Mark Scheme (Results)

June 2013

Functional Skills Mathematics Level 1 (FSM01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 0844576 0025, our GCSE team on 08445760027 , or visit our qualifications website at www.edexcel.com. For information about our BTEC qualifications, please call 0844576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Pearson about Edexcel qualifications on our dedicated Maths telephone line: 08444632931.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your learners at: www.pearson.com/uk

June 2013
Publications Code FC036400
All the material in this publication is copyright
© Pearson Education Ltd 2013

Guidance for Marking Functional Mathematics Papers

General

- All candidates must receive the same treatment. You must mark the first candidate in exactly the same way as you mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- All the marks on the mark scheme are designed to be awarded. You should always award full marks if deserved, i.e. if the answer matches the mark scheme. You should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

Applying the Mark Scheme

- The mark scheme has a column for Process and a column for Evidence. In most questions the majority of marks are awarded for the process the candidate uses to reach an answer. The evidence column shows the most likely examples you will see: if the candidate gives different evidence for the process, you should award the mark(s).
- Finding 'the answer': in written papers, the demand (question) box should always be checked as candidates often write their 'final' answer or decision there. Some questions require the candidate to give a clear statement of the answer or make a decision, in addition to working. These are always clear in the mark scheme.
- If working is crossed out and still legible, then it should be marked, as long as it has not been replaced by alternative work.
- If there is a choice of methods shown, then marks should be awarded for the 'best' answer.
- A suspected misread may still gain process marks.
- It may be appropriate to ignore subsequent work (isw) when the candidate's additional work does not change the meaning of their answer. You are less likely to see instances of this in functional mathematics.
- You will often see correct working followed by an incorrect decision, showing that the candidate can calculate but does not understand the demand of the functional question. The mark scheme will make clear how to mark these questions.
- Transcription errors occur when the candidate presents a correct answer in working, and writes it incorrectly on the answer line; mark the better answer.
- Follow through marks must only be awarded when explicitly allowed in the mark scheme. Where the process uses the candidate's answer from a previous step, this is clearly shown. Speech marks are used to show that previously incorrect numerical work is being followed through, for example '240' means their 240.
- Marks can usually be awarded where units are not shown. Where units, including money, are required this will be stated explicitly. For example, $5(\mathrm{~m})$ or $(£) 256.4$ indicate that the units do not have to be stated for the mark to be awarded.
- Correct money notation indicates that the answer, in money, must have correct notation to gain the mark. This means that money should be shown as $£$ or p, with the decimal point correct and 2 decimal places if appropriate.
e.g. if the question working led to $£ 12 \div 5$,

| Mark as correct: $£ 2.40$ | $240 p$ | $£ 2.40 p$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mark as incorrect: $£ 2.4$ | $2.40 p$ | $£ 240 p$ | 2.4 | 2.40 | 240 |

- Candidates may present their answers or working in many equivalent ways. This is denoted o.e. in the mark scheme. Repeated addition for multiplication and repeated subtraction for division are common alternative approaches. The mark scheme will specify the minimum required to award these marks.
- A range of answers is often allowed :
- [12.5,105] is the inclusive closed interval
- $(12.5,105)$ is the exclusive open interval
- Parts of questions: because most FS questions are unstructured and open, you should be prepared to award marks for answers seen in later parts of a question, even if not explicit in the expected part.
- Discuss any queries with your Team Leader

Graphs

The mark schemes for most graph questions have this structure:

Process

Appropriate graph or chart (e.g. bar, stick, line graph,)

Evidence

1 of
linear scale(s), labels, plotting (2mm tolerance)

2 of
linear scale(s), labels, plotting (2 mm tolerance)
all of
linear scale(s), labels, plotting (2 mm tolerance)

The mark scheme will explain what is appropriate for the data being plotted.
A linear scale must be linear in the range where data is plotted, whether or not it is broken, whether or not 0 is shown, whether or not the scale is shown as broken. Thus a graph that is 'fit for purpose' in that the data is displayed clearly and values can be read, will gain credit.

The minimum requirements for labels will be given, but you should give credit if a title is given which makes the label obvious.
Plotting must be correct for the candidate's scale. Award the mark for plotting if you can read the values clearly, even if the scale itself is not linear

The mark schemes for Data Collection Sheets refer to input opportunities and to efficient input opportunities. When a candidate gives an input opportunity, it is likely to be an empty cell in a table, it may be an instruction to 'circle your choice', or it may require writing in the data in words. These become efficient, for example, if there is a well-structured 2-way table, or the input is a tick or a tally rather than a written list.

Section A: Surprise outing

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q1a	I6	Works with 24 hour and 12 hour time	1	A	E.g. 14:00 is $2.00(\mathrm{pm}) \mathbf{O R}$ $4.00(\mathrm{pm})$ is 16:00 OR No he'd be 2 hours early OR Accept 14 (hrs) and 16 (hrs)
Q1b	R2	Starts a process to work with time	1 or	B	Works with any time difference e.g. counts up from 10:25 to 11:00 or 10:25 to 11:25 or 12:20-10:25 OR adds minutes or finds difference in hours $\mathbf{O R}$ adds 35 and 20 OR 10 to $12=2$ (hrs)
	A4	Uses full correct process to find difference in time for the 10:25 coach	2 or	BC	Complete method for calculating time difference e.g. $1+20+35$ ($=1 \mathrm{hr} 55 \mathrm{mins}$) OR counts up from 10:25 to 12:20 ($=1$ hour 55 minutes)
	16	Correct answer	3	BCD	1 (hour) 55 (mins) OR 115 (mins)
Q1c	R3	Fully correct process to find 30\%	1 or	E	$\begin{aligned} & 23 \times 0.3(=6.9) \text { or } 46 \times 0.3(=13.8) \text { OR } \\ & 23 \div 10=2.3 \text { AND } 2.3+2.3+2.3(=6.9) \text { or } \\ & 46 \div 10=4.6 \text { AND } 4.6+4.6+4.6(=13.8) \text { OR } \\ & 23 \times 0.7(=16.1) \text { or } 46 \times 0.7(=32.2) \text { oe } \end{aligned}$
	A4	Correct answer	2	EF	£6.90 correct money notation OR $£ 13.80$ (for two tickets) correct money notation
		Total marks for question	6		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q2	R1	Starts to work with prices for 1 person or 2 people	1	G	$\begin{aligned} & 173.5 \div 2(=86.75) \text { OR } \\ & 25 \times 2(=50) \text { OR } \\ & 132.25 \times 2(=264.5) \text { OR } \\ & 18.95 \times 2(=37.9) \end{aligned}$ May be seen in subsequent working
	R2	Process for price of 1 option	1 or	H	$\begin{aligned} & 25+25+173.5(=223.5) \text { OR } \\ & ‘ 264.5 \prime+37.9^{\prime}(=302.4) \text { OR } \\ & 25+173.5 \div 2(=111.75) \text { OR } \\ & 132.25+18.95(=151.2) \end{aligned}$
	A4	Process for price of 2 options	2 or	HJ	$\begin{aligned} & 25+25+173.5(=223.5) \text { AND } ‘ 264.5 ’+‘ 37.9 ’(=302.4) \text { OR } \\ & 25+173.5 \div 2(=111.75) \text { AND } 132.25+18.95(=151.2) \end{aligned}$
	A5	Process to find the difference in price between both options	1 or	K	$\begin{aligned} & \text { e.g. ‘302.4’- '223.5’(=78.9) OR } \\ & \text { '151.2'-'111.75' }(=39.45) \text { OR } \\ & (173.5+25)-‘ 151.2 ’(=47.3) \text { OR } \\ & (173.5 \times 2+25)-‘ 302.4 ’(=69.6) \end{aligned}$
	I6	Presents difference in price between both options for 2 people	2	KL	(£)78.9(0)
Total marks for question			5		

Question	Skills Standard	Process	Mark	$\begin{gathered} \text { Mark } \\ \text { Grid } \end{gathered}$	Evidence
Q3a	$\begin{aligned} & \text { I6 } \\ & \text { I6 } \end{aligned}$	Writes one simple statement Writes two simple statements or one developed statement	$\begin{gathered} \hline 1 \text { or } \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \mathrm{MN} \end{gathered}$	See below Simple statements include: e.g. Holiday (Hotel) has more good/excellent (reviews); Poppy (Hotel) has more average (reviews); More people reviewed HH; 51 thought HH was terrible Developed statements include: e.g. Holiday (Hotel) is best as it has more good and excellent reviews than Poppy (Hotel)
Q3b	R3 A4 I6	Process to calculate total or work with differences Process to calculate mean or reverse check Correct conclusion from valid process with correct figures	1 or 2 or 3	P PQ PQR	$\begin{array}{\|l} 5+5+4+5+3+5(=27) \text { OR } \\ 4.5 \times 6(=27) \text { OR } \\ \pm 0.5, \pm 0.5, \pm 0.5, \pm 0.5, \pm 1.5, \pm 0.5 \\ \\ \text { '27’ } \div 6(=4.5) \text { OR } \\ 5+5+4+5+3+5(=27) \text { AND } 4.5 \times 6(=27) \text { OR } \\ \text { Sum of differences }(=0) \\ \text { e.g. The review score is } 4.5 \text { OR } \\ \text { It is } 4.5 \text { OR } \\ \text { Yes and } 27 \text { and } 27 \text { from } 2 \text { different processes } \mathbf{O R} \\ \text { Yes and no difference } \end{array}$
		Total marks for question	5		

Section B: Playgroup

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q4a	R1	Process to use proportion	1 or	A	e.g. $20 \div 8$ (=2.5) OR 3×8 (=24) OR $8+8+$ one more ($=3$) OR $20 \div 3$ (=6.6..) OR 1/8=3/24 OR Diagram or tallies may be seen
	I6	Correct conclusion with correct figure(s)	2	AB	Yes AND supporting evidence
Q4b	A4	Works with fraction	1	C	Yes AND $\frac{1}{2}$ of $4=2$ OR Yes AND 3 out $4>\frac{1}{2}$ oe OR 75% and only 50% needed oe OR $3 / 4$ are qualified so $3: 1$ which is more than 2:2 OR $1 / 4$ is less than $1 / 2$ so okay
Total marks for question			3		

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q5	A4	Process to work with costs up to $£ 130$	1 or	D	e.g. adds at least 3 different figures from list or subtracts at least 2 from 130
	I6	Communicates toys to be bought with mathematical justification	2	DE	Chooses three items (or three prices) and total cost Jigsaws, construction toy and play mat (£)112 OR (£)18 (left) Jigsaws, building bricks, play mat and (£)129 OR(£) 1 (left) Jigsaws, construction toy and building bricks (£) 123 OR (£)7 (left)

Question	Skills Standard	Process	Mark	$\begin{gathered} \hline \text { Mark } \\ \text { Grid } \end{gathered}$	Evidence
Q6a	R1	Starts to find elapsed time	1 or	F	12:00-9:30 (=2 hrs 30 mins or 2.5) OR 9:30-45 mins ($=8: 45$) OR 12:00 + 1 hr 15 mins ($=13: 15$) OR $5 \times 45(=225)$ OR counts up from 9:30 or 8:45 to 12:00 or 1:15 OR uses clock face
	A4	Develops solution with more than 1 feature	2	FG	$\begin{aligned} & 45+1 \mathrm{hr} 15 \mathrm{mins}(=2 \mathrm{hrs}) \text { OR } \\ & 13: 15-8: 45(4.5 \mathrm{hrs}) \text { OR } \\ & 225 \mathrm{mins}=3 \mathrm{hrs} 45 \mathrm{mins} \text { OR } \\ & 5 \times 1 \mathrm{hr} 15 \mathrm{mins}(=6 \mathrm{hrs} 15 \mathrm{mins}) \text { OR } \\ & 5 \times 2 \mathrm{hrs} 30 \mathrm{mins}(=12 \mathrm{hrs} 30 \mathrm{mins}) \end{aligned}$
	R2	Complete process to find hours worked	1 or	H	e.g. $5 \times$ ' 4 hrs 30 mins' ($=22$ hrs 30 mins) OR $5 \times$ (' 2 ' + ' 2 hrs 30 mins') or $5 \times$ ' 2 ' $+5 \times$ ' 2 hrs 30 mins' (=22 hrs 30 mins)
	I6	Decision with correct answer	2	HJ	No AND 22 hrs 30 mins or 30 mins less Accept 22.5 hrs
Q6b	R3	Process to calculate quantity of drink	1 or	K	$\begin{aligned} & 25 \times 200(=5000) \text { OR } \\ & 200 \div 1000(=0.2) \text { OR } \\ & 1000 \div 200(=5) \end{aligned}$
	A4	Full process	2 or	KL	$\begin{aligned} & { }^{5000} \div 1000(=5) \mathbf{O R} \\ & 25 \times{ }^{\prime} 0.2^{\prime}(=5) \mathbf{O R} \\ & 25 \div{ }^{\prime} 5{ }^{\prime}(=5) \end{aligned}$
	I6	Correct answer	3	KLM	5 (litres)
	A5	Shows a check on their calculation	1	N	Any valid reverse calculation

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q6c	R1	Works with biscuits needed or packets	1	P	$\begin{aligned} & 25 \times 5(=125) \text { OR } \\ & 22 \times 6(=132) \text { OR } \end{aligned}$ Uses build up method with at least 5 (packets) OR 1 (packet) a day AND 3 more needed
	A4	Process for number of packets or days	1 or	Q	' 125 ' $\div 22$ ($=5.68 . .$.$) OR$ 110 AND 125 full build up method oe OR 5 (packets) with 15 more needed OR $25 \times 5(=125)$ and $22 \times 6(=132)$ OR '132' - '125' (=7)
	I6	Finds number of packets	2	QR	6 (packets)
Total marks for question			11		

Section C: Indoor karting

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q7	R2	Understands problem, considers criteria to place cafe	1 or	A	Rectangle with two of: Correct length (4 sq) Correct width (3 sq) Suitable distance from pit stop (2 sq) Suitable distance karting area (1 sq) A4
I6	Develops solution	Fully correct solution	AB	Rectangle in suitable position with three of: Correct length (4 sq) Correct width (3 sq) Suitable distance from pit stop (2 sq) Suitable distance karting area (1 sq) Rectangle in suitable position with all of:	
Correct length (4 sq) Correct width (3 sq) Suitable distance from pit stop (2 sq) Suitable distance karting area (1 sq)					

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q8a	A4	Works with consistent units	1	D	$\begin{aligned} & \hline 1.5(\mathrm{~m}) \text { OR } 45000(\mathrm{~mm}) \text { OR } \\ & 4500(\mathrm{~cm}) \text { AND } 150(\mathrm{~cm}) \\ & \text { Conversion may be seen in subsequent calculation } \end{aligned}$
	R3	Process to find total number of barriers	1 or	E	$\begin{aligned} & 45 \div ‘ 1.5 ’(=30) \text { OR } \\ & ‘ 45000 ’ \div 1500(=30) \text { OR } \\ & ‘ 1.5 \times 30(=45) \text { OR } \end{aligned}$ Uses a build up method (at least three) OR Subtracts at least one length from 45
	I6	Correct answer from valid process allow ft	2	EF	30 (barriers) allow ft from valid process
Q8b	R3	Process to find length of barriers or perimeter	1 or	G	Shows addition of at least 2 of $12,12,30,20$ and no others OR Shows subtraction of at least 2 of 12, 12, 30, 20 from 74
	A4	Complete process to find length of barriers	2 or	GH	$\begin{aligned} & \text { eg } 12+12+30+20=74 \text { OR } \\ & 2 \times 30+2 \times 12-10=74 \text { OR } \\ & 74-30-12-20-12=0 \end{aligned}$
	I6	Correct conclusion from correct calculation	3	GHJ	Yes AND 74 from calculation
Total marks for question 6					

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q9a	R3	Starts to use formula	1 or	K	$\begin{array}{\|l} \hline \text { eg } 2 \times 375(=750) \text { OR } \\ 8 \times 100(=800) \text { OR } \\ 375 \div 100(=3.75) \end{array}$
	A4	Completes substitution	2 or	KL	$\begin{aligned} & ‘ 750 ’ \div 100(=7.5) \text { OR } \\ & ‘ 800 \div \div 375(=2.13 \ldots) \text { OR } \\ & 2 \times ‘ 3.75 ’(=7.5) \end{aligned}$
	I6	Correct conclusion and correct figures	3	KLM	e.g. No AND (£) 7.5(0) OR he is 50 p out $\mathbf{O R}$ No AND (£) 2.13...
Q9b	A4	Finds fastest winning time	1	N	45.05 OR (Race) 4

Question	Skills Standard	Process	Mark	Mark Grid	Evidence
Q9c	R2	Starts to design a data collection sheet	1 or	P	Two of: input opportunities start times listed for at least 2 one hour slots times heading type of photo heading at least two photo types listed (or letters)
	I6	Develops a data collection sheet	2 or	PQ	input opportunities with both of: start times listed for at least 2 one hour slots or heading for start times AND at least 3 photo types listed (or letters) or heading for photo types Allow Questionnaire for up to 2 marks only
I6	Presents efficient solution	Total marks for question	7	PQR	All of: efficient input opportunities start times for 3 correct one hour slots - ignore extras All 4 photo types listed (or letters)

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code FC036400 June 2013

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Welsh Assembly Government

