IYGB GCE
Mathematics SYN
Advanced Level
Synoptic Paper CDifficulty Rating: 3.8925
Time: 3 hours
Candidates may use any calculator allowed by the

Information for Candidates

This synoptic practice paper follows closely the Advanced Level Pure Mathematics Syllabus, suitable for first assessment Summer 2018.
The standard booklet "Mathematical Formulae and Statistical Tables" may be used. Full marks may be obtained for answers to ALL questions.
The marks for the parts of questions are shown in round brackets, e.g. (2). There are 22 questions in this question paper.
The total mark for this paper is 200 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. Non exact answers should be given to an appropriate degree of accuracy. The examiner may refuse to mark any parts of questions if deemed not to be legible.

Created by T. Madas

Question 3

The figure above shows the cross section of a river dam modelled in a system of coordinate axes where all units are in metres.

The cross section of the dam consists of a circular sector $A D B$ and two isosceles triangles $O A D$ and $D B C$.

The coordinates of the points A, B, C and D are $(9,40),(27,40),(36,0)$ and $(18,0)$, respectively.
a) Find the length of $A D$.
b) Show that the angle $A D B$ is approximately 0.4426 radians.
(2)
c) Hence determine, to the nearest m^{2}, the cross sectional area of the dam.

Question 4

Use the substitution $t=\sqrt{1-x^{3}}$ to show that

$$
\begin{equation*}
\int x^{5} \sqrt{1-x^{3}} d x=-\frac{2}{45}\left(3 x^{3}+2\right)\left(1-x^{3}\right)^{\frac{3}{2}}+C \tag{10}
\end{equation*}
$$

Created by T. Madas

Question 5

The figure above shows the graph of the curve with equation

$$
y=1+\mathrm{e}^{2 x}, x \in \mathbb{R}
$$

The point C has coordinates $(1,0)$. The point B lies on the curve so that $B C$ is parallel to the y axis. The point A lies on the y axis so that $O A B C$ is a rectangle.

The region R is bounded by the curve, the coordinate axes and the line $B C$.

The region S is bounded by the curve, the y axis and the line $A B$.

Show that the area of R is equal to the area of S.

Question 6

The first term of a geometric progression is 1200 and its sum to infinity is 1600 .
a) Find the sum of the first five terms of the progression.

The $n^{\text {th }}$ term of the progression is denoted by u_{n}.
b) Evaluate the sum

$$
\begin{equation*}
\sum_{r=6}^{\infty} u_{r} \tag{2}
\end{equation*}
$$

Created by T. Madas

Question 7

The curve C_{1} has equation

$$
y=|x-1|, x \in \mathbb{R} .
$$

The curve C_{2} has equation

$$
y=|2 x+1|, x \in \mathbb{R} .
$$

a) Sketch the graph of C_{1} and the graph of C_{2} in the same set of axes, indicating the coordinates of any intercepts of the graphs with the coordinate axes.
b) Hence, solve the inequality

$$
\begin{equation*}
|2 x+1| \geq|x-1| . \tag{4}
\end{equation*}
$$

Question 8

A curve has equation

$$
y=\frac{1}{4} \mathrm{e}^{2 x-3}-4 \ln \left(\frac{1}{2} x\right), \quad x>0 .
$$

The tangent to the curve, at the point where $x=2$, crosses the coordinate axes at the points A and B.

Show that the area of the triangle $O A B$, where O is the origin, is given by

$$
\begin{equation*}
\frac{(16-3 e)^{2}}{16(4-e)} \tag{10}
\end{equation*}
$$

Created by T. Madas

Question 9

At the point P, which lies on the curve with equation

$$
y^{3}-y^{2}=\mathrm{e}^{x},
$$

the gradient is $\frac{6}{5}$.

Determine the possible coordinates of P.
\qquad

Question 10

The figure above shows part of the curve with equation $y=f(2 x)$.

The curve meets the coordinate axes at $(6,0)$ and $(0,4)$.
a) Sketch the graph of $y=f(x)$.

The sketch must include the coordinates of any points where the graph meets the coordinate axes.
b) Sketch on separate diagram the graph of $y=f(4 x-1)$.

The sketch must include the coordinates of the point where the graph meets the x axis.

Created by T．Madas

Question 11

The figure above shows the design of an athletics track inside a stadium．

The track consists of two semicircles，each of radius $r \mathrm{~m}$ ，joined up to a rectangular section of length x metres．

The total length of the track is 400 m and encloses an area of $A \mathrm{~m}^{2}$ ．
a）By obtaining and manipulating expressions for the total length of the track and the area enclosed by the track，show that

$$
\begin{equation*}
A=400 r-\pi r^{2} \tag{4}
\end{equation*}
$$

In order to hold field events safely，it is required for the area enclosed by the track to be as large as possible．
b）Determine by differentiation an exact value of r for which A is stationary．
c）Show that the value of r found in part（b）gives the maximum value for A ．
d）Show further that the maximum area the area enclosed by the track is

$$
\begin{equation*}
\frac{40000}{\pi} \mathrm{~m}^{2} \tag{2}
\end{equation*}
$$

The calculations for maximizing the area of the field within the track are shown to a mathematician．The mathematician agrees that the calculations are correct but he feels the resulting shape of the track might not be suitable．
e）Explain，by calculations，the mathematician＇s reasoning．

Created by T. Madas

Question 12

A circle C_{1} has equation

$$
x^{2}+y^{2}+20 x-2 y+52=0 .
$$

a) Determine the coordinates of the centre of C_{1} and the size of its radius.
(4)

A different circle C_{2} has its centre at $(14,8)$ and the size of its radius is 10 .

The point P lies on C_{1} and the point Q lies on C_{2}.
b) Determine the minimum distance of $P Q$.

Question 13

A cubic curve C_{1} has equation

$$
y=(x-7)\left(x^{2}+2 x-3\right)
$$

A quadratic curve C_{2} has equation

$$
y=(2 x+5)(7-x) .
$$

a) Sketch on separate set of axes the graphs of C_{1} and C_{2}.

The sketches must contain the coordinates of the points where each of the curves meet the coordinate axes.
b) Hence, find in exact form where appropriate, the three solutions of the following equation.

$$
\begin{equation*}
(x-7)\left(x^{2}+2 x-3\right)=(2 x+5)(7-x) \tag{7}
\end{equation*}
$$

Created by T. Madas

Question 14

The figure above shows the graphs of

$$
y=2-3 \mathrm{e}^{x} \quad \text { and } \quad y=1+\mathrm{e}^{x+1}+\mathrm{e}^{x-1} .
$$

The graphs meet at the point P.
Show that the y coordinate of P is

$$
\begin{equation*}
\frac{2 \mathrm{e}^{2}+3 \mathrm{e}+2}{\mathrm{e}^{2}+3 \mathrm{e}+1} \tag{6}
\end{equation*}
$$

Question 15

Use trigonometric algebra to solve the equation

$$
\sin \left[\arcsin \frac{1}{4}+\arccos x\right]=1
$$

You may not use any calculating aid in this question.

Created by T. Madas

Question 16

The figure above shows the graph of a function $f(x)$, defined by

$$
f(x)= \begin{cases}a x^{3}+2, & x \in \mathbb{R}, \\ b x^{2}-2, & x \in \mathbb{R}, \\ b>2\end{cases}
$$

The function is continuous and smooth.

Find the value of a and the value of b.

Question 17

Solve the following simultaneous logarithmic equations.

$$
\begin{align*}
& 3 \log _{8}(x y)=4 \log _{2} x \\
& \log _{2} y=1+\log _{2} x \tag{8}
\end{align*}
$$

Created by T. Madas

Question 18

Consider the following identity for t.

$$
\frac{1}{t\left(t^{2}+1\right)} \equiv \frac{A t+B}{t^{2}+1}+\frac{C}{t}
$$

a) Find the value of each of the constants A, B and C.

In a chemical reaction the mass, m grams, of the chemical produced at time t, in minutes, satisfies the differential equation

$$
\frac{d m}{d t}=\frac{m}{t\left(t^{2}+1\right)}
$$

b) Find a general solution of the differential equation, in the form $m=f(t)$.

Two minutes after the reaction started the mass produced is 10 grams.
c) Calculate the mass which will be produced after a further period of 2 minutes.
d) Determine, in exact surd form, the maximum mass that will ever be produced by this chemical reaction.

Created by T. Madas

Question 19

The figure above shows the curve C with equation

$$
y=x^{2}-2 x+3
$$

The points $P(-1,6), Q(0,3)$ and R all lie on C.

Given that $\measuredangle P Q R=90^{\circ}$, determine the exact coordinates of R.
\qquad

Question 20

A curve has equation

$$
f(x) \equiv 4^{a x+b}, x \in \mathbb{R}
$$

where a and b are non zero constants.

Find the value of a and the value of b, given further that

$$
\begin{equation*}
f\left(\frac{2}{3}\right)=\frac{1}{4} \sqrt[3]{4} \quad \text { and } \quad f\left(\frac{3}{2}\right)=\frac{1}{2} \sqrt{2} . \tag{8}
\end{equation*}
$$

Created by T. Madas

Question 21

The figure above shows a symmetrical design for a suspension bridge arch $A B C D$.

The curve $O B C R$ is a cycloid with parametric equations

$$
x=6(2 t-\sin 2 t), \quad y=6(1-\cos 2 t), \quad 0 \leq t \leq \pi .
$$

a) Show clearly that

$$
\begin{equation*}
\frac{d y}{d x}=\cot t . \tag{5}
\end{equation*}
$$

b) Find the in exact form the length of $O R$.
c) Determine the maximum height of the arch.

The arch design consists of the curved part $B C$ and the straight lines $A B$ and $C D$.
The straight lines $A B$ and $C D$ are tangents to the cycloid at the points B and C.

The angle $B A O$ is $\frac{1}{6} \pi$.
d) Find the value of t at B, by considering the gradient at that point.
e) Find, in exact form, the length of the straight line $A D$.

Created by T. Madas

Question 22

The figure above shows a triangle $A B C$, where $\measuredangle B A C=\frac{1}{6} \pi, \measuredangle B C A=\theta$ and $|B C|=1$. The straight line segment $B D$, labelled as h, is perpendicular to $A C$.

Let $A D=x$ and $D C=y$.
a) By expressing h in terms of θ, and x in terms of h, show that

$$
x+y=\sqrt{3} \sin \theta+\cos \theta,
$$

and hence deduce that the area of the triangle $A B C$ is given by

$$
\begin{equation*}
\sin \theta \sin \left(\theta+\frac{1}{6} \pi\right) \tag{7}
\end{equation*}
$$

b) By using the trigonometric identities for

$$
\begin{equation*}
\cos \left[\theta+\left(\theta+\frac{1}{6} \pi\right)\right] \quad \text { and } \quad \cos \left[\theta-\left(\theta+\frac{1}{6} \pi\right)\right] \tag{5}
\end{equation*}
$$

write a simplified expression for the area of the triangle $A B C$.
The value of θ can vary.
c) By using part (b), deduce that the maximum value of the area of the triangle $A B C$ is

$$
\frac{1}{4}(2+\sqrt{3})
$$

and this maximum value occurs when $\theta=\frac{5}{12} \pi$.

