1 Functions

- A function is a rule which generates exactly ONE OUTPUT for EVERY INPUT. To be defined fully the function has
a RULE - tells you how to calculate the output from the input
a DOMAIN - the set of values which will be used as inputs
e.g. $f(x)=\sqrt{ } x \quad$ domain $x \geq 0$
(cannot find the square root of negative values)
- ALTERNATIVE NOTATION
$f: x \mapsto x^{2} \quad$ means function f such that x maps to x^{2} input x is converted to output x^{2}
$x \in \mathrm{R} \quad \mathrm{x}$ can be any real number
- There are different types of functions

MANY-ONE
$y=$

$$
y=x^{2}
$$

2 different inputs give the same output

ONE-ONE

$y=2 x+3$ for each output there is only one possible input

- The RANGE of a function is the complete set of all of the OUTPUTS
- An INVERSE function is denoted by f^{-1}.

ONLY ONE-ONE FUNCTIONS HAVE INVERSES
The DOMAIN of an inverse function is the RANGE of the function
e.g. The function f is defined by $f(x)=\frac{3}{2 x-1}$ find $f^{-1}(x)$

Step 1 : Write the rule in terms of x and y

$$
y=\frac{3}{2 x-1}
$$

Step 2 : Rearrange to make x the subject

$$
x=\frac{3+y}{2 y}
$$

Step 3 : Replace the y's with x's

$$
f^{-1}(x)=\frac{3+x}{2 x}
$$

- Using the same scale on the x and y axis, the graphs of a function and it's inverse have reflection symmetry in the line $\mathbf{y}=\mathbf{x}$

COMPOSITE FUNCTIONS

The function gf is called a composite function and tells you to' do f first then $\mathrm{gf}(\mathrm{x})$
e.g. $f(x)=2 x+3 \quad g(x)=x^{2}+2$

$$
\begin{array}{ll}
g f(x)=(2 x+3)^{2}+2 & f g(x)=2\left(x^{2}+2\right)+3 \\
g f(x)=4 x^{2}+12 x+11 & f g(x)=2 x^{2}+7
\end{array}
$$

2 The Modulus function

- $|x|$ is the 'modulus of x ' or the 'absolute value'
- The modulus of a real number can be thought of as its' distance' from 0 and it is always positive.

$$
|4|=4 \quad|-2|=2
$$

- The graph of $y=|f(x)|$ is

To sketch the graph of $y=|(f x)|$ first sketch the graph of $y=f(x)$ Take any part of the graph that is below the x-axis and reflect it in the x-axis.

SOLVING EQUATIONS

Always sketch the graph before you start to determine the number of solutions
A function is defined by $f(x)=|2 x+1|-3$
Solve the inequality $f(x)<x$

The graphs shows 2 solutions

$$
\begin{array}{cl}
(2 x+1)-3=x & -(2 x+1)-3=x \\
2 x-2=x & -2 x-4=x \\
x=2 \text { or } & x=-\frac{4}{3}
\end{array}
$$

3 Transforming Graphs

- TRANSLATION - to find the equation of a graph after a translation of $\left[\begin{array}{l}a \\ b\end{array}\right]$ you replace x by ($x-a$) and y by ($y-b)$
e.g. The graph of $y=x^{2}-1$ is translated through $\left[\begin{array}{c}3 \\ -2\end{array}\right]$. Write down the equation of
$y-b=f(x-a)$
or
$y=f(x-a)+b$$\quad \begin{gathered}\text { the graph formed. } \\ (y+2)=(x-3)^{2}-1 \\ y=x^{2}-6 x+6\end{gathered}$

- REFLECTING

Reflection in the x-axis, replace y with $-y$

Reflection in the y-axis, replace x with $-x$ \square

- STRETCHING

Stretch of factor k in the x direction replace x by $\frac{1}{k} x \longleftarrow y=f\left(\frac{1}{k} x\right)$
Stretch of factor k in the y direction replace y by $\frac{1}{k} y, \quad y=k f(x)$

- COMBINING TRANSFORMATIONS

When applying 2 transformations the order does not matter if one involves replacing x and the other replacing y. If both transformations involve replacing x (or y) then the order could matter
e.g. The graph of $y=x^{2}$ is first translated by $\left[\begin{array}{l}3 \\ 0\end{array}\right]$ and then reflected in the y-axis Find the equation of the final image.

Translation $y=(x-3)^{2}$
Reflection $\quad y=(-x-3)^{2}$

$$
y=(x+3)^{2}
$$

4 TRIGONOMETRY

INVERSE FUNCTIONS
$y=\sin ^{-1} x \quad \arcsin x$ or asin x
domain $-1 \leq x \leq 1$
range $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

$$
\begin{gathered}
y=\cos ^{-1} x \quad \arccos x \text { or } \operatorname{acos} x \\
\text { domain }-1 \leq x \leq 1 \\
\text { range } 0 \leq y \leq \pi
\end{gathered}
$$

$$
y=\tan ^{-1} x \quad \arctan x \text { or } \operatorname{atan} x
$$

$$
\text { domain } x \in R
$$

$$
\text { range }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
$$

$\boldsymbol{\operatorname { s e c }} \mathrm{x}$ is defined as $\frac{1}{\cos x}$ $y=\sec x$ has domain $x \in$

$$
x \in \mathrm{R} \quad x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \frac{ \pm 5 \pi}{2}
$$

and range $\mathrm{y} \leq-1$ and $\mathrm{y} \geq 1$

$5 \quad$ Natural Logarithms and e^{x}

- e is an irrational; its value is 2.718281828 correct to 9 decimal places
- Natural Logarithms use e as a base and we write $\log _{e} x$ as $\ln x$

$$
e^{x}=y \Rightarrow x=\ln y
$$

$\operatorname{cosec} \mathbf{c}$ is defined as $\frac{1}{\sin x}$
$y=\operatorname{cosec} x$ has domain

$$
x \in \mathrm{R} \quad x \neq 0, \pm \pi, \pm 2 \pi, \pm 3 \pi
$$

and range $y \leq-1$ and $y \geq 1$
e.g. Solve the equation $e^{-5 x}-3=0$

$$
\begin{aligned}
e^{-5 x} & =3 \\
-5 x & =\ln 3 \\
x & =-\frac{1}{5} \ln ^{3} \\
& =-0.2197
\end{aligned}
$$

If the question asks for an exact answer do not change into decimals

$$
\text { - } e^{x}=y \Rightarrow x=\ln y \quad \text { so } e^{x} \text { and } \ln x \text { are inverse functions }
$$

e^{x} is positive for all x so In x is defined only for positive values of x

e. g The function g is defined by $g(x)=2 e^{x-5}+3$ for all real x. Find and expression for $g^{-1}(x)$ and state it's domain and range.

$$
\begin{aligned}
y & =2 e^{x-5}+3 \\
y-3 & =2 e^{x-5} \\
1 / 2(y-3) & =e^{x-5} \\
\ln (1 / 2(y-3)) & =x-5 \\
\ln (1 / 2(y-3))+5 & =x \\
g^{-1}(x) & =\ln (1 / 2(x-3))+5
\end{aligned}
$$

The range of g is $g(x)>3$ so the domain of $g^{-1}(x)$ is $x>3$
The domain of g is all real values of x so the range $g^{-1}(x)$ is all real values

- Transformation of graphs
e.g. Describe the sequence of geometrical transformations needed to obtain the graph of $y=2 e^{-x}$ from the graph of $y=e^{x}$.

Reflection in the y-axis gives $y=e^{-x}$
Stretch factor of 2 in the y direction gives $y=2 e^{-x}$

6 Differentiation

Key points from C1 and C2
$>$ The derivative of $x^{n}=n x n^{-1}$
$>$ If $f^{\prime}(a)>0, f$ is increasing at $x=a$. If $f^{\prime}(a)<0, f$ is decreasing at $x=a$
$>$ The points where $\mathrm{f}^{\prime}(\mathrm{a})=0$ are called stationary points
If $\mathrm{f}^{\prime \prime}(\mathrm{a})>0$ then $\mathrm{x}=\mathrm{a}$ is a local minimum
If $\mathrm{f}^{\prime \prime}(\mathrm{a})<0$ then $\mathrm{x}=\mathrm{a}$ is a local maximum

- The derivative of e^{x} is e^{x}
- The derivative of $\ln \mathrm{x}$ is $\frac{1}{x}$ e.g. If $f(x)=e^{x}+\ln \left(2 x^{3}\right)$ find $f^{\prime}(x)$

$$
\begin{aligned}
& f(x)=e^{x}+\ln 2+3 \ln x \\
& f^{\prime}(x)=e^{x}+\frac{3}{x}
\end{aligned}
$$

- Product Rule

If $y=u v$ then $\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$

- Quotient Rule

$$
\text { If } y=\frac{u}{v} \text { then } \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

- Chain Rule

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

Find $\frac{d y}{d x}$ given that $\ln \left(1+x^{2}\right)$

$$
\text { Let } u=1+x^{2} \text { so } y=\ln u
$$

$$
\frac{d u}{d x}=2 x \quad \frac{d y}{d u}=\frac{1}{u}
$$

$$
\frac{d y}{d x}=\frac{2 x}{1+x^{2}}
$$

- Differentiating $\sin x, \cos x$ and $\tan x$

The derivative of $\boldsymbol{\operatorname { s i n }} \mathbf{x}$ is $\boldsymbol{\operatorname { c o s }} \mathbf{x}$.
The derivative of $\boldsymbol{\operatorname { c o s }} \mathbf{x}$ is $-\boldsymbol{\operatorname { s i n }} \mathbf{x}$
The derivative of $\boldsymbol{\operatorname { t a n }} \mathbf{x}$ is $\boldsymbol{\operatorname { s e c }}^{\mathbf{2}} \mathbf{x}$

- The derivative of $f(a x)$ is af' $(a x)$
- The derivative of $f(a x+b)$ is $a f^{\prime}(a x+b)$
e.g. Find $f^{\prime}(x)$ given that $f(x)=\sin 3 x \cos 2 x$

Let $u=\sin 3 x$ and $v=\cos 2 x$

$$
\begin{array}{ll}
\frac{d u}{d x}=3 \cos 3 x \quad \frac{d v}{d x}=-2 \sin 2 x \quad & \frac{d y}{d x}=(\sin 3 x)(-2 \sin 2 x)+(\cos 2 x)(3 \cos 3 x) \\
& \frac{d y}{d x}=3 \cos 2 x \cos 3 x-2 \sin 2 x \sin 3 x
\end{array}
$$

7 Integration

Key points from C1 and C2

$$
\begin{aligned}
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \\
& \int_{b}^{a} f(x) d x \quad \begin{array}{l}
\text { Gives the area under the graph of } \\
y=f(x) \text { between } x=a \text { and } x=b
\end{array} \\
& \text { Areas below the } x \text {-axis are negative }
\end{aligned}
$$

- Key integrals TO LEARN
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c \quad \int \frac{1}{x} d x=\ln |x|+c \quad \int \frac{1}{a x+b} d x=\frac{1}{a} \ln |a x+b|+c$

$$
\int \sin a x d x=-\frac{1}{a} \cos a x+c \quad \int \cos a x d x=\frac{1}{a} \sin a x+c
$$

- Integration by SUBSTITUTION

$$
\text { e.g. Use the substitution } u=1-x^{2} \text { to find } \quad \int x \sqrt{1-x^{2}}
$$

First find du in terms of $d x \quad \frac{d u}{d x}=-2 x$ so $d u=-2 x d x$
Rewrite the function in terms of u and $d u$

$$
\begin{aligned}
& \int x \sqrt{1-x^{2}} d x=-\frac{1}{2} \int \sqrt{1-x^{2}}(-2 x) d x \\
& =-\frac{1}{2} \int \sqrt{u} d u=-\frac{1}{2} \int u^{-\frac{1}{2}} d u
\end{aligned}
$$

Carry out the integration in terms of u

$$
=-\frac{1}{2}\left(\frac{2}{3} u^{\frac{3}{2}}\right)+c=-\frac{1}{3} u^{\frac{3}{2}}+c
$$

Rewrite the result in terms of x

$$
-\frac{1}{3}\left(1-x^{2}\right)^{\frac{3}{2}}+c
$$

- Integration by parts

$$
\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x+c
$$

e.g. Find $\int \mathrm{xe}^{5 \mathrm{x}} \mathrm{dx}$

$$
\begin{aligned}
& \text { Let } u=x \quad \text { and } \quad \frac{\mathrm{d} v}{\mathrm{dx}}=\mathrm{e}^{5 \mathrm{x}} \\
& \begin{aligned}
\frac{\mathrm{du}}{\mathrm{dx}}=1 & \quad v=\frac{1}{5} \mathrm{e}^{5 x}
\end{aligned} \\
& \begin{aligned}
\int x e^{5 x} & =\frac{x}{5} e^{5 x}-\int \frac{1}{5} e^{5 x} d x \\
& =\frac{x}{5} e^{5 x}-\frac{1}{25} e^{5 x}+c
\end{aligned}
\end{aligned}
$$

- Integrating $\frac{\boldsymbol{f}^{\prime}(\boldsymbol{x})}{\boldsymbol{f}(\boldsymbol{x})}$ (the numerator is a multiple of the derivative of the denominator)

$$
\int \frac{f^{\prime}(x)}{f(x)}=\ln |f(x)|+c
$$

eg Find $\int \frac{x^{3}}{x^{4}+1} d x$
The derivative of the denominator, $x^{4}+1$ is $4 x^{3}$, so think of the numerator as $1 / 4\left(4 x^{3}\right)$

$$
\int \frac{x^{3}}{x^{4}+1} d x=\frac{1}{4} \int \frac{4 x^{3}}{x^{4}+1} d x=\frac{1}{4} \ln \left|x^{4}+1\right|+c
$$

- $\left.\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c\right)$

STANDARD INTEGRALS TO LEARN

8 Solids of Revolution

- Revolution about the x-axis

The volume of a solid of revolution about the x-axis between $x=a$ and $x=b$ is given by $\int_{a}^{b} \pi y^{2} d x$

- Revolution about the y-axis

The volume of a solid of revolution about the y-axis between $y=a$ and $y=b$ is given by $\int_{a}^{b} \pi x^{2} d y$
e.g. The region shown is rotated through 2π radians about the y axis.

Find the volume of the solid generated.

First express x^{2} in terms of y

$$
y=\frac{1}{8} x^{3} \Rightarrow 8 y=x^{3} \Rightarrow 2 y^{\frac{1}{3}}=x \Rightarrow x^{2}=4 y^{\frac{2}{3}}
$$

When $x=0 \quad y=0 \quad$ when $x=2 \quad y=1$

Volume $=\int_{0}^{1} \pi x^{2} d y=\int_{0}^{1} 4 y^{\frac{2}{3}} d y=4 \pi\left[\frac{3 \frac{5}{3}}{5 y}\right]=\frac{12}{5} \pi$

9 Numerical Methods

- Change of sign

For an equation $f(x)=0$, if $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ have opposite signs and $f(x)$ is continuous between x_{1} and x_{2}, then a root (solution) of the equation lies between x_{1} and x_{2}

- Staircase and Cobweb Diagrams

If an iterative formula (recurrence relation) of the form $x_{n+1}=f\left(x_{n}\right)$ converges to a limit, the value of the limit is the x-coordinate of the point of intersection of the graphs $y=f(x)$ and $y=x$

The limit is therefore the solution of the equation $f(x)=x$
A staircase or cobweb diagram based on the graphs of $y=f(x)$ and $y=x$ illustrates the convergence
e.g Solve the equation $x^{3}-12 x+12=0$

First we will write it in the form $x=f(x)$

$$
x^{3}+12=12 x \Rightarrow \frac{x^{3}}{12}+1=x
$$

Plotting the graphs $y=\frac{x^{3}}{12}+1$ and $y=x$ the solution is the point of intersection of the two graphs.

We can confirm that there is a point of intersection
between $x=1$ and $x=2$ by a change of sign the values are substituted.
Substituting $x=2$ into $y=\frac{x^{3}}{12}+1$ gives $y=1.66 \ldots$ (shown on the diagram)
Substituting $x=1.66 \ldots . y=1.38 \ldots$
Repeating this the values converge to 1.1157
The solution of $x^{3}-12 x+12=0$ is $x=1.1157$

- The mid-ordinate Rule (Numerical Integration)

Gives and approximation to the area under a graph.
The area is divided into strips of equal width.
The value of the function halfway across each strip (the mid-ordinate) is calculated
Total area $=$ width of strip \times sum of mid-ordinates

x	Y
2.5	$\ln 2.5$
3.5	$\ln 3.5$
4.5	$\ln 4.5$
5.5	$\ln 5.5$

Area $=1 \times(\ln 2.5+\ln 3.5+\ln 3.5+\ln 5.5)$
$=\ln (2.5 \times 3.5 \times 4.5 \times 5.5)$
$=\ln 216.5625$

$$
=5.38
$$

- Simpson's Rule

Gives a more accurate approximation to the area under a graph.
An even number of strips of equal width are used.
The ordinates $y_{0}, y_{1}, y_{2}, \ldots$ are the values of the function on the vertical edges of the strips. The area is given by
$\frac{1}{3} h$ (sum of end ordinates $+4 x$ sum of odd ordinates + $2 x$ sum of remaining even ordinates)

