } \\ & 950000 \div\left(0.785 \times 40^{2}\right)(=756.36 . .) \text { OR } \\ & 950000 \div(0.785 \times 125)(=9681.52 . .) \mathbf{O R} \\ & 950000 \div\left(40^{2} \times 125\right)(=4.75) \end{aligned}$
	I7	Valid decision and accurate figures	3	JKL	No and $157000\left(\mathrm{~cm}^{3}\right)$ OR No and 6(.05) times too small oe OR No and [750, 760] (height cm) OR No and [9600, 9700] and 1600 (diameter squared) OR No and [98, 99] (diameter cm) OR No and 4.75 (compare with 0.785)
		Total marks for question	3		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q4	A4	Uses consistent units	1	M	Uses e.g. 0.25 or 150000 or 500000 or 1600000 Working may be in ml or litres Note units conversion may be seen anywhere in the response. Candidates who use mixed units may still access marks N, P \& Q
	R3	Process to find total volume of juice required in (milli)litres	1	N	$500+$ '0.25' $\times 700(=675)$ oe
	A4	Process to find scale factor for (milli) litres or for $\mathrm{kg} /(\mathrm{milli})$ litre or for kg	1 or	P	$\begin{aligned} & \text { ' } 675 \text { ' } \div 150(=4.5) \text { oe } \mathbf{O R} \\ & 330 \div 150(=2.2) \text { oe } \mathbf{O R} \\ & 1600 \div 330(=4.84 \ldots) \text { OR } \\ & 110(\mathrm{~kg}) \text { for } 50(\text { litres }) \text { OR } \\ & \text { (Build up) process to reach either } 1320(\mathrm{~kg}) \text { for } 600 \text { (litres) or } \\ & 1650(\mathrm{~kg}) \text { for } 750 \text { (litres) } \end{aligned}$
	A4	Process to find kg of apples needed or litres of juice available	2 or	PQ	' 4.5 ' $\times 330(=1485)$ oe OR '675' \times '2.2'(=1485) oe OR '4.84..’× 150 oe ($=727.27 \ldots$...) OR (Build up) process to reach 1540 (kg) for 700 (litres) OR (Build up) processes to reach both $1320(\mathrm{~kg})$ for 600 (litres) and1650 (kg) for 750 (litres)
	I7	Valid conclusion and accurate figures	3	PQR	Yes and $1485(\mathrm{~kg})$ OR Yes and 1485000 (g) and $1600000(\mathrm{~g})$ OR Yes and 675 and [720, 730] (litres) oe OR Yes and 675 and 700 (litres) and 1540 (kg) Note There are many acceptable comparisons that can be made e.g. Yes and 175 and [220,230] with the 500 (litres) subtracted during the earlier processes
		Total marks for question	5		

Section B: The party

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q5a	R2	Process to find cost at Party tents	1 or	A	$735 \div 3(=245)$ or $735 \div 3 \times 2(=490)$ OR Allow $0.33 \times 735(=242.55)$ OR Allow $[0.66,0.67] \times 735(=[485.1,492.45])$
	A4	Correct cost at Party tents	2	AB	$(£) 490$
	R2	Process to find cost at Occasions	1 or	C	$0.2 \times 395(=79)$ or $1.2 \times 395(=474)$
	A4	Correct cost at Occasions	2	CD	$(£) 474$
	I7	Valid ft decision provided marks A and C are awarded	1	E	Valid ft decision provided marks A and C are awarded E.g. Occasions

\begin{tabular}{|c|c|c|c|c|c|}
\hline Q5b \& \begin{tabular}{l}
A4 \\
I6 \\
R1 \\
I6
\end{tabular} \& \begin{tabular}{l}
Begins to consider marquee constraints \\
Marquee drawing meets all constraints \\
Begins to consider dance floor area \\
Draws dance floor with correct area
\end{tabular} \& \begin{tabular}{l}
1 or \\
2 \\
1 or \\
2
\end{tabular} \& FG
H

HJ \& | Rectangle with 2 of: |
| :--- |
| Length 18 squares |
| Width 12 squares |
| In a corner OR |
| Rectangle with |
| Length: width ratio 3:2 and in a corner |
| Rectangle with all of: |
| Length 18 squares |
| Width 12 squares |
| In a corner |
| Rectangle with an area of 20 squares or 40 squares |
| Allow inside marquee |
| Rectangle with an area of 80 squares |
| Allow inside marquee |

\hline \& \& Total marks for question \& \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Q6a \& R2
A4

A4

I6 \& \begin{tabular}{l}
Process to find number of packs needed

Process to find number of packs to be paid for or effective cost per pack in the deal

Process for full cost

Finds cost in correct money notation

 \&

1

1 or

2 or

3

 \&

K

L

LM

LMN

 \&

$$
85 \div 10(=8.5) \text { OR }
$$

Full build up showing 9 packs needed OR

9

' 9 ' $\div 4 \times 3(=6.75)$ or $7 \mathbf{O R}$

$1.4 \div 4 \times 3(=1.05)$ OR

' 9 ' $\times 1.4$ ($=12.6$) and $2 \times 1.4(=2.8)$ OR

Build up method showing how ' 9 ' packs should be bought using special offer e.g. $2 \times 4+1$ needed

$$
\begin{aligned}
& ‘ 7 \times 1.4(=9.8) \text { OR } \\
& 8 \times ‘ 1.05 ’+1.4(=9.8) \mathbf{O R} \\
& ‘ 12.6^{\prime}-{ }^{\prime} 2.8 \text { ' }(=9.8)
\end{aligned}
$$

£9.80 correct money notation
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Q6b \& R1
A4

I7 \& | Begins to work with proportion |
| :--- |
| Full process for figures to compare |
| Valid decision and accurate figures | \& 1 or

2 or

3 \& P

$P Q$

PQR \& | $\begin{aligned} & 30 \div 12(=2.5) \text { OR } \\ & 500 \div 175(=2.85 \ldots) \text { OR } \\ & 175 \div 12(=14.58 . .) \text { OR } \\ & 500 \div 30(=16.66 \ldots) \text { OR } \end{aligned}$ |
| :--- |
| 2 batches make 24 cakes and 3 batches make 36 cakes $‘ 2.5 ’ \times 175(=437.5) \mathbf{O R}$ |
| ' $14.58 .$. ' $\times 30(=437.5$ or 420 or 435 or 450 OR |
| $30 \div 12(=2.5)$ and $500 \div 175(=2.85 \ldots)$ OR |
| $175 \div 12(=14.58 .$.$) and 500 \div 30(=16.66 \ldots)$ OR |
| $500 \div$ ‘ 14.58 '(=34.29..) OR $‘ 2.85 ’ \times 12(=34.2) \mathbf{O R}$ $2 \times 175(=350) \text { and } 3 \times 175(=525)$ |
| Yes and 437.5 or 420 or [435,438] or 450 (total grams sugar needed) OR |
| Yes and 2.5 and $[2.8,2.9]$ (scale factor comparison) OR |
| Yes and [14.5, 15] and [16.6, 16.7] (grams sugar per cake) OR |
| Yes and [34, 35] (cakes)) OR |
| No and (2 batches make) 24 (cakes) using 350 (g) and (3 batches make) 36 (cakes) using 525 (g) |

\hline \& \& Total marks for question \& \multicolumn{3}{|c|}{7}

\hline
\end{tabular}

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q7a	R2	Process to convert between units	1	A	$\begin{aligned} & 5 \times 2.5(=12.5) \mathbf{O R} \\ & 148 \div 2.5(=59.2) \mathbf{O R} \\ & 300 \div 2.5(=120) \end{aligned}$
	A4	Process to consider number of squares across the width or down the length or allow process for area of square or of material	1 or	B	$\begin{aligned} & 148 \div ‘ 12.5 ’(=11.84) \text { OR } \\ & 300 \div 12.5 ’(=24) \text { OR } \\ & ‘ 59.2 ’ \div 5(=11.84) \text { OR } \\ & ‘ 120 \div 5(=24) \text { OR } \end{aligned}$ Allow '59.2' \times ' 120 ' $(=7104)$ or $148 \times 300(=44400)$ OR Allow $5 \times 5(=25)$ or ' 12.5 ' \times ' 12.5 ' $(=156.25)$
	A4	Process to find number of squares	2 or	BC	'11' \times ' 24 ' $(=264)$ OR Allow ‘ 7104 ’ \div ' 25 ' $(=284.16)$ or ${ }^{\prime} 44400^{\prime} \div ‘ 156.25$ ' $(=284.16)$
	I6	Finds correct number of squares	3	BCD	264 (squares)
Q7b	I6	Sketches net for cube (6 squares)	1	E	Sketches net for cube (6 squares)
Q7c	R1 A4	Starts to work with probability or expresses chance Gives correct probability using correct notation	1 or 2	F FG	Fraction with numerator 3 or denominator 6 OR 3 out of 6 , 3 in $6,3: 6$ oe $\mathbf{O R}$ even $1 / 2$ oe or 0.5 or 50%
		Total marks for question	7		

Q8	R1 A4 I6 A5	Begins mean process Process to find figures to compare Finds October figure needed Shows a suitable check	1 or 2 or 3 1	H HJ HJK L	$\begin{aligned} & 6 \times 500(=3000) \text { OR } \\ & 420+450+345+525+495(=2235) \text { OR } \\ & \pm 80, \pm 50, \pm 155, \pm 25, \pm 5 \\ & { }^{3} 0000^{\prime}-‘^{\prime 2235}(=765) \text { OR } \end{aligned}$ Sum of differences $=265$ accept 270 under and 5 over (£)765 Reverse process Eg $765+2235=3000$ or uses different method
		Total marks for question	4		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q9	R3	Begins to process time in locations	1 or	M	Shows start and finish times for at least 2 of: Home, Grove, Dale, Lyme (elapsed time correct) OR Consistently combines time in location and travel time and shows start and finish times (elapsed time correct) for at least 2 of these
	I6	Correct time in all locations	2	MN	Shows start and finish times for all of: Home, Grove, Dale, Lyme (elapsed time correct) and starts no earlier than $8(\mathrm{am})$ and in Lyme at 2.15 or $2.30(\mathrm{pm})$ and leaves Lyme at 4.30pm OR Consistently combines time in location and travel time and shows start and finish times (elapsed time correct) for all of these and starts no earlier than $8(\mathrm{am})$ and in Lyme at 2.15 or $2.30(\mathrm{pm})$ and leaves Lyme at 4.30 pm
	R2	Begins to process travelling time	1 or	P	Correct travelling time for at least one journey
	A5	Correct travelling time	2	PQ	Correct travelling time for all journeys
	I6	Clearly presented schedule	1	R	Sequentially ordered schedule showing at least time in all places, has a 30 minute lunch break, finished and at home by 5 (pm)

