	What You Need To Know	óro	90	咸
1. Algebra and Functions	- Definition of a function including the notation $f(x)$ - Domain and Range of a function - Composition of functions such as $f g(x)=f(g(x))$ - Inverse Functions and Their Graphs - The Modulus Function - Combinations of transformations of graphs			
2. Trigonometry	- Knowledge of $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$ functions. - Understanding of the graphs of inverse trig functions and their domains - Knowledge of secant, cosecant and cotangent. Their relationship to cos, sine and tan; and their domain and graphs. - Knowledge and the use of $1+\tan ^{2} x=\sec ^{2} x$. and $1+\cot ^{2} x=\operatorname{cosec}^{2} x$.			
3. Exponentials and Logarithms	- The function of e^{x} and it's graph			
4. Differentiation	- Differentiation of $e^{x}, \ln x, \sin x, \cos x, \tan x$ and linear combinations of these functions - Differentiation using the product rule, quotient rule, the chain rule and by the use of $\frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}$			
5. Integration	- Integration of e^{x} and $\frac{1}{x}, \sin x, \cos x$. - Simple cases of integration by inspection or substitution and integration by parts. - The methods as the reverse process of the product and chain rule. - Evaluation of a volume of revolution			
6. Numerical Methods	- Location of roots of $f(x)=0$ by considering the changes of sign of $f(x)$ is continuous. - Approximate solutions of equations using simple iterative methods, including recurrence relations of the form $x_{n+1}=f\left(x_{n}\right)$ - Numerical integration of function using the midordinate rule and Simpson's Rule.			

